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	 In this paper, we present the design and realization of energy-efficient sensor data-
gathering schemes used in wireless sensor networks (WSNs) for monitoring engineering 
systems.  A key issue in the design of WSNs is to establish a reliable assessment scheme 
by combining data acquired from each individual sensor into a single wireless sensor 
network.  However, as the size of the network rapidly grows, aggregating information 
made by all the sensors becomes computationally intractable, causing increased energy 
consumption.  Hence, it becomes critical that the WSN be sectioned to allow for 
computational efficiency while reducing the overall data communication requirements 
for the purpose of energy saving.  Different data-gathering schemes have been 
investigated in this study for energy-efficient sensing.  In order to automatically perform 
effective data gathering in such a network, the hardware and software of the sensor node 
are designed to meet the requirement of optimizing energy efficiency.  It was found that 
the overall energy cost of the system is considerably less for a sectioned WSN than the 
conventional centralized network structure.

1.	 Introduction

	 Recent advancements in system miniaturization, wireless communication, and 
on-chip signal processing have enabled the development of low-cost, low-power, 
intelligent multifunctional sensors.(1,2)  Such types of sensor generally consist of data 
acquisition, data processing, and communication components, and can be employed in 
various engineering application areas, such as aircraft structural health monitoring,(3) 

machine condition-based maintenance,(4) industrial electric systems monitoring,(5) 
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and environmental sensing.(6)  However, effective energy/power utilization remains a 
practical challenge for the full deployment of a wireless sensor network (WSN).
	 Prior research has focused on various issues related to power management, such as 
self-powered sensing using energy extracted from the manufacturing processes being 
monitored and the ambience.(7–9)  Also studied was how to improve the energy efficiency 
so that a fixed amount of power supply (e.g., a set of battery) can last for a maximum 
length of time.  This includes adaptive sampling,(10,11) dynamic voltage scaling,(12,13) 

multihop routing,(14,15) low-power protocol operation,(16,17) and data gathering.(18,19)   

Among various data-gathering algorithms, one of the solutions is to section the sensor 
network into several subnetworks and communicate only high-level inferences between 
the subnetworks,(20) which are divided on the basis of the logic structure of multiple 
sectioned Bayesian networks.(21) 
	 Inspired by these research efforts, in this paper, we present the design and realization 
of an energy-efficient data-gathering scheme for utilization in WSNs, where the 
sensors are assumed to be able to communicate with each other, possess decision-
making capabilities, and alter their performance based on the observed system state.   
Furthermore, the hardware and software for applying the proposed data-gathering scheme 
in machine monitoring application are designed and evaluated for optimized energy 
efficiency.  The remainder of this paper is organized as follows.  Section 2 introduces 
the candidate data-gathering schemes and the associated energy consumptions in WSNs.  
The design of the hardware and software of the sensor is described in § 3, based on the 
consideration of energy efficiency.  Then, the implementation and testing of a WSN is 
described in § 4, and conclusions are drawn in § 5.

2.	 Data Gathering Schemes of Wireless Sensor Network
 
2.1	 Energy consumption calculation
	 Generally, data computation and communication are the two major energy consumers 
in the WSN, which provide local data processing and intersensor information exchange, 
respectively.  Given a fixed sampling rate and data length, the energy cost for data 
computation can be calculated as

				    Ecomp = Ncyc · Tc · Vc · Ic,				             (1)

in which Ncyc is the number of cycles needed for signal processing, Tc is the machine 
cycle time, Vc is the working voltage, and Ic is the current.
For two sensors to communicate, the energy consumption needed for data transmission 
can be expressed as (12)

				    ETx = Ee_tx · k + εamp · dα · k,				           (2)

where k is the number of transmitted data bits, α is a factor valued from 2 to 5, depending 
on the environment of wireless transmission, d is the distance between two sensory 
nodes, εamp (J/b/m2) is the amplification coefficient to satisfy a minimum bit error rate to 
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ensure reliable reception at the receiver, and Ee_tx (J/b) is the energy dissipated to operate 
the transceiver, which is given as

					     Ee_tx = Vcc · ITP / Kdata_rate,			            (3)

where Vcc denotes the working voltage, ITP denotes the current for transmission, and 
Kdata_rate denotes the data transmission rate.
	 The energy consumed for receiving a data stream can be expressed as

					            ERx = Ee_rx · k.			           (4)

	 Equation (2) shows that for a fixed distance, the energy consumed is proportional 
to the length of the data bits.  On the other hand, the longer the distance between two 
sensory nodes, the more energy will be consumed.  

