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 In this paper, we address the development of an integrated sensing system for the 
airbag deployment decision in an intelligent vehicle with focus on passenger and driver 
airbags in vehicles.  The innovation provides a cost-effective system for deploying an 
airbag whilst maintaining precise, reliable and effective operation; in addition, it can 
be easily retrofitted into any vehicle with built-in airbag control.  A number of sensing 
systems such as weight, vision and vehicle crash have been developed.  The decision 
of several sensing systems are fused together to provide an exact airbag deployment 
decision.  A LabWindow/CVI in the C interface program is developed for prototype 
implementation.  The sensing systems are developed and integrated into a prototype 
platform.  The performance of the prototype system is evaluated through several test 
runs.  The results prove that the airbag deployment decision is unique, robust and 
intelligent for vehicle application.

1. Introduction

 The term “intelligent vehicle” does not literally mean that intelligence resides inside 
the vehicle.  The term “intelligence” implies the presence of an active essential part 
of the vehicle that contributes to safety, security and driving comfort.  An intelligent 
vehicle operates to ensure the safety and comfort level of the occupant in the vehicle.(1)  
However, because of the high expectations for control and safety, an efficient sensing 
system must be developed to determine the airbag deployment decision in an intelligent 
vehicle.(2)  This increased concern for the deployment decision has resulted in the design 
of an accurate integrated sensing system that involves occupant-weight- and position-
sensing technology, detection and classification of an impending crash or unsafe driving 
conditions, and driver warnings to improve the driver’s ability to control the vehicle and 
prevent an accident.(3,4)

 Many individual researchers have focused on an airbag system that involves occupant 
detection, classification and position, vehicle crash detection, crash severity analysis 
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and the airbag deployment decision.  A vehicle occupant position detector and an airbag 
control system are described, in which the controller between the airbag deployment 
mechanism and the sensors calculates the centre of gravity of the seat occupant, the 
weight of the occupant and seat inclination angle.(5)  Another method to control passenger 
side airbag deployment has been developed using a seat cushion weight sensor to 
determine the mass of the seat occupant to classify the occupant size.(6)  A smart airbag 
system, including a sensor mechanism that controls deployment to protect an occupant in 
a crash, has been developed to control the flow of gas into or out of the airbag to optimize 
the injury protection capability of the airbag.  The system also accepts inputs from the 
occupant position, velocity and weight sensors and/or anticipatory crash sensors, when 
such are available, which may affect the deployment control signal.(7,8)  However, airbag 
control deployment for occupant protection is a difficult task.  Despite the success 
of some of these systems, occupant detection and human/nonhuman object detection 
and classification still pose a number of challenges for real-time implementation and 
operation as they are costly to apply and require complex systems.(9,10)

 Vehicle crash detection is very helpful for achieving preventative safety, preventing 
accidents and collisions and minimizing human injury when an accident occurs.(11)  
However, in the past, vehicle crash detection has seldom been discussed or theoretically 
analyzed in the field of conventional engineering.(12,13)  Therefore, the National Highway 
Traffic Safety Administration (NHTSA) and other organizations concerned about safety 
ruled that vehicle crash detection and analysis are mandatory.(14,15)

 In this study, we integrated several sensing systems to deploy an airbag using 
occupant weight, vision and a vehicle crash-sensing system.  The objective of this 
development is to integrate the sensing system to analyze the roles of occupant detection, 
classification and position, vehicle crash detection and crash severity analysis in airbag 
deployment.  The experimental results provide a cost-effective, precise and reliable 
alternative to the current systems, in addition to being easily retrofitted into vehicles, 
which suggests a more robust airbag deployment decision.

2. Integrated Sensing Systems

 The integrated sensing systems for deploying an airbag combine both hardware 
and software components that identify the execution environment of the system.  The 
development of the system is a complex process and involves many factors, such as the 
interconnections of the hardware component to support the execution of the software 
component.  The integrated sensing system can be defined from four points of view: 
the sensing systems, decision algorithm, hardware platform and system interface.  A 
functional diagram of the proposed method and system for deploying an airbag is 
depicted in Fig. 1.  The sensing system addresses the issues of detecting human and 
nonhuman objects, occupant weight class and position, and vehicle crash occurrence with 
a webcam, an occupant sensor and a crash sensor, respectively.  The decision algorithm 
fuses the individual decisions through logic combination based on algorithmic rules 
to provide an executable decision.  The hardware platform identifies a set of hardware 
objects associated with the processors.  The system interface provides a high level of 
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interface between software and hardware objects.  The proposed system gathers sensing 
data through a set of individual sensors.  The collected sensing data are eventually 
processed in the central processing unit (CPU) and fused through logic combination to 
make the airbag deployment decision and address individual safety issues.  The proposed 
sensing system provides an executable decision from three sensing systems: a weight-
sensing system, a vision-sensing system and a crash-sensing system.  Details of the 
individual sensing systems are given below.

