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	 The drift effect of gas sensors severely affects the performance of an electronic nose, 
because the primarily built pattern recognition models degrade over time.  A multiple 
self-organizing map (MSOM) network is an adaptive approach to compensate for gas 
sensor drift by self-retraining during the test phase.  However, the conventional local 
retraining method of multiple self-organizing maps may lose drift information if the 
retraining is carried out with successive homogeneous samples for a long time.  In this 
paper, we propose a novel global retraining method to keep each retraining vector (RV) 
fresh over time.  Compared with the local retraining approach, the new method updates 
all the retraining vectors after one of them has been replaced.  Experimental results 
demonstrate that the global retraining method retains the network recognition ability on 
drift effect, whereas the local retraining and adaptive resonance theory methods show 
high error rates.  Finally, a discussion on the retraining rate is given to optimize the 
process speed of the MOSM network with the global retraining strategy.

1.	 Introduction

	 An electronic nose is a smart device that generally consists of an array of nonspecific 
gas sensors and a proper pattern recognition module, which mimics the human olfactory 
system.  It has been widely used in several domains, such as food freshness detection,(1) 

medical diagnosis,(2) and environmental protection.(3)  Compared with traditional 
chemical analysis, the electronic nose is characterized by high speed and low cost.  
However, the fluctuation of the sensor response caused by sensor drift has still limited 
the performance of the pattern recognition modules in electronic noses.
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	 Depending on its causes, sensor drift can be generally divided into temporary drift 
and long-term drift.  When it follows the vibration of environmental factors, such as 
temperature and humidity, it is considered as a temporary drift, whereas the long-
term drift arises from some inner factors such as sensor aging and poisoning.  For the 
temporary drift, a few methods have been suggested to find appropriate mathematical 
models describing the relationship between drift and environmental factors.(4)  These 
methods provide guidelines to adjust recognition outputs.  In contrast, the long-term drift 
shows slow and gradual changes in sensor responses over time and has no clear tendency.  
Therefore, methods to compensate for the long-term drift are more complex than those 
used in the temporary drift counteraction.  In our study, we concentrate on the solutions 
to cope with the long-term drift.  Thus, the drift in the following parts refers to the long-
term drift.
	 Although many efforts have been made to reduce the negative effect from the gas 
sensor drift, it still constitutes a major cause of the degradation of electronic noses’ 
selectivity and sensitivity.  According to the literature, the component correction model 
and adaptive model are the two main types of drift compensation methodology attracting 
researchers.
	 The component correction model is an active approach to remove drift as a 
component of output signals of a gas sensor array.  The key point of this methodology is 
finding a proper algorithm to eliminate the drift component.  The first scheme finds the 
drift signal through comparison with a reference gas immediately.(5)  Unfortunately, it is 
difficult to maintain uniform testing conditions for both reference gas and sample gas in 
practical applications.  Thus, the evaluated drift elements calculated from the reference 
gas and sample gas may be different.  Moreover, the second idea is collecting drift trace 
from the former testing process.  The common methods used for extracting drift signals 
include Principal Component Analysis (PCA),(6–8) Independent Component Analysis 
(ICA),(9) and Partial Least-Squares (PLS).(10)  Aside from these methods, the Orthogonal 
Signal Correction (OSC) is superior to drift correction as shown in a recent study by 
Padilla et al.(11)  Generally speaking, all the component correction methods aim to find 
one preferable direction to eliminate drift.  However, the drift direction varies with time 
and gas type in the mapping space,(6) and consecutive groups of samples are needed for 
predicting each drift direction.  Thus, a great deal of calculation is performed during the 
testing process.  As a result, time-consuming calibrations are not suitable for on-line drift 
compensation, even if the component correction model is still effective for drift rejection.
	 The adaptive model can passively eliminate the drift effect.  Frequently used methods 
to perform calibrations are on-line PCA,(12) adaptive resonance theory (ART),(13,14) and 
self-organizing maps (SOMs).(15,16)  Recently, a new solution based on an evolutionary 
optimization has been demonstrated to be compatible with different classifiers.(17)  