2.2	 Data gathering schemes
	 Several data gathering schemes that have implications on the overall energy 
consumption of a WSN have been conceived.  For simplicity, all the sensors in the 
network are assumed to be identical.  The various data gathering schemes(20) are 
illustrated as follows:
	 Scheme 1: Raw data points are transmitted to the central monitoring unit (CMU) 
from each individual sensor.  
	 Scheme 2: Only physical features extracted from the raw data for each sensor are 
transmitted to the CMU.  
	 Scheme 3: The sensors are grouped into different segments, and the raw data from 
each sensor are transmitted to the corresponding segment head.  After extracting relevant 
features, a data fusion operation is implemented by the segment head, and then the fusion 
information is transmitted to the CMU.  
	 Scheme 4: The individual sensors are sectioned into different segments.  Each sensor 
performs localized data processing, and only the features extracted from the raw data 
from each sensor are transmitted to the corresponding segment head.  After data fusion, 
the segment head transmits the fused information to the CMU.
	 As an example, Fig. 1 shows the four data gathering schemes being applied on the 
platform of a machine monitoring test bed in which time- and frequency-domain features 
such as root mean square (RMS) value and ball pass frequency on the inner/outer 
raceway (BPFI/BPFO) extracted from bearing vibration signals are used to indicate 
machine status and estimate potential failures caused by mechanical defects.(22)  As 
shown in Fig. 1(a), when working as scheme 1, all the bearing sensors transmit raw data 
and all the computation works were done by the CMU.  In scheme 2, as shown by Fig. 
1(b), the computation for feature extraction was assigned to each bearing sensor, so that 
only features like RMS and BPFO were transmitted to the CMU instead of all the raw 
data.  By using the structure of a sectioned sensor network, Figs. 1(c) and 1(d) show the 
sectioned network with a segment head used as data relay and local section controller.  
In scheme 3, the feature extraction was only assigned to the segment heads, so the raw 
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data still remained in the communication within the local sections.  While in scheme 4, 
feature extraction was completed on each sensor.  To be different from scheme 2, all the 
features are further combined by the segment heads for reduced communication load 
before forwarding the information to the CMU.

3.	 Hardware and Software Design

	 To realize energy-efficient data gathering in the sectioned sensor network, the sensor 
system architecture is designed and illustrated in Fig. 2.  Two major hardware functional 
modules, namely, computation and communication, are required to perform effective 
data collection, processing, and communication.  Controlled by a power management 
software that is embedded with the computation module, the four data gathering schemes 
are performed to achieve minimum energy consumption of the WSN.  A major focus of 

(a) (b)

(c) (d)

Fig. 1.	 Energy-efficient data gathering schemes used in sensor network. (a) Scheme 1, (b) Scheme 2, 
(c) Scheme 3, and (d) Scheme 4.
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the sensor system design is to optimize both the hardware and software to be compatible 
with all the data gathering schemes, while keeping the system scale to a minimum for 
energy saving and prolonged battery life.