2.1 Weight-sensing system
 The computational structure of the weight-sensing system involves two calculations, 
namely, weight force and centroidal distance, for occupant weight classification and 
position detection, respectively.  In the weight-sensing system, an interface algorithm is 
developed using the LabWindow/CVI program.(16)  The program determines whether the 
seat is empty according to the measurements of four weight sensors.  For classification, 
the weight measurement data are used with logic combination.  For example, when 
an adult occupant is on the seat, the adult logic is true and child and nonhuman object 
logics are false; thus, the dynamic output is classified as adult and applied to the airbag 
deployment decision.
 Next, the occupant position is determined by the centroidal calculation of weight to 
check whether the occupant’s upper body is in a good position.  The centroid distance 
from the centre of the seat in the y-direction, Fy, is the sum of these forces times 
the distance divided by the total force.  The horizontal position Fx can be calculated 
similarly.  The centroidal distances Fx and Fy, as shown in Fig. 2, are defined as follows:  

 Fx = x
(−F1+F2−F3+F4)
(F1+F2+F3+F4) , (1)

Fig. 1. Functional diagram of integrated sensing system for an airbag deployment decision.
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 Fy = y
(F1+F2−F3−F4)
(F1+F2+F3+F4) , (2)

where F1, F2, F3, and F4 are the weight forces of the four sensors, and x and y are the 
distances from the center to the sensor in the x- and y-directions, respectively.  These 
calculations of Fx and Fy provide the appropriate position of the occupant with respect 
to the origin.

2.2 Vision-sensing system
 The vision-sensing system structure for detection and classification of an occupant, 
nonhuman object and nonobject is shown in Fig. 3.  The nonobject image defines the 
images that contain neither a human face nor a specific object.  In this study, a webcam is 
used as a vision sensor to detect either a human face or a nonhuman object for the airbag 
deployment decision.  The webcam is mounted on the dashboard such that it can capture 
the maximum possible view of the seat and its occupant.  The detection of both classes 
of object in one frame is more challenging than individual detection.  To meet these 
challenges, our vision-sensing system employs neural network classifier architectures 
by combining the fast neural network (FNN) and the classical neural network (CNN) 
for detecting and classifying a human face and a nonhuman object.  The FNN is used 
to extract any positive detection, including false detection from the test image by 
correlating the input image and hidden units.  The output of the FNN is then fed to the 
CNN to verify the region that has been detected.
 A bootstrap technique is used to add nonobject images to the database to improve 
the FNN performance during the training period and automatically clip false detections 
and to insert them into the current training set.  Postprocessing strategies are applied to 
convert the normalized outputs back into the same units that were used for the original 
targets using 2D multidetection and 3D multidetection, and elimination of overlapping 
detection.  There is some assumption that the FNN may introduce some false detection 
due to variation in lighting conditions, which may change its overall appearance.  To 
solve this problem, light intensity is adjusted automatically using histogram equalization 
or a lighting correction function.  However, the histogram equalization and lighting 
correction cannot be integrated into the Fourier Transform framework because they 
belong to different processing systems.  We go one step further using the CNN as an 
object verification procedure to reduce the number of false detections and to check for 
human facial structures and nonhuman objects.  This proposed combination network 

Fig. 2. Centroidal distance for occupant position calculation.
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is robust in terms of detection accuracy and computational efficiency compared with a 
single network, which is unable to fully eliminate the false detection problem.