The adaptive methods, in general, adjust the recognition models to suit the gas sensor 
signals with drift effect over time.  Among these methods, the SOM network is a 
popular tool to classify the samples involving drift effect due to its single structure and 
simple computation.  Yet, in the ordinary SOM network, neuron weights (codebook 
vectors) preserve prior knowledge of different gases through the training process.  Once 
a calibration process starts, the preserved information for a certain type in codebook 
vectors may be erased by other types of sample.  In other words, overtraining is barely 
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avoided if the SOM neurons are arranged in one plane.  Therefore, the multiple self-
organizing map (MSOM) methodology was proposed to overcome the limitation.(18)  
Furthermore, the calibration rate of MSOM has been discussed to improve the network 
performance.(19)

	 According to current MSOM retraining steps in ref. (19), the network trains each 
map with its preserved retraining vector (RV).  It means that the RVs should be the 
latest vectors to reflect the current samples with the drift effect.   Unfortunately, this 
precondition cannot be held if the same type of gas is input ceaselessly.  In this paper, 
we provide a novel retraining method to keep the RVs fresh for training all the codebook 
vectors.  Compared with the conventional local retraining process and the ART network, 
the RV iterations for drift learning are considered to be performed to adapt the drift 
variations in time.  Experimental results show the superiority of the new retraining 
method.  Furthermore, the retraining frequency of this method is discussed to optimize 
the network performance.  The rest of the paper is organized as follows.  In § 2, we 
describe the methodology used in this study.  The experimental setup, results, and 
analysis are presented in § 3, and in § 4, some conclusions are drawn.

2.	 Methods

2.1	 Self-organizing maps
	 The SOM network has been proposed by Kohonen.(20)  It is used as an unsupervised 
clustering tool that maps multidimensional data to two-dimensional space for 
visualization.  Neurons with different codebook vectors are located as a node of planar 
grid.  Once the input vector x comes, the Euclidean distances between the input vector 
and all the codebook vectors, which have the same dimensions as the input vector, will 
be calculated.  The neuron that has the shortest Euclidean distance is considered as the 
winner that represents a certain category.  Therefore, the input vectors can be categorized 
according to the rule: a closer location means a higher probability to be of the same type.  
The learning steps of SOM can be summarized as follows:
(1) Initialize a neighborhood h(0) and random codebook vectors.
(2) Select the winning neuron as follows:

	 || x − wc || = min || x − w ||,	 (1)

where w is the weight of an arbitrary neuron, and wc is the codebook vector of the 
winning neuron.
(3) Renew the weights as follows:

	 w = w + a·h(t)(x − w),	 (2)

where a (a ∈ (0,1)) is the learning rate that controls the similarity degree between the 
input vector and renewed codebook vectors.  The function h(t) defines the neighborhood 
that is monotonically decreasing during the training process.
(4) Stop when the training data is used up; otherwise, return to step (2).
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2.2	 Multiple self-organizing maps
	 A MSOM network includes several maps as many as the sample types.(21)  Each 
map has a unique serial number.  Once a testing sample comes, the winning neuron 
is determined according to the Euclidean distances between the input vector and all 
the codebook vectors in MSOM.  The serial number of the winning map that implies 
a certain category is considered to be the output of the network.  In other words, the 
network outputs are never changed if the winning neurons belong to the same map.
	 A supervised training is carried out after the weights have been initialized randomly.  
Each plane is trained by one type of sample.  Thus, the training dataset is divided into 
several subsets on the basis of the target outputs from the training dataset.  The detailed 
training strategy for each map is performed as described in § 2.1.