3.1	 Computation module
	 Data computation, including local feature extraction and data fusion, is employed 
by individual sensors to reduce the length of transmitted data and save energy.  For 
example, considering the scenario where vibration sensors are used for bearing health 
monitoring, the signal is often sampled at a rate above 5 kHz with a minimum window 
size of 1 s, as shown in Fig. 3(a), to cover the major characteristic frequency components 
like BPFO, BPFI, and their resonances with an acceptable resolution in frequency-
domain analysis.(16)  This translates to a length of 5 kB of raw data gathered in each 
sample period.  Compared with various feature extraction techniques developed in the 
time and frequency domains, analytical and experimental studies(23) have demonstrated 
that the Discrete Harmonic Wavelet Packet Transform (DHWPT) is both effective and 
efficient in revealing the time-frequency characteristic of defect-induced vibration 
signals, in particular, in the high-frequency region (e.g., over 10 kHz), as indicated by 
the columns in Fig. 3(b).  Through a series of conversions using Fast Fourier Transform 
(FFT) and Inverse Fast Fourier Transform (IFFT), the raw data samples are divided into 
16 subfrequency bands and the energy of each subband is calculated as the features.  
It has been proved experimentally(23) that the statistic distribution of these features 
effectively indicates the status of defect and successfully predicts the bearings’ lifetime.   
Comparison between Figs. 3(a) and 3(b) shows a 1000-fold reduction in data length 
after local feature extraction using DHWPT.  In this case, it is possible to achieve energy 
saving in data transmission, while reserving the defect-related information conveyed by 
the signals.  
	 An important aspect pertaining to the computation module design is the effect of data 
length on the use of memory size for digital signal processing algorithms.  Consider the 
DHWPT method used for feature extraction; the basic operation composed of FFT or 
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Fig. 2.	 System architecture for sensors.
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IFFT is used to convert data from time domain to frequency domain and vice versa.  Both 
FFT and IFFT algorithms require the same amount of RAM as the length of input data to 
buffer the temporary and final results.  Given that the raw vibration data containing 8 bits 
is sampled at fs Hz in a period of ts seconds (corresponding to a resolution of 1/Ts Hz in 
spectrum analysis), the length of raw data is calculated as Ns = fs ∙ Ts.  Implementing the 
FFT algorithm requires choosing the input data length as a power of 2: NFFT = 2p, where 
p = [log2 (NS)] denotes the calculation of the minimum integer that is not smaller than 
log2(NS).  A total number of (NFFT – NS) zeros is appended to fill the increased data length 
by the zero padding technique.  As an example, in cases where data is sampled at 5 kHz 
with 1 s period, the minimum required RAM size is calculated as 8192 bytes and 3192 
zeros are added.  

3.2	 Communication module
	 In the four data gathering schemes designed for the WSN, it is assumed that the 
transmission power is minimized to ensure reliable reception at the receiver, according to 
the communication distance between sensors.  Hence, the awareness of communication 
power, as well as adjustability of the transmitter output power, becomes critical to 
perform these schemes using hardware devices.  By assuming a unit signal gain provided 
by antennas, the output power of the communication module is dominated by the 
consumption of the power amplifier.  To transmit 1 bit to the receiver, the output power 
and associated received power are expressed as

				                 PTX = (εamp · R) · dα,			            (5)

(a) (b)

Fig. 3.	 Time-frequency decomposition of a bearing vibration signal based on DHWPT. (a) Raw 
data from vibration sensors and (b) Features extracted by the sensory node.
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	 PRX = PTX/dα = (εamp · R) · (dα/dα) = PS · (d
α/dα),	 (6)

where R denotes the data transmission rate,  and d are the estimated and actual 
transmission distances between the transmitter and receiver, respectively, and PS = 
εamp·R is the receiver sensitivity denoting the minimum signal power that the receiver 
can discern.  From eq. (6), it is shown that if the estimated distance  < d, then the 
received signal cannot be identified and the communication between sensors fails.  On 
the other hand, if  > d (over the estimation), which shows a received power higher than 
sensitivity, a portion of the transmission energy will be lost on the propagation path while 
it does not affect the results of the signal reception.  In this case, the energy efficiency 
problem was translated to the effective estimation of the communication distance 
between sensors.
	 Since all the sensors are equipped with both transmitting and receiving capabilities 
and the received signal power can be measured using hardware through receive signal 
strength indication (RSSI), as shown in Fig. 4, the distance estimation can be performed 
using a set of handshaking operations between the transmitter and receiver.  By using 
microcontroller MC56F8323(24) as the computation and control unit, the distance can 
be estimated by a software-controlled procedure as shown in Fig. 5.  For example, 
consider the case where scheme 4 is applied to local data transmission from a sensor 
to its segment head.  In the first step, the segment head broadcasts a Test Code (such as 
a binary signal of 010101…, which has a duty cycle of 50%) with maximum transmit 
power PTXmax to all the sensors in the local sectioned network.  By measuring the received 
power PRX(SHK) on each sensor, the distance to the segment head can be calculated as