2.3 Crash-sensing system
 Development of the crash-sensing system is based on mass (m), gravity (g), spring 
constant (k), and damping constant (b) of the crash-generating device to determine 
displacement [x(t)], velocity [v(t)], and acceleration [a(t)].  Displacement, acceleration 
and velocity are used to determine the vehicle crash and its severity.(17,18)  The change 
in velocity [∆v(t)] is an essential parameter for crash detection.  The change in velocity 
is obtained by integrating the acceleration signal.  Because the integral over the noise 
component is approximately zero, the parameter ∆v(t) is essential for the crash detection 
algorithm and is written as:

 ∆v(t) = a(t) dt + n(t) dt = −Aω2  cos(ωt+δ)
0

. (3)

In the crash-sensing system, an interface program is developed, as shown in Fig. 4, 
that utilizes an accelerometer to acquire data through AX10410A DAQ using the 

Fig. 3. Neural network structure for occupancy detection.
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LabWindow/CVI program.  The program determines the change in the velocity ∆v(t) and 
compares it with the threshold value Vth to determine whether a crash has occurred.  The 
threshold value can be easily determined from the lowest speed of an effective crash (i.e., 
22.54 km/h) as defined by the NHTSA.(14)  To detect a crash, if the change in velocity 
is greater than or equal to the threshold value (i.e., ∆v(t) ≥ Vth), then a crash detection 
decision is made and displayed on the monitor, and an alarm sounds.  However, if ∆v(t) 
is less than Vth, then the decision is that no crash has occurred.(17)

 These decisions determined from the weight-, vision- and crash-sensing systems are 
fused on the basis of a decision fusion algorithm.  The fused decision is used as input for 
the airbag deployment decision for occupant safety and comfort level measures.

3. Decision Algorithm

 The integrated sensing system for the airbag deployment decision provides a 
framework for categorizing the various logic decisions to correlate input from various 
sensing systems and create a statistically based decision algorithm.  Each sensing system 
decision is then combined in an IF/THEN logic fusion engine that makes the final 
decision to disable or enable the airbag.  The decision algorithm is implemented using 
the Lab Windows/CVI program.

Fig. 4. Crash sensing system interface program flow diagram.
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 The weight-sensing system classifies the occupant as an adult, child or nonhuman 
object or as an empty seat, and it involves a decision algorithm based on weight.  Once 
occupancy is detected, the occupant’s weight (w) is sampled and then checked as to 
whether w ≥ m, m > w ≥ n or 0 < w < n, where m and n are the minimum weight of an 
adult and child, respectively.  The following rules are used in the decision algorithm:
 i) If w ≥ m, then the program classifies the occupant as an adult.
 ii) If w ≥ n but w < m, then the program classifies the occupant as a child.
 iii) If w < n and w > 0, then the program classifies the occupant as a nonhuman 

object.
 iv) If none of the above conditions are satisfied, then the program reports that the 

seat is empty.
 The vision-sensing system detects the occupant’s face as human or a nonhuman 
object, as well as the absence of any object.  The output of the system is a neural network 
matrix of values of +1, −1, or 0.  Positive, negative and zero training images denote 
human and nonhuman objects and the absence of an object, respectively.  The following 
rules are used in the decision algorithm:
 v) If the neural network matrix yields 1, the program classifies the occupant as 

human.
 vi) If the neural network matrix yields −1, the program classifies the occupant as a 

nonhuman object.
 vii) If the neural network matrix yields 0, the program reports the absence of an 

object; which means the seat is empty.
 The weight- and vision-sensing decisions are then fused to determine the precise 
occupant class: human as adult or child, nonhuman object or no object, i.e., an empty 
seat.  Once occupancy is determined, the occupant’s centroidal position is calculated 
and identified as either good or out-of-position.  Listed below are the decision rules for 
occupant position:
 viii) If the occupant is in a good position, the program dictates that the airbag be 

deployed during a vehicle crash.
 ix) If the occupant is out of position, the program dictates that the airbag is not 

deployed, even if a crash occurs.
 The crash-sensing system is responsible for detecting a vehicle crash and its severity.  
In crash-sensing systems, the change in the velocity ∆v(t) is typically compared with a 
threshold value vth to determine whether a vehicle crash has occurred.  The following 
rules are used for the crash detection algorithm of the present system:
 x) If  ∆v(t) ≥ vth, then the program reports that a vehicle crash has occurred.
 xi) If ∆v(t) < vth, then the output sent to the program is that no vehicle crash has 

occurred.
For weight rules (iii) and (iv), vision rules (vi) and (vii), position rule (ix) and crash 
detection rule (xi), the airbag will not be deployed.  However, any violation of occupancy 
conditions (i), (ii), and (v), position rule (viii) or crash detection rule (x) also dictates that 
the airbag will not be deployed under normal circumstances, even though the occupant 
has been classified or is positioned properly.
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4. Hardware Objects and System Interface

