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	 Cranial nerve information can be used to correctly analyze fatigue states.  Spectral 
analysis is the major method of identifying fatigue states.  Various frequency bands can 
be distinguished by digital filters owing to their high accuracy and driftless features.  The 
electroencephalography (EEG) signal is sent to a personal computer (PC) via a universal 
serial bus (USB) interface from a microcontroller and passed through digital filters 
within 200 taps, and thus, the spectrum of individual signals can be analyzed.  This study 
has investigated the four EEG frequency bands, delta (δ), theta (θ), alpha (α), and beta 
(β), using four algorithms to evaluate the fatigue state based on the EEG signals.  We 
compared the four algorithms and determined the best one.

1.	 Introduction

	 Mood incompetence may hinder or even endanger human life, particularly for those 
designated to make important decisions, operate dangerous tools, or cope with emergency 
situations (pilots, truck drivers, emergency room staff, just to name a few).  In this study, 
we detect a person’s state of mind.  Horne and Baulk(1) have arranged two sessions on a 
driving simulator and tested the subjects.  They found a very high correlation between 
Karolinska Sleepiness Scale (KSS) scores and power of 4–11 Hz band (θ+α band), and 
therefore, can take advantage of the band energy to assess their sleepiness states (KSS 
scores) in real time.
	 In the study of Akerstedt and Gillberg,(2) which considers relationships between 
subjective sleepiness and EEG, subjects were kept awake during the night in the 
laboratory.  A high sleepiness condition was related to an increase in theta and alpha 
power.
	 Subjective sleepiness correlates negatively with global α (8–12 Hz) and positively 
with central frontal θ (4–8 Hz) frequencies in the human resting awake electroencephalo
gram.(3,4)
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	 In another study on anxiety, self-reports were made by means of the Hamilton 
Anxiety Scale (HAS).  HAS (or HAMA) is a 14-item test measuring the severity of 
anxiety symptoms.  It is also sometimes called the Hamilton Anxiety Rating Scale 
(HARS).(5)  HAS is used to evaluate the severity of anxiety symptoms observed in 
children and adults.  It is also used as an outcome measurement when evaluating the 
impact of anti-anxiety medications and remedies and is a standard measurement of 
anxiety used in evaluations of psychotropic drugs. 
	 A significant relationship between reported anxiety and β2 power over midline 
electrodes (Fz, Cz and Pz are shown in Fig. 1) was described by Ansseau et al.(6)  The 
letters F, T, C, P, and O stand for frontal, temporal, central, parietal, and occipital lobes, 
respectively.  A “z” (zero) refers to an electrode placed on the midline.  The results 
showed a significantly more rapid onset of activity of freeze-dried dosage formulation 
(FDDF) of oxazepam for anxiety level (p < 0.005) and the specific β2 EEG changes (p < 
0.0001), which were significantly correlated (r = –0.73, r is coefficient of correlation; p < 
0.01, p is probability). 
	 EEG activity sources were analyzed using the low-resolution electromagnetic 
tomography (LORETA) method (Isotani et al.(7)).   The β2 activity source was found 
to move to the right side during anxiety conditions in comparison with relaxation 
conditions.  The reports agree that brain activity shifts to the right (especially 
frontotemporal) during negative emotions (compared with positive emotions), and 
support the role of β2 EEG frequency in emotional states. 
	 Figure 1 shows how the electrodes are placed.  For example, the overuse of smart 
phones leads to anxiety.   β rhythm (β wave band) is noted under conditions of mood 
effort and also during emotional arousal, which in some conditions can have negative 
valence.  α rhythm is positively correlated with the awake state of relaxation, which has 
emotionally positive valence and is opposite of tense arousal.(8)
	 Since the interval frequency of brain wave composition is very close to the 
neighboring band, digital filtering is required.  The current study has investigated the 

Fig. 1.	 10–20 system for electrode placement (from Wikipedia).
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four EEG frequency bands, δ, θ, α, and β, using four algorithms (algorithm 1 = (θ+α)/β, 
Brookhuis & Waard;(9) algorithm 2 = α/β , Eoh et al.;(10) algorithm 3 = (θ+α)/(α+β), and 
algorithm 4 = θ/β , Budi et al.(11)) to evaluate fatigue.  For example, the α (α1, 8–10 Hz; 
α2, 10–12 Hz), β (β1, 13–15 Hz; β2, 16–24 Hz), θ (θ1, 4–5 Hz; θ2, 6–7 Hz), and δ (δ, 1
–3 Hz) can be employed to analyze the fatigue states and for fatigue evaluation.  In this 
paper, the four algorithms are compared with each other and the best one is identified.