	 dα  ≥  PRX(SHK) / PTXmax .	 (7)

	 For a physical RSSI circuit model as shown in Fig. 4, the received signal power PRX 
is translated to the voltage value, VRSSI, through a high-pass filter, signal rectifier, and then 
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Fig. 4.	 Circuit design for receiver energy measurement and distance estimation.
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a low-pass filter.  When the test code broadcasted by the transmitter (either segment head 
or CMU) has a fixed duty cycle, the output RSSI voltage using transceiver TR1001(25) is 
proportional to the received power at a constant rate of q (q = 10 mV/dB for duty cycle = 
50%).  By substituting this relationship to eq. (7), the estimated distance is expressed as 
a function of the RSSI voltage 

	 dα ≥ 10
VRSSI
10·q / PTXmax,	 (8)

where VRSSI is calculated with the unit of mV, q is calculated in mV/dB, and PTXmax is 
calculated in mW.  Hence, by minimizing the estimated distance for data transmission, 
the minimum required power to ensure data communication is expressed as

Subroutine Start

Fig. 5.	 Flow chart of communication distance estimation.
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				            10
VRSSI
10·q / PTXmaxPTX = PS · .			            (9)

	 To always perform the minimized energy consumption on the communication 
module, an output power control circuit is designed, as illustrated in Fig. 6.  To boost 
the transmission power for long-distance transmission, a power amplifier (PA) is 
added between the transceiver and antenna.  The RF switch provides a secure swap 
between transmit and receive modes.  The output power of the communication module 
is determined by the first-level amplifier of PA, which is controlled by the analog 
input (GC).  Because the relationship between transmission power and distance is 
not linear, as indicated in eq. (2), it is impossible to control the GC to fit the distance 
with the equivalent resolution in the full scale by using a linear-adjusted D/A output.  
As a solution, a logarithmic amplifier is employed as a nonlinear translator from the 
D/A output of the microcontroller to the GC of the power amplifier.  In this case, the 
communication energy in the WSN can be fully digitized by the hardware as well as be 
successfully estimated and controlled by the embedded software.  

3.3	 Sensing scheme control 
	 Although communication and computation energy are individually minimized by the 
associated functional modules on each sensor, by using the appropriate data gathering 
scheme for the whole WSN, the total energy consumption can be further reduced.  For 
example, in cases where sensors’ computation energy dominates the system consumption, 
it is more efficient to choose scheme 1 (where there is no computation work assigned to 
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sensors) to reduce the computation energy by increasing the communication load.  On 
the other hand, if the communication energy consumed in the network is much higher 
than the computation energy, energy saving can be achieved by selecting schemes with a 
higher computation load assigned to sensors (scheme 2 and 4).
	 Figure 7 shows the flow charts for gathering energy-related information, calculating 
the potential energy consumption, and switching of the sensor’s settings to perform the 
efficient sensing schemes.  By assuming a homogeneous hardware structure for all the 
sensors, as shown in Fig. 7, the hardware-related parameters like εamp, Ee_tx , and Ecmp are 
predefined and stored into the ROMs on CMU, while variables representing distances 
between sensors/segment heads and CMU are aggregated by broadcasting a request to 
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Fig. 7.	 Flow chart for scheme selection steps on sensors and CMU.
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all the sensors.  After all the information is collected, CMU estimates the overall energy 
consumption for each of the schemes using eqs. (5) to (8), and makes a decision to 
choose the one with the best energy efficiency as the current data gathering scheme.