 The system implementation is developed through physical interconnections between 
hardware objects and an interface program.  The entire developed system structure 
consists of the following hardware objects: a load cell weight sensor, a Logitech 
webcam and Crossbow accelerometer crash sensor, a data acquisition board for analogue 
to digital conversion, a CPU card, a touch screen to display the result and an ATX 
switch mode power supply.  Wheatstone bridge configuration load cell weight sensors 
are placed inside the vehicle seat for occupant detection, classification and position.  
Logitech webcam is used to detect whether a human or nonhuman object is on the seat.  
Crossbow MEMS accelerometers are used for vehicle crash detection and severity 
analysis.  The AX10410A high-speed data acquisition board is used to interface directly 
with the featured-pack CPU SBC84600 through the PC/104 bus.  The CPU, SBC84600 
is incorporated with a thin-film transistor (TFT) colour LCD monitor to display the 
execution behaviour of the specified target event and real-time target of the prototype 
system.  Multilevel output ATX is used to provide regulated power to hardware objects.
 Data are acquired through interface connections between the sensors, DAQ board and 
the CPU using the interface program.  The interface program between the software and 
hardware objects is developed on the basis of Lab Window/CVI in the C programming 
language named UKM.dll.  The low-level driver called “c:\cvinterface\UKM.dll” is 
written as a Win32 DLL file.  In this DLL file, the function Func1 processes the analogue 
signal received by CH0 to CH6 of the A/D converter of the DAQ board from the weight 
sensors and crash sensors.  The function WeightSense provides a decision based on the 
weight of the occupant.  The function ImageProcess classifies the object as a human, 
a nonhuman, or a nonobject.  The results of this function are fused with the logic 
combination of the weight sensor to detect whether the occupant is an adult, a child, or 
a nonhuman object, or whether the vehicle seat is empty.  The function CrashSense is 
used to determine whether or not a crash has occurred.  The position detection function, 
PositionDetection, calculates the centroidal distance of the x- and y-axes to provide the 
occupant position.  Finally, the function ABagDecision provides the airbag deployment 
decision upon fusing the logic combination of the occupant classification, position and 
vehicle crash detection decisions.

5. Experimental Results and Discussion

 The experimental results, both image and signal processing, are discussed in terms of 
occupant detection, classification and position, vehicle crash detection and crash severity 
analysis towards airbag deployment decision.  Usually, the real-time prototype operation 
varies up to 1 min.  However, in our prototype hardware, the execution vectors of the 
entire system are derived from the experimental measurements within 50 ms.  Details of 
the experimental results and analysis are given below.
 In the interface system algorithm, an adult, a child, a nonhuman object and an empty 
seat are identified as 1, 0.5, 0.25, and 0, respectively, on the basis of weight.  Next, the 
categorization task is performed by introducing the conditions of with an adult, a child, a 
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nonhuman object, or without an occupant.  The results are shown in Fig. 5, which depicts 
the chronological sequence of testing.  Therefore, it can be concluded that the developed 
prototype system is robust for occupant classification.
 Figure 6 shows the centroidal position of the y-centroid versus x-centroid of the 
vehicle front passenger seat with a size of 50×50 cm2, which indicates various positions 
of the occupant: standard, good, and unsafe positions are indicated with solid, dash 
dotted and dash line markings, respectively.  Figure 6(a) shows that the seated occupant 
is in a good position with his/her back properly aligned to the back of the seat.  Figure 
6(b) shows that the occupant is in an unsafe position (i.e., the occupant is aligned very 
much to the right of the seat).  Similarly, Fig. 6(c) indicates that the occupant is in an 
unsafe position and in very close proximity to the airbag.  In both Figs. 6(b) and 6(c), the 
proposed safety device provides a nondeployment decision for the airbag unit.  Figure 
6(d) also indicates that the occupant is in the extreme left of the vehicle seat, which 
signifies an unsafe position, and therefore, a nondeployment decision is issued.  Figure 
6 also shows that the occupant is around 25×25 cm2 and aligned to the back of the seat, 
which is the true position of the occupant.  On the basis of results, it is reasonable to 
conclude that the occupant position monitoring of the embedded system is robust and 
effective.
 A sample from the test image database is shown in Fig. 7 and demonstrates the 
detection capability of the proposed human face and nonhuman object detection scheme.  
It detects a human face in the car environment under various lighting conditions and 
backgrounds.  It also demonstrates the results of the system application to the detection 
of a human face with various contrasts and backgrounds in groups or singularly.  
Similarly, three nonhuman objects in the car seat are also detected from many samples 
of the test dataset.  In the proposed vision-sensing system, the detection rate is about 
97.63% with very few false alarms, and the computation speed is 2.3 s, which is much 
better than that reported previously.(19)