2.	 Materials and Methods

	 Analog filters are restricted by component tolerances and aging, which results in 
incorrect measurements.(12)   Thus, we use digital filters.   Some applications of digital 
filters must operate in real time.  This places specific requirements on the digital signal 
processor (DSP) depending on the sampling frequency and filter complication.  Although 
DSP processors are fast, their high cost is a real concern.  Fortunately, a DSP processor 
can be ignored when EEG signals can be sent through a USB interface to a personal 
computer in this system since the program can replace the chip, and a personal computer (PC) 
is available everywhere.
	 The sampling frequency for EEG is not high.  According to the Nyquist-Shannon 
theorem, the sampling frequency is at least two times larger than the signal bandwidth.  
However, in medical field applications, a sampling rate of 8 to 12 times of the signal 
bandwidth is required.  Therefore, we chose an analog-to-digital converter (ADC) with a 
sampling rate of 500 Hz.
	 With the calculated differential and average values resulting from measurement by 
twos in any close time, plus comparison among the variance of four algorithms, the most 
suitable algorithm is identified. 
	 Subjective ratings of sleepiness are obtained using a version of KSS.  The KSS 
scale consists of a nine-point scale with verbal descriptions for each step (Akerstedt 
& Gillberg;(2) Gillberg et al.(13)).  Steps 1, 3, 5, 7, and 9 contain a verbal description of 
drowsiness.  It was modified by Horne and Reyner,(14) who added verbal descriptions to 
intermediate steps, which did not have any descriptions in the original version, and the 
modified version of KSS is shown in Table 1.

2.1	 Measurement system 
	 We use electrode pads as sensing elements.  We stick the pads above the frontal bone, 
which is equivalent to 10–20 international standard of electrode placement at the position 
of Fz.  As indicated in the upper right corner of Fig. 2(a), the positions of the electrode 
pads are shown.
	 The block diagram of the proposed system in our state detector is shown in Figs. 
2(a) and 2(b).  The employed sensors are noninvasive electrode pads and the sensed 
signals are sent to an amplifier (IA, instrument amplifier) with a suitable gain.  The low-
pass-filter circuit removes the artificial pseudosignal to obtain the EEG signal, and then 
converts the signal into a microcontroller by a photocoupler.  The photocoupler can 
protect humans against electric shock.  The microcontroller sends the ADC data (EEG 
data) to a PC by USB.  Finally, the data through the digital filter of 200 taps by a PC is 
divided into various bands, which are analyzed to identify fatigue states. 
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	 The implemented circuits are shown in Figs. 3(a) and 3(b), which includes a front-
end circuit and a microcontroller.  The front-end circuit includes an instrument amplifier 
with a suitable gain, a filter, and a photocoupler.  The microcontroller circuit includes a 
microcontroller and a USB interface.

2.2	 Mode and algorithm 
	 The microcontroller converts the EEG analog signals into digital with a sampling 
rate of 500 Hz, and then the data is sent to a PC.  This microcontroller features a 10-bit 
successive approximation ADC. 
	 The PC would store the digitalized data.   A finite-impulse response (FIR) band-
pass filter is used to divide the energy zone of α1, α2, β1, β2, θ1, θ2, and δ wave bands.  
Each digital filter has 200 taps of Raised Cosine (other types are Rectangular, Bartlett, 
Hanning, Hamming, Blackman, Blackman-Harris, Kaiser, Dolph-Cheby and Root Raised 
Cos).  According to our experience, this type is suitable for those bands.  Equation (1) 
defines the finite convolution of an FIR filter.

Table 1
Modified version of KSS.
Rate Verbal descriptions
1 Extremely alert
2 Very alert
3 Alert
4 Fairly alert
5 Neither alert nor sleepy
6 Some signs of sleepiness
7 Sleepy, but no effort to keep alert
8 Sleepy, some effort to keep alert
9 Very sleepy, great effort to keep alert, fighting sleep

Fig. 2.	 (a) Block diagram of measurement system and (b) photo of prototype and sensors.