2.3	 Local retraining method
	 A self-retraining process is added to complete the drift counteraction in the 
testing process.(18)  The retraining process uses an unsupervised approach to reduce 
the cumulative uncertainty of gas sensors.   It takes place at a fixed rate or flexible 
frequency.(19)  Furthermore, the maximum quantization error for each map should be 
found in a former supervised training phase as follows:

	 ei = max || xi − wi ||,	 (3)

where ei is the maximum quantization error for the ith map, xi is the sample of the ith 
subset, and wi is the weight of the neuron from the ith map.
	 During the testing phase, the distance of each unknown testing vector to the weight 
of the winning neuron should be computed.  We consider that the winner belongs to 
the ith map.  Then, the testing vector replaces the old RV of the ith map if the distance 
is smaller than ei.  Otherwise, the testing vector is dropped for the RV refresh process.  
Once the retraining process has been triggered, the RVs train their related maps using 
SOM training steps.

2.4	 Global retraining method
	 The local retraining utilizes the preserved local information to track the newest odor 
observations with drift effect.  However, the RV in the local retraining method may 
become useless if it has no updating for a long period of time.  In other words, each 
RV should be refreshed at a proper rate to keep up with drift variations.  Therefore, we 
develop a global retraining method to ensure that all the RVs are fresh.  This method is 
carried out as follows:
(1) Input an observation and obtain its output.
(2) Calculate the drift effect vector ∆d as follows:

	 ∆d = x − xp
i ,	 (4)

where xp
i  denotes the RV of the ith map, x is the current observation that belongs to the 

ith map, and the global drift parameter ∆d represents the drift variation at present. 
(3) Iterations for all the RVs are implemented as follows:
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xp = x,
xp = xp + b ·∆d,

i

i i   i ≠ j	 (5)

where b is the drift rate in the interval (0 1).  The value of this factor depends on the 
fluctuating speed of the drift component.  After these iterations, each RV is renewed to 
prevent losing the drift tracking ability.
(4) Adjust the weights of MSOM as a local retraining method once the retraining process 
has begun.

2.5	 Learning vector quantization refining
	 After retraining, the refined process is needed to clear the boundaries between similar 
categories.  The learning vector quantization (LVQ) scheme with the reward-punishment 
rule is used in the MSOM network.  The neuron weights are refined according to the 
following steps:
(1) Find the winning neuron weight wc and the second winning (nearest) neuron weight 
ws for each RV xp.
(2) If both the winner and second winner belong to the same map, the weight iterations 
perform as follows:

	 wc = wc + λ·(xp − wc),	
	 ws = ws + λ·(xp − ws).	 (6)

(3) If the winner and second winner are found in different maps, an error rate of 
the network arises.  Thus, to avoid unclear class boundaries, the weights update in 
distinguishing manners:

	 wc = wc + λ·(xp − wc),	
	 ws = ws + λ·(xp − ws).	 (7)

where λ is the learning rate.  To ensure the convergence, the initial value of the learning 
rate should be a small number and decrease monotonically.

2.6	 Adaptive resonance theory
	 The main ART(13,14) structures include ART1, ART2, and ARTMAP.  Among them, 
ART2 is suitable for on-line detections and analog inputs.  A general ART2 network has 
two layers: comparison field (F1) and category representation field (F2), and performs its 
function as follows:
(1) Once an i-dimensional input vector comes, F1 performs iterations to obtain a stable 
pattern using the following equations:

	 zi = wi + a·ui,	 (8)
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	 qi =
zi

e + ||z|| ,	 (9)

	 vi = ƒ(qi) + b · ƒ(si), ƒ(x) = 
0, 0 ≤ x < θ
x, x ≥ θ ,	 (10)

	 ui =
vi

e + ||v||,	 (11)

	 si =
pi

e + ||p|| ,	 (12)

	 pi = 
ui, j ≠ j*

ui + d ·z ji, j = j*,	 (13)

	 ri =
c ·pi + ui

e + ||c ·p|| + ||u||,	 (14)

where j is the number of neurons in F2, and winning neuron j* is chosen according to 
the inner product between p and the neuron weight wij (bottom to top) of F2 by using a 
winner-take-all strategy.  zji, which is called long-term memory (LTM), is the neuron 
weight (top to bottom) of F2.  e is a fixed tiny value, while a, b, c, and d are constant 
parameters that should be set before computations. 
(2) Define ρ as a vigilance parameter.  If ||r|| > ρ, the network selects j* as output value, 
then go to step (4).  Otherwise, disable the wining neuron and go to step (1) to find a new 
winner, then go to step (4).  If all the F2 neurons have been disabled, then go to step (3).
(3) Add a new neuron in F2 and set it as a winner.
(4) Adjust zji and wij of the winning neuron as follows:

	 wij = d(1 − d) ·            − wij
d uj

dt 1 − d ,	

	 zji = d(1 − d) ·            − zji
d uj

dt 1 − d ,	 (15)