 In image processing, the vision-sensing system uses two data sets of images in the 
experiments to test the performance of detection of human faces and nonhuman objects, 
which are distinct from the training sets.  The first set consists of 253 test images, which 
have a wide variety of complex backgrounds in various environments and scale changes 
for the object of interest along with some occlusions and variations in lighting.  Twenty-

Fig. 5. Occupant classification based on weight sensing.
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five human face images of interest are included for a total of 253 test images.  The second 
data set contains 112 test images that were collected from seven nonhuman objects of 
interest.  The systems undergo the bootstrapping cycle, which results in 4,500 to 9,500 
zero samples, to evaluate the performance of the true detection of the test images and the 
rate of false detection from the images of natural scenes that do not contain human faces 
or nonhuman objects.
 Table 1 shows the results of human face detection using various methods on test set 1 
and compares the results with those of systems in terms of the number of detected faces, 
missed faces, false detections and computation time.  The success rate of the proposed 
method is 97.6%, with 6 false alarms.  It should be noted that the number of false alarms 
is smaller than those generated by the methods proposed by Ben-Yacoub et al.(20) and 
Fasel et al.(19)  This may show that the combination of two networks can successfully 
separate human faces from nonobject examples.  The improved performance reported by 
Rowley et al.(21) is likely due to the size of the training data.  We used 7,344 human face 
images and 8,000 nonobject examples, whereas Rowley et al.(21) trained using 16,000 
face images and 9,000 nonface images.  However, the technique is less efficient than the 
proposed technique in terms of false detection and response time.  On the other hand, 

(a) (b)

(c) (d)

Fig. 6. Occupant centroidal position calculation.
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Ben-Yacoub et al.(20) showed a very fast processing but more false alarms.
 Similarly, Table 2 shows the summarized results for nonhuman objects from test set 2 
compared with those from other systems.  We found that the nonhuman object detection 
rate is 96.42%, which means 108 out of 112 nonhuman objects are detected.  The false 
detection rate is 3.58%, which is lower than that reported by Agarwal et al. (2004) and 
that of other methods.(23,24)  However, the average process time is faster than that of other 
methods providing additional calculation on CNN except for that obtained by Viola 
and Jones (2001).  The process time obtained by Viola and Jones (2001) is faster owing 
to the size of training data set, feature resolution and test images.  On the basis of the 
results shown in Tables 1 and 2, we conclude that the human face and nonhuman object 
detection system has acceptable tradeoffs between the number of false detections and 
detection rate.  Once the image processing part is completed, the ImageProcess function 
outputs 1 for a human and 0 for a nonhuman object.  This 1 or 0 is fused with the output 
of the weight sensor situated inside the vehicle seat to provide an accurate occupant 

Table 1
Detection rate of set 1 for different methods.

Method Human detection (%) Miss human 
detection (%)

No. of false 
detection Process time

FNN+CNN 97.63% 2.37% 6 2.3 s
Rowley et al. 97.86% 2.14% 13 0.013 M
Yacoub et al. 84.31% 15.69% 347 0.7 s
Fasel et al. 96.8% 3.2% 278 3.1 s

