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 A new method of detecting wound pathogens based on an electronic nose was 
proposed and realized.  A gas sensor array consisting of six metal oxide gas sensors and 
one electrochemical gas sensor was used to identify seven species of pathogens common 
in wound infection.  By selecting the wavelet transform coeffi cients preferentially 
with a scatter matrix and using the mean of the selected coeffi cients as the feature, the 
identifi cation accuracies of the probabilistic neural network classifi er for the seven 
species of pathogens all reached 100%.  The new feature extraction method showed high 
performance in the rejection of gas sensor drift.  Theoretical analysis and experimental 
results indicate that this method can be used to accurately identify the common pathogens 
present in wound infection and can be further used in the real-time detection of wound 
infection.

1. Introduction

 Wound healing is affected by several factors, among which infection is one of 
the most common hindrances to wound healing.  A rapid and timely identifi cation of 
the bacterial type and the phase of wound infection will help physicians choose the 
appropriate treatment, enabling rapid wound healing.  Morphological examinations 
using a microscope and growth test under certain conditions are usually the traditional 
identifi cation methods for wound infection.  However, these methods take at least more 
than 48 h, lack a unique authoritative criterion for the detection of certain bacteria, 
and require a series of sample preprocesses before the test, such as preconcentration, 
selective enrichment, and smear microscopy examination.
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 Different bacteria, with different bacterial enzymes, have different capacities of 
decomposition, producing different metabolites.  Moreover, because bacterial growth 
has four phases, namely, lag phase, log phase, stationary phase, and death phase, the 
volatile compound concentration of a bacterium also differs at different growth phases.  
Accordingly, the type and growth phase of bacteria in wound infection can be monitored 
by examining the volatile compound concentration around the wound.(1)  There is a well-
established and growing interest in the detection and identifi cation of microorganisms 
by measuring the concentrations of volatile organic compounds (VOCs) they release.  In 
vitro bacterial culture studies using gas chromatography/mass spectrometry (GC-MS) 
have identifi ed a large number of metabolic volatile compounds including fatty acids, 
aliphatic alcohols, ketones, dimethyl polysulfi des, and alkenes.  The mean concentration 
of each VOC analyte is listed in Table 1 for each species and uninoculated controls after 
6 h of incubation in BacT/ALERTRFA-medium-containing bottles.(2)

 In medicine, biosensors are used in the assessment of drug or biomolecule 
concentrations in blood, serum or other corporal fl uid in vivo or in vitro measurements, 
and data are used in diagnostic or on-line monitoring.(3)  A biosensor consists of an 
immobilized biologic molecule (enzymes, cellules or antibodies) next to a transducer, 
which transforms a chemical signal into an electric signal or into other kinds of output as 
an optical, acoustic and heat signal when an analyte reaches it.(4)  The principal advantage 
of enzyme biosensors is related to their high specifi city and catalytic activity.  However, 
they have the disadvantages of low stability and low possibility of reuse.  An electronic 
nose (enose) is composed of an array of gas sensors and the corresponding pattern 
recognition algorithm.(5)  It can imitate the olfaction system of humans and mammals 
and recognize odorant gases.  Compared with traditional test methods, the enose has the 
characteristics of being noninvasive, convenient, and highly effi cient, and of functioning 
in real time and is potentially superior in the detection of wound infection.

Table 1
Mean bacterial VOC concentrations at 6 h in aerobic medium (ppb, vol/vol).

Control
medium+blood

P. aeruginosa S. pneumoniae E. coli S. aureus N. meningitidis

Acetaldehyde 890 1100 5300 11000 2400 350
Acetic acid 6900 16000 460 5400 1200 870
Ethanol 1200 1500 3000 21000 800 770
Acetone 3600 6600 5100 6100 3500 7900
Ammonia 1000 1100 370 500 1800 1200
H2S 10 40 20 4100 60 ND
Methanethiol ND ND 60 750 180 ND
Dimethylsulfi de 690 860 4300 9600 2200 320
Dimethyldisulfi de 200 330 180 430 280 360
ND: analyte not detected.
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2. Methods and Materials