(a) (b)
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Fig. 3.	 (a) Front-end circuit and (b) microcontroller circuit.

	 y(i) = h(i) ∗ x(i) =
N − 1

k= 0

h(k)x(i − k)	 (1)

Here, x is the input sequence to a filter, y is the filtered sequence, h is the FIR filter 
coefficient and N(200) is the number of taps.

(a)

(b)
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	 We make use of the Filter Solutions Toolkit to solve each band value of x(0) to x(199) (N 
= 200).  In this case, the y(i) value (i = 0 to 2047) is solved with a Visual Basic program 
using a sampling rate of 500 Hz and time interval of 4.096 s.
	 The subprograms of each band are shown as follows:

double  y_a1(in_var, is_init) 
{   static float delay [200] = {0,0,0,0,0,0,0,0,0,0,.....................................};
     static float x[200] = {1.25e-03,2.307e-04, -8.096e-04,-1.838e-03,-2.822e-03
                                       ,.............................. ,-2.822e-03,-1.838e-03, -8.096e-04
                                               ,2.307e-04,1.25e-03};
   if (is_init==1)
   {  for (i=0;i<=199;i++) delay[i] = 1.001*in_var;
       return 0.0;
   }
    else
   {  sumnum=0.0;
       for (i=0;i<=198;i++)
       {    delay[i] = delay[i+1];
             sumnum += delay[i]*x [i];
        }
        delay[199] = in_var;
        sumnum += delay[199]*x [199];
        return sumnum;
   }
} 

Power energy of each band (α, β, θ, and δ) was calculated using eq. (2), 

	 Pκ =
n

i=1
(κ(i))2, κ = α, β, θ, or δ,	 (2)

where n is the total number of data (n = 2048) and κ(i) is the band of the filtered sequence 
data array.

2.3	 Data analysis
	 Table 2 lists the power energy band ratios for 19 different frequencies.  Each band 
power ratio was calculated by dividing the absolute power in the frequency band by 
the total power, and multiplying this by 100.  We input 1 to 19 frequencies with a 60 
Hz aliasing signal to verify the correctness of the system.   In the results, digital filters 
provide such good discrimination of bands that analog filters are unable to compete.  
Since the bandwidth is narrow in analog circuits, the accuracy will be seriously affected 
by the precision of each component.   Particularly with a capacitor of less than 1% 
accuracy, it is very difficult to achieve.
	 Table 3 shows the variance of the data. Since F = 0.141562 < F (0.05, 4, 45) = 2.578739, 
it has failed to reject H0 (null hypothesis). Moreover, the p-value is 0.965793, which 
shows 96.5793% probability and has no significant difference.
	 The operation of the system is shown in Fig. 4.  The lower left of the diagram shows 
the values obtained from the four algorithms.
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Table 2
Power energy band ratios.  Values are percentages (numbers).

Hz

Wave
δ θ α β1 β2

1–3 4–7 8–12 13–15 16–24
 1 57.5 (%) 15.5 21.2 5 0.5
 2 58.4 18.6 18.3 4.3 0
 5 5.3 91.6 2.5 0.3 0
 6 14.6 80.6 3.9 0.7 0
 9 2.6 1.8 95 0.4 0
11 2.3 1.9 95.3 0.2 0
13 1.9 1.6 12.5 83.4 0.3
15 1.8 1.3 4.8 81.1 10.7
17 1.1 0.7 1.4 1 95.6
19 0.8 0.4 0.5 0.2 97.8
Note: Unit of band power ratio is percentage.

Table 3
ANOVA (α = 0.05 level of significance).
Sources of variation SS df MS F P Critical value
Between groups 671.8852   4 167.9713 0.141562 0.965793 2.578739
Within groups 53395.14 45 1186.559
Total 54067.02 49

Fig. 4.	 Operation of system on a PC.
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Table 4
Fatigue statuses measured at different times.
Date: time Algorithm 1 Distance Algorithm 2 Distance Algorithm 3 Distance Algorithm 4 Distance
1208:1321   5.81   0.08 2.29   0.47   1.76 0.2   3.52 0.391208:1322   5.89 2.76   1.56   3.13
1208:1536   3.59   0.19 2.01   0.08

  1.19 0.1   1.57 0.281208:1538   3.78 1.93   1.29   1.85
1208:1548   5.11   1.15 1.31   0.91   2.21   0.27 3.8 0.241208:1549   6.26 2.22   1.94   4.04
1208:1600 4.9 0.3 2.05   0.47 1.6   0.18   2.85 0.161208:1605 4.6 1.58   1.78   3.01
1212:0840   3.26   2.48