Fig. 7. Human face and nonhuman object detection.
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detection and classification for the integrated intelligent safety system.  To illustrate the 
performance, some sample results obtained from the prototype system are included for 
various cases, such as an occupied or empty seat.  If the seat is occupied, the occupant 
is classified as an adult, a child or a nonhuman object.  Usually, a human, and therefore 
his/her weight in the seat, takes various positions on the seat.  However, a nonhuman 
object, such as a grocery bag, is static and its position does not vary.  It also demonstrates 
that the position of the occupant can be determined to take safety issues into account in 
airbag application or to measure the comfort level.
 Next, we implemented experiments that study a frontal static crash using a crash 
generating device and the interface program.  The experimental results of the crash 
reaction force applied to generate the crash are shown in Fig. 8.  We tried to obtain the 
reaction force during repeated crash conduction between 51 to 80 s.  It is seen that the 
repeated crash gains a huge force between approximately 1,000 – 5,800 N/m.  Moreover, 
the velocity immediately before the crash exceeds 22.54 km/h.  The reaction force 
depends on the crash velocity of the system.  As velocity increases, the reaction force 
also increases, which in turn increases the crash severity.  This is a situation that puts the 
occupant at a higher risk.
 The experimental results of the developed system for occupant detection, 
classification, and position, vehicle crash detection, and crash severity analysis contribute 
to providing the airbag deployment decision.  The decisions of the addressed safety 
issues are fused using a logic combination.  Several cases of the event were simulated, 
and the decision results of the airbag deployment system are shown in Table 3, where 
ND, AAD, CAD, NOB and NOH represent no deployment, adult airbag deployed, child 
airbag deployed, nonobject and nonhuman object, respectively.  Information on the 
occupant class, position, and vehicle crash status is used to make the initial decision 
before a final decision is made as to whether or not to deploy the airbag.  The final 
decision is made by fusing individual logic decisions on occupant weight class, position 
and vehicle crash detection.  Therefore, the fused decision leads to the optimal and 
reliable performance of the developed airbag deployment system.  However, individual 
decisions only detect a specific safety feature.

6. System Verification and Validation

 When developing a prototype system, it is important to determine if the system meets 
certain specifications and if its outputs are correct.  Therefore, extreme care should be 

Table 2
Detection rates of set 2 for different methods.

Method
Nonhuman 

object detection (%)
Miss nonhuman 

object detection (%)
No. of false 

detection
Process 

time
FNN+CNN 96.42% 3.58% 4 2.9 s
Agarwal et al. 94% 6% 30 3.6 s
Mahmud & Hebert 82% 18% 187 4.0 s
Viola & Jones 95% 5% 71 0.7 s



Sensors and Materials, Vol. 23, No. 3 (2011) 191

taken in the development of the prototype systems to ensure that a sufficient time is spent 
on verification and validation to prove that a system is correct.
 We have verified the implemented prototype intelligent safety system through 
dynamic and static testing.  Dynamic testing involves the execution of the proposed 
safety system, in which all functions that are defined in the program for the system 
requirement are identified and tested; furthermore, information from the internal 
structure of the system to devise tests to check the operation of the individual safety 
features is used.  Functional and structural testing investigates a particular characteristic 
of the integrated system.  In static testing, we analyze the consistency and measurement 
of the program property, in which correct syntax, correct parameter matching between 
procedures, correct typing, requirements and specification translation are ensured, and 
properties such as such as error likelihood, understandability, and structure are measured.  
We adopted formal validation techniques: fault injection and dependability analysis.  
In addition, we used mathematical and logical techniques to express, investigate, and 
analyze the specification, design, documentation and behaviour of both hardware and 
software.  We intentionally injected faults into the physical hardware and errors into the 
software program to observe the system operation under faulty conditions.  However, 
we found that the implemented prototype vehicle intelligent system worked well under 

Fig. 8. Vehicle crash reaction force.

Table 3
Airbag deployment decision for several cases of events.

Case Image detected Class detected Position 
detected

Crash 
detected

Deployment 
decision

A Face Adult Good None ND
B Face Adult Good Yes AAD
C Face Adult Bad Yes ND
D Face Child Good Yes CAD
E Face Child Bad Yes ND
F NOB Empty NA Yes ND
G NOB Empty NA Yes ND
H NOB Object NA Yes ND
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fault conditions.  We performed dependability analysis to identify hazards and their root 
causes to develop possible countermeasures and for risk analysis of hazards and their 
probability of occurring.

7. Conclusions

 This study is original, in which the integration of various sensing systems and a rule-
based decision algorithm into a platform that provides an airbag deployment decision in 
an intelligent vehicle is developed.  A LabWindow/CVI in the C interface is used for real-
time prototype implementation.  Weight, vision and crash-sensing systems are integrated 
by developing the rule-based algorithm into the hardware platform and system interface 
program.  The prototyped intelligent system has led to a successful fabrication of a real-
time working device, and its performance has been evaluated through several test runs.  
Application of the prototype intelligent system has resulted in a successful real-time 
working device, and it has been proven that the airbag deployment decision is unique, 
maintains a high precision, is reliable, effective, and robust, and is easily retrofitted into 
any vehicle with a built-in airbag control.  The contributions of the proposed prototype 
provide management, performance characterization, problem determination, real-time 
data monitoring and a safety warning for vehicles.