2.1 Enose for wound pathogen detection
 The detection system for wound pathogens based on the intelligent enose system 
comprises a wound headspace gas sampling unit, a sensor array, a signal conditioning 
circuit, and a data acquisition and processing unit.  The gas sensors in the array, 
consisting of six metal oxide gas sensors and one electrochemical gas sensor, are 
selected on the basis of their sensitivity to the common volatile product in wound 
infection.  More details on these gas sensors are given in Table 2.  To enhance the 
system’s ability to restrain environmental interference, a temperature sensor (LM35DZ), 
a humidity sensor (HIH4000), and a pressure sensor (SM5552) are added into the sensor 
array, to simultaneously collect data of ambient parameters.  The response signals 
in the headspace gas of the wound obtained using the sensor array pass through the 
conditioning circuit and are collected and preserved in the data acquisition card.  The 
pattern recognition software examines the bacterial type and infection degree of the 
wound on the basis of the different response modes of the sensor array.

2.2 Probabilistic neural network classifi er for the enose
 The probabilistic neural network (PNN) classifi er is widely used in enose owing to 
its fast training rate and strong ability to add new samples.  The architecture of a typical 
PNN consists of four layers: input layer, pattern layer, summation layer, and output 
layer.(6) The input layer receives training samples and distributes the input to the neurons 
in the pattern layer. The pattern layer calculates the probabilities of input samples 
belonging to a certain class. The summation layer of neurons compute the maximum 
likelihood of pattern X being classifi ed in class i.  Finally, the output layer obtains the 
estimated class of pattern X,

  (1)

Table 2
Datasheet of gas sensor.
Sensor Typical analyte
TGS2600 Air contaminants, methane, carbon monoxide, iso-butane, ethanol, hydrogen
TGS2602 VOCs and odorous gases, ammonia, H2S, toluene, ethanol
TGS2620 Vapors of organic solvents, combustible gases, methane, CO, iso-butane, hydrogen, ethanol
TGS822 Methane, carbon monoxide, iso-butane, n-hexane, benzene, ethanol, acetone
QS-01 Hydrogen, CO, methane, iso-butane, ethanol, ammonia
GSBT11 VOCs, HC, smoke, organic compounds
4ETO Ethylene oxide, ethanol, methyl-ethyl-ketone, toluene, carbon monoxide
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Here, p is the dimension of the pattern vector X, m is the total number of classes in 
training samples, σ is the smoothing parameter, Xij is the neuron vector, ωij denotes the 
mixture weight, and Ni denotes the total number of samples in class i.
 As is known, the Bayes classifi er can be expressed as

 . (2)

 Namely, the input sample X belongs to the class with the maximum a posteriori (MAP) 
probability.

 Here, the a posteriori probability is .  For the same input 

sample, p(X) is a common term, so the Bayes classifi er can be expressed as

 . (3)

 With sufficient samples, eq. (4) can be used to approximate the conditional 
probability density of the class ωi,(7) namely,

 
Ni

ˆ  . (4)

Here, ci
j  is the sample of class ωi, p is the dimension of the input sample, and Ni is the 

number of samples of the ith pattern.
 With sufficient samples, the a priori probability density of class ωi can be 
approximated using

 p(ωi) = Ni/Nˆ , (5)

where N is the total number of samples.
 Thus, the Bayes classifi er based on a priori probability and conditional probability 
density can be expressed as the Bayes classifi er based on the Gaussian kernel function

  . (6)

 A comparison of eqs. (1) and (6) shows that, under the condition that the a 
priori probabilities of all classes are equal, the PNN classifi er is equivalent to the 
Bayes classifi er based on the Gaussian kernel function, and can achieve the optimal 
classifi cation with minimum error. 
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2.3 Feature extraction method based on wavelet transform for the enose
 The amplitude of the response signal of the gas sensor correlates with the gas 
concentration.  To eliminate the effect of the difference between pathogen concentrations 
of the same class on the qualitative identification, the original signals should be 
normalized using

 
M

S(i,j) = (S′(i,j)–min(min(S′(i,j))))/(max(max(S′(i,j)))–min(min(S′(i,j))))
i = 1 i = 1 i = 1j = 1j = 1 j = 1