3.	 Results and Discussion

3.1	 Experimental setup
	 The dataset used in this section is obtained from several experiments using the 
experimental platform shown in Fig. 1.  We set two pumps here to control the gas 
injection and ejection: the standard gas samples enter the platform via pump 1 while 
pump 2 releases the gases from the chamber (the inner surface of which is plated with 
Teflon).   The gas sensor array is composed of four metal oxide (MOX) gas sensors, 
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namely, GSBT11, TGS2602, TGS2620, and TGS2201.  Among these gas sensors, 
TGS2201 has dual-sensing elements, TGS2201A and TGS2201B, for gasoline and diesel 
exhausts, respectively; thus, five output signals are obtained from the gas sensor array.  
Moreover, the sensors are fixed on a printed circuit board (PCB) that contains an analog 
signal processing circuit and an ADC chip (TLC2543) controlled with a microprocessor 
(89C52).  Twelve-bit digital signals are transferred to the upper monitor at a constant 
sampling rate (1 Hz).  Additionally, the upper monitor is a computer wherein the 
transferred data are saved in ASCII text files for further processing.
	 Both carbon monoxide (CO) and formaldehyde (CHOH) samples are tested in 
different concentrations during a period of one month.  Fifty tests were arranged in 
a specific time sequence, as shown in Table 1.   Each test has 240 observations from 
baseline to steady state for a certain gas.  Among these data, we have selected 50 
consecutive baseline samples and 100 consecutive gas samples.  Totally, 7500 samples 
were acquired for drift compensation analysis.  The samples of the earliest tests for 
CO and CHOH are used as a training dataset (300 samples).  The remaining 7200 
observations are used as testing samples to evaluate the drift compensation methods.  
The responses of the gas sensor array are shown in Fig. 2, where a strong drift influence 
exists in terms of the tendency of the response values.
	 The MSOM network here is composed of three maps corresponding to the different 
gas states in the training dataset: the first map is related with the baseline state, the 
second one represents the CO samples, and the third one corresponds to the CHOH 
samples.  Each planar map has a uniform structure of 4 × 4 size.  The learning rate 
and neighborhood of the network decrease exponentially, and the other parameters are 
summarized in Table 2.  Furthermore, constant parameters of the ART2 network are 
determined according to Table 3.

Fig. 1.	 Experimental platform.
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Table 1
Dataset arrangement.
Testing sequence Sample type Number of samples
1–10 (first phase) Carbon monoxide 1500
11–25 (second phase) Formaldehyde 2250
26–50 (third phase) Carbon monoxide 3750

Fig. 2.	 Responses of the gas sensor array.

Table 2
MSOM parameters.