Acknowledgement

 The authors would like to thank the Malaysian Ministry of Science, Technology and 
Innovation (MOSTI) for funding this work through IRPA research grant 03-02-02-0017-
SR0003/07-03.

References

 1 D. S. Timothy and M. M. Trivedi: International Conference on Intelligent Vehicles 2003 (IEEE, 
Parma, 2003) p. 570.

 2 M. Devy, A. Giralt, and A. Marin-Hernandez: Intelligent Vehicle Symposium 2000 (IEEE, 
Dearborn, 2000) p. 714.

 3 J. W. Weber, C. A. Mullins, R.W. Schumacher and C. D. Wright: Vehicle Navigation & 
Information System 1994 (IEEE, Yokohama, 1994) p. 431.

 4 M. Shiraishi, H. Sumiya and Y. Ysuchiya: Intelligent Transportation System 2002 (IEEE, 
Singapore, 2002) p. 210.

 5 W. W. Osmer, M. Blakesley and B. Patrick: Vehicle occupant position detector and airbag 
control system, US Patent, 6250671, June 26, 2001.

 6 D. S. Breed: Smart airbag system, US Patent, 6532408, March 11, 2003.
 7 C. H. Stephan, M. A. Cuddihy and S. Y. Schondorf: Method for controlling airbag 

deployment, US Patent, 6764095, July 20, 2004.
 8 D. S. Breed, W. E. DuVall, W. C. Johnson, K. A. Lukin and V. M. Konovalov: 

Communication method and arrangement, US Patent, 7110880. September 19, 2006.
 9 N. Shigeyuki: Mitsubishi Motors Technical Review 16 (2004) 61.
 10 A. Leykin, R. Yang and R. Hammoud: Computer Vision and Pattern Recognition 2007 (IEEE, 

New York, 2007) p. 1.



Sensors and Materials, Vol. 23, No. 3 (2011) 193

 11 T. Marunaka, T. Kimura, M. Taguchi, T. Yoshikawa, H. Kumamoto and K. Kishida: Railroad 
Conference 2001(IEEE/ASME, Ontario, 2001) p. 251.

 12 A. Rovid and G. Melegh: Intelligent Signal Processing 2003 (IEEE, Budapest, 2003) p. 149.
 13 A. R. Varkonyi-Koczy, A. Rovid and R. M. da-Graca: IEEE Trans. Instrum. Meas. 55 (2006) 

2304.
 14 NHTSA: Proposed new federal Motor vehicle safety standard for motor vehicle side impact 

protection (FMVSS 214) (2001), http://www.ita.doc.gov/td/auto/domestic/staffreports/
NHTSA%20Side%20Impact% 203.pdf (July 23, 2006).

 15 National Transportation Safety Board (NTSB): Safety recommendations H-97-19 through 
-21, http://www.ntsb.gov/recs/letters/1997/H97_19_21.pdf, Washington, DC 20594 (January 
10, 2005).

 16 M. A. Hannan, A. Hussain, S. A. Samad, A. Mohamed, D. A. Wahab and A. K. Arrifin:  Int. J. 
Automot. Technol. 7 (2006) 827.

 17 A. Hussain, M. A. Hannan, A. Mohamed, H. Sanusi and A. K. Arrifin: Int. J. Automot. 
Technol. 7 (2006) 179.

 18 M. A. Hannan, A. Hussain, A. Mohamed and S. A. Samad: Int. J. Crashworthiness 13 (2008) 
579.

 19 B. Fasel, S. Ben-Yacoub and J. Luettin: Fast multi-scale face detection, IDIAP-Com 98-04, 
(1998) 1-87.

 20 S. Ben-Yacoub, B. Fasel and J. Luettin: Proceedings Second International Conf. on Audio 
and Video-based Biometric Person Authentication 1999 (Washington DC, 1999) p. 135.

 21 H. A. Rowley, S. Baluja and T. Kanade: IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 
23.

 22 S. Agarwal, A. Awan and D. Roth: IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004) 1475.
 23 P. Viola and M. Jones: Proceedings of the IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition 2001 (IEEE, Kauai, 2001) p. 511.
 24 S. Mahamud and M. Hebert: Computer Society Conference on Computer Vision and Pattern 

Recognition 2003 (IEEE, Wisconsin, 2003) p. 248.


	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193