4.	 Implementation and Test

	 Based on the presented design issues on energy-efficient hardware and software 
in section 3, a sensor platform for vibration-based machine health monitoring was 
implemented by using Kistler 8694M1, Motorola MC56F8323, and RFM TR1001 as for 
physical sensor, computation, and communication modules, respectively, as shown in Fig. 8.  
The control software developed for vibration signal processing and data fusing/inference 
combined with scheme selection was developed and evaluated on the Code Warrior 
environment.
	 An investigation was then conducted to evaluate the impact of various data gathering 
schemes on the energy efficiency of the WSN system (structure is shown in Fig. 9) on 
the basis of the parameters of the designed hardware and software platform (as listed 
in Table 1(24,25)).  According to the machine health monitoring system, the DHWPT 
algorithm is applied to the local feature extraction.  Assuming a sampling rate of 5 kHz, 
and an input data length of 8192 points from each sensor, the number of machine cycles 
for implementing the DHWPT algorithm is calculated as 7767712 cycles(23) and the 
number of machine cycles for data fusion/inference is counted to be twice that of the 
local feature extraction.  Figure 10 illustrates the energy consumption of each scheme as 
the distances between sensors and CMU changes in the network.  Basically, the energy 
consumption is calculated by using eqs. (1)–(4).  The voltage and current parameters 
listed in Table 1 are used to estimate the computation energy cost, while the transmission 
energy cost is calculated using the working voltage and current being measured through 
a customized circuit.

Fig. 8.	 Sensor model developed for energy-efficient machine health monitoring.
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	 It can be seen that, for a fixed distance D1, the energy consumption increases as D2 

increases for each data gathering scheme.  Furthermore, when D2 is short (e.g., D2 = 
10 m), the energy consumption of a sectioned network (corresponding to Schemes 3 
and 4) is higher than that of the conventional network (corresponding to Schemes 1 
and 2), for both the raw data transmission and feature transmission.  This is due to the 
fact that the energy dissipated to run the transmitter is dominant for short-distance data 
communication.  Furthermore, for the sectioned network, energy will also be consumed 
by the segment heads to receive the data from individual sensors, thus leading to higher 
energy consumption for Scheme 3 than for Scheme 1, as well as for Scheme 4 than 
for Scheme 2.  However, with the increase in the distance from the WSN to the CMU, 
the energy needed to amplify the transmission to ensure communication between the 
transmitter and the receiver becomes dominant.  Since the related power is proportional 
to the square of the distance of data transmission, a sectioned network is more energy 
efficient than a conventional network.  It was found that both schemes used in the 
sectioned network were more energy efficient than those used in a nonsectioned network, 
when D2 is large (e.g., D2 = 80 m).

5.	 Conclusions

	 Effective diagnosis of the health status of a system using a large-scale WSN requires 
both accurate data gathering and reliable inferencing.  In this paper, we presented four 
data gathering schemes that are applied candidates for WSNs.  The energy efficiency 
of each scheme is analyzed to provide the basis for long-term, sustainable sensor 
operation in a WSN.  According to the proposed data gathering schemes, the design of 
an intelligent sensor being capable of awareness of the potential energy consumption 
and automatically choosing the schemes for optimized energy efficiency is presented.  
Experimental results have shown that the structured WSNs achieve significant energy 
saving compared with the conventional centralized system and have potential for a wide 
range of applications in industry.  

Acknowledgements

	 The authors gratefully acknowledge the funding provided to this work by the Natural 
Science Foundation of Jiangsu Province (No. BK2010423), the Chinese Ministry of 
Education under the Program for New Century Excellent Talents in University, grant 
NCET-09-0297, and the National Science Foundation under award EFRI-0735974.  