Parameter Learning 
rate 

Neighbor 
radius

Training 
epoch

Retraining 
epoch

Retraining 
frequency

Refining 
learning rate

Drift 
rate

Value 0.1 6 20 1 1 0.1 0.4

Table 3
ART2 parameters.
Parameter a b c d ρ θ
Value 10 10 0.1 0.9 0.9997 0.01
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3.2	 Evaluation of methods
	 In this section, we evaluate the performance of three self-training methods, including 
MSOM with the global retraining (MSOM1), MSOM with the local retraining (MSOM2), 
and ART2, and the dataset that we used has been described in the above section.  To 
restrict the response scale and enhance the similarity of homogeneous samples with 
different concentrations, the dataset (5-dimensional space) is normalized in the range [0, 
1].  We consider that the output values 1, 2, and 3 of the MSOMs denote baseline, CO, 
and CHOH, respectively.  Furthermore, the same output values of the ART2 network 
denote the same type of sample.  To compare the results of the three methods, the true 
MSOM outputs corresponding to the dataset are given in Fig. 3(a), and Figs. 3(b)–3(d) 
demonstrate the recognition results of the three methods, and the recognition rates are 
summarized in Table 4. 
	 We note that the MSOM1 output values strictly equal to the true ones, whereas the 
MSOM2 results become useless in the third phase of the experiment.  The reason is that 
all the CO samples in the third phase are recognized as baseline by using the MSOM2 
network.  This issue is caused by the local retraining method itself.  According to the 
method, the RV has a renewed opportunity only when the related samples appeared as 
input vectors.  Therefore, no RV updating has taken place for the second map in the 
second phase (CHOH testing).  As a result, the RV for the CO observations cannot 
keep up with the current CO samples with the drift effect.  In the other version, the 
RV is out of date for losing the information about drift over a period of time.  Thus, 
the MSOM2 network is defective under the experimental conditions in our study.  The 
global retraining method, on the other hand, renews all the retraining vectors if anyone 
of them has been replaced.  Thus, all the retraining vectors catch up with the drift signals 
at each retraining time.  Figure 3(d) gives the clustering outcomes of the ART2 network.  
In the first two phases, the network separates the CO samples, the most baseline and CO 
samples successfully.  However, the ART2 network cannot compensate for all the LTMs 
during retraining; thus, the network recognizes the baseline samples as a new type of gas 
in the last stage, and this causes the recognition rate of baseline samples to drop to 0% 
dramatically.  Finally, only the MSOM1 network based on the global retraining method 
recognizes all the 7200 testing observations correctly. 

3.3	 Refresh rate optimization
	 For the sake of simplicity, the retraining frequency is kept constant (1 Hz) in the 
above discussion.  It means that the retraining process will be triggered at each time 
the testing sample enters.  However, it is time consuming under practical conditions, 
although we have obtained excellent results.  In contrast, a long time interval between 
two self-retraining processes may deteriorate the network capability.  A compromise, as 
a result, is needed to balance the time cost and network performance.  The relationship 
between network accuracy with the global retraining method and the retraining intervals 
is shown in Fig. 4.
	 From Fig. 4, one can see that the error rate is larger with a large retraining interval 
than with a small retraining interval.  We prefer to find a range of retraining intervals 
with steady and small error rates.  Thus, the retraining intervals in both [1 70] and 
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Fig. 3.	 Network outputs: (a) true outputs, (b) MSOM1 outputs, (c) MSOM2 outputs, 
and (d) ART2 outputs. 

(a)

(d)

(c)

(b)
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[80 110] are suited to keep the error rates below 2%, whereas other retraining intervals 
do not suit our requirement.  Furthermore, the optimized retraining interval should be as 
large as possible to avoid low time efficiency.  Therefore, the retraining interval of about 
110, which approximates to 0.01 Hz, is the most suitable choice for our present network 
with the global retraining method.

4.	  Conclusions

	 In this study, a new global retraining method has been proposed to keep the right 
RVs related to the drift effect.  This method renews the preserved RVs with different 
strategies: the latest observation replaces the corresponding RV directly, whereas the 
estimated drift vector updates the other RVs.  The global retraining method shows its 
superiority in experimental data analysis for long-time detection involving the drift 

Table 4
Method evaluation results.

Testing sequence MSOM1 
recognition rate 

MSOM2 
recognition rate 

ART2 
recognition rate

First phase 
(CO testing)

Baseline samples 100% 100% 100%
CO samples 100% 100% 100%

Second phase 
(CHO testing)

Baseline samples 100% 100% 92.9%
CHO samples 100% 100% 89.9%

Third phase 
(CO testing)

Baseline samples 100% 100% 0%
CO samples 100% 0% 94.8%

Fig. 4.	 Relationship between error rates and retraining intervals.
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effect compared with the normal local retraining and ART2 approaches.  Additionally, 
the possible retraining rates have been discussed to optimize the network performance.  
Further studies will focus on the automatic parameter optimization under on-line working 
conditions.
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