1.47 0.5   1.31   0.62   1.78 1.991212:0845   5.74 1.97   1.93   3.77
1212:1228   1.99   1.04 1.04 0.8   0.97   0.09   0.95 0.231212:1229   3.03 1.84   1.06   1.18

3.	 Results

	 The records of repeated measurements in different times using the distance and 
average value between any two closest times are shown in Table 4.  After the one-way 
analysis of variance (ANOVA) processing, the results by distance are shown in Table 
5, and by average shown in Table 6.  If the variance of distance is smaller, algorithm 
3 is the smallest, which has high precision.  The average can determine the correlation 
between each other.
	 Table 6 presents the result of F = 14.099921 > 3.098391 (critical value); it means that 
there is enough evidence to tell the differences between these four algorithm variances.  
That is, they are not in accordance at all.  Table 7 presents the results from paired sample 
correlations; algorithms 3 and 4 have significant correlation (0.000 < α = 0.05) and positive 
correlation; algorithms 1 and 3 have significant correlation (0.013 < α = 0.05) and 
positive correlation; algorithms 1 and 4 have significant correlation (0.002 < α = 0.05) 
and positive correlation.  Thus, no significant differences were found at algorithms 1, 3, 
and 4.  Algorithm 2 is different from the other three. 

4.	 Discussion

	 In the fields of science, engineering, industry, and statistics, the accuracy of a 
measurement system is the degree of closeness of measurements of a quantity to that 
quantity’s actual value.  Data analysis is shown in Table 2, which reveals that the 
separation and accuracy of the band energy are sufficient.  Figure 5 is shown using the 
input 9 Hz with 60 Hz aliasing signals.  It can be found that the alpha band achieves 
95%, which means that it has the same accuracy.  Input 15 Hz with 60 Hz aliasing signals 
can be found showing that the beta band reaches 91.8%.  Input 5 Hz with 60 Hz aliasing 
signals can be found showing that the theta band is 91.6%.
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Table 5
Summary of distance between any two closest times. 
Group Number Sum Mean Variance Std. error  mean Standard deviation
Algorithm 1 6 5.240000 0.873333 0.822147 0.370168 0.906723
Algorithm 2 6 3.230000 0.538333 0.085497 0.119371 0.292398
Algorithm 3 6 1.460000 0.243333 0.038507 0.080111 0.196231
Algorithm 4 6 3.290000 0.548333 0.504537 0.289982 0.710307

Table 6
ANOVA of average between any two closest times.
Sources of variation Sum of squares df MS F P Critical value
Between groups 31.347808   3 10.449269 14.099921 0.000036 3.098391
Within groups 14.821742 20 0.7410870
Total 46.169550 23

Table 7
Paired samples correlations.

N Correlation Sig.
Pair 1 Algorithm 1 & algorithm 2 6 0.665023 0.149520
Pair 2 Algorithm 1 & algorithm 3 6 0.905522 0.012967
Pair 3 Algorithm 1 & algorithm 4 6 0.966317 0.001683
Pair 4 Algorithm 2 & algorithm 3 6 0.292014 0.574429
Pair 5 Algorithm 2 & algorithm 4 6 0.450428 0.370051
Pair 6 Algorithm 3 & algorithm 4 6 0.981870 0.000490

Fig. 5.  Input 9 Hz with 60 Hz aliasing signals.  The α band there can be found to achieve 95%.
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	 The precision of a measurement system, also called reproducibility or repeatability, 
is the degree to which repeated measurements under unchanged conditions show the 
same results.  If repeated measurements are conducted in nearest times and the results of 
each are very close, the precision is high.  When the four types of algorithm are checked, 
algorithm 3 has the smallest variance (see Table 5) and has a positive correlation with 
algorithms 1 and 4.  Therefore, we consider that algorithm 3 being equal to (θ+α)/(α+β) 
is the best choice. 

5.	 Conclusions

	 Only two electrode pads are employed in our system, and they are portable and can 
be easily and quickly installed without using complex electrodes.
	 Our system is proved to be portable, accurate, and precise as shown in algorithm 3.  
Rapid and noninvasive measurement allows high acceptance and good user acceptances 
within less than 15 min of measurement at a time.  On the other hand, the detection of 
anxiety (β2 moving to the right side) can help doctors judge and evaluate psychotropic 
drugs.
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