Table 1
Parameters for energy calculation.
Parameter Vc (V) Ic (mA) Tc (s) Ee_tx (nJ/b) εamp (pJ/b/m2)
Value 3 110 1/(60×106) 6535 8934



44	 Sensors and Materials, Vol. 25, No. 1 (2013)

References

	 1	 C. -Y. Chong and S. P. Kumar: Proc. IEEE. 91 (2003) 1247.
	 2	 G. J. Pottie and W. J. Kaiser: Commun. ACM 43 (2000) 551. 
	 3	 T. Becker, M. Kluge, J. Schalk, K. Tiplady, C. Paget, U. Hilleringmann and T. Otterpohl: 

IEEE Sens. J. 9 (2009) 1589.
	 4	 A. Tiwari, P. Ballal and F. L. Levis: ACM Trans. Sens. Netw. 3 (2007) 1.
	 5	 F. Salvadori, M. de Campos, P. S. Sausen, R. F. de Camargo, C. Gehrke, C. Rech, M. A. 

Spohn and A. C. Oliveira: IEEE Trans. Instrum. Meas. 58 (2009) 3104.
	 6	 D. Gallo, C. Landi and N. Pasquino: IEEE Trans. Instrum. Meas. 58 (2009) 3315.
	 7	 R. Amirtharajah and A. P. Chandrakasan: IEEE J. Solid-State Circuits 33 (1998) 687.
	 8	 C. B. Theurer, L. Zhang, D.O. Kazmer and R.X. Gao: IEEE Sens. J. 4 (2004) 28.
	 9	 N. G. Elvin, N. Lajnef, and A. A. Elvin: Smart Mater. Struct. 15 (2006) 977.
	10	 T. Kurp, R. X. Gao, S. Sah: Proc. IEEE Int. Instrum. Meas. Tech. Conf., Austin, Texas, May 3

–6, 2010, IEEE, Piscataway, New Jersey (2010) p. 93.
	11	 C. Alippi, G. Anastasi, M. Di Francesco and M. Roveri: IEEE Trans. Instrum. Meas. 59 (2010) 

335.
	12	 A. Wang and A. Chandrakasan: IEEE Signal Proc. Mag. 19 (2002) 68.
	13	 R. X. Gao and Z. Fan: IEEE Trans. Instrum. Meas. 55 (2006) 415.
	14	 J. A. Sanchez, P. M. Ruiz, J. Liu and I. Stojmenovic: IEEE Sens. J. 7 (2007) 627.
	15	 C. Alippi, R. Camplani and M. Roveri: IEEE Trans. Instrum. Meas. 58 (2009) 3347.
	16	 P. Merlino and A. Abramo: IEEE Sens. J. 9 (2009) 1397.
	17	 C. -C. Shen, R. Kupershtok, S. Adl, S. S. Bhattacharyya, N. Goldsman and M. Peckerar: 

IEEE Sens. J. 8 (2008) 682.
	18	 S. Lindsey, C. Raghavendra and K. M. Sivalingam: IEEE Trans. Parallel Distrib. Syst. 13 (2002) 

924.
	19	 M. X. Cheng and L. Yin: Int. J. Sens. Netw. 4 (2008) 48.
	20	 R. Yan, D. Ball, A. Deshmukh and R. X. Gao: Proc. IEEE Sens. Conf., Vienna, Austria, 

October 24–27, 2004, IEEE, Piscataway, New Jersey (2004) p. 44.
	21	 Y. Xiang and V. Lesser: Proc. 4th Int. Conf. on Multi-agent Syst., Boston, Massachusettes,  

July 10–12, 2000, IEEE, Piscataway, New Jersey (2000) p. 349.
	22	 C. Wang and R. X. Gao: IEEE Trans. Instrum. Meas. 49 (2000) 325.
	23	 R. Yan and R. X. Gao: Rob. Comput. Integr. Manuf. 21 (2005) 291.
	24	 Freescale Semiconductor: 56F8323/56F8123 Data Sheet, http://www.freescale.com (accessed 

on 2011).
	25	 RF Monolithics, Inc.: TR1001: 868.35 MHz Hybrid Transceiver, http://www.rfm.com (accessed 

on 2011).