MMNi NiNi

, (7)

where S′(i,j) is the original signal, i = 1, 2, …, M is the class number, j = 1, 2, …, and Ni 
is the number of samples in each class.
 The feature extraction method in the enose includes the following: basic feature 
extraction method based on the original curve,(8,9) which uses the maximum value, 
maximum slope, and minimum slope of the original curve as features; the feature 
extraction method based on the fi tted curve,(10) which fi ts the original curve to various 
models and takes the model parameters as features; the feature extraction method 
based on a transform domain,(11,12) which maps the original signals into a new space 
and then extracts features in the transformed domain.  Considering the anti-interference 
and antidrift abilities, a one-dimensional (1-D) discrete wavelet transformation of 
the pretreated response signal was carried out.  Some wavelet transform coeffi cients 
were selected preferentially with their mean used as a major feature.  This method was 
compared with the identifi cation effect method using the maximum of the response 
signal as a feature.
 The discrete wavelet coeffi cient of an arbitrary signal  can be described 
as(13)

 Cj,k = S(t) ψi,k(t) dt
∞

–∞
. (8)

Here, ψ(t) is the wavelet function.

 ψj,k(t) = 2–j/2ψ                = 2–j/2ψ(2–jt–k)
t–k·2j

2 . (9)

 To satisfy the orthogonal requirement of feature extraction, we use the Daubechies 
compactly supported orthogonal asymmetric wavelet.  The response signal of gas 
sensors is affected by various noises that have been proved to be of higher-frequency 
components.(14)  Moreover, because of the short-term drift and long-term drift of gas 
sensors, some low-frequency drifting components are blended with the real signals, 
so the wavelet decomposition level cannot be too high or too low.  With a very 
low decomposition level, many high-frequency components will be retained in the 
subband coeffi cients, which is not conducive to restraining noises.  With a very high 
decomposition level, the low-frequency bands may enter the region of the sensor drift, 
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which is ineffective in restraining drift.  With the above considerations, DB6 (with a 
decomposition level of 6) is selected, and the wavelet decomposition coeffi cients of the 
signals are taken as initial features.
 To reduce feature dimension and increase identifi cation accuracy, the optimal feature 
subset was constructed on the basis of the scatter matrix.
 Let c(i)

j  be the discrete wavelet transform coeffi cient for wound pathogen sample j in 

class i with {c(i)
j , j = 1, 2,…, N, i = 1, 2, …, n}.  Defi ne the intraclass scatter matrix as

 , (10)

and the interclass scatter matrix as

 , (11)

Here, m(i) = Σ c(i)

k = 1

Ni

kNi

1  is the distribution center of the pathogen samples in class i, and 

 is the distribution center of all pathogen samples.

 The intraclass scatter matrix indicates the repeatability of the feature for the same 
class samples, and the interclass scatter indicates the ability of the feature to distinguish 
samples from different classes.  The constructed feature subset should have a small 
intraclass scatter and a large interclass scatter.  Fisher distance is defi ned as

 J = tr(sb/sw), (12)

where tr denotes the trace of the matrix.  The larger the J, the larger the interclass 
distance or the smaller the intraclass distance, the more accurate will be the classifi cation.  
Calculate the Fisher distance of each wavelet decomposition coeffi cient for the initial 
features.  Select the 31st–40th of the approximating coeffi cients as the optimal features.  
Send the mean of selected coeffi cients into the PNN classifi er.  Figure 1 presents the box 
plots that show the selected features and maximum features of the six classes of pathogen 
samples.  The box plot for each class contains information on the mean, quartile value, 
and outliers of all samples in this class, revealing the intraclass distances of a class.  
Moreover, the distribution across the six box plots indicates the interclass distances 
between different classes.  Evidently, for samples in the same class, the degree of scatter 
of the selected feature is smaller than that of the maximum feature, and for samples in 
different classes, the discrimination ability of the selected feature is stronger than that of 
the maximum feature.  
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3. Results and Discussion

3.1 Detection of single pathogen
 Giacometti et al. studied 676 patients who underwent surgical treatment over a six-
year period.(15)  All the patients showed signs and symptoms indicating surgical wound 
infection.  One thousand and sixty bacterial strains were isolated from 614 individuals.  
In particular, a single agent was identifi ed in 271 patients, multiple agents were found in 
343 patients, and no agent was identifi ed in 62 patients.  A high preponderance of aerobic 
bacteria was observed.  Among the common pathogens were S. aureus (191 patients, 
28.2%), P. aeruginosa (170 patients, 25.2%), E. coli (53 patients, 7.8%), S. epidermidis 
(48 patients, 7.1%), and E. faecalis (38 patients, 5.6%).  Other studies also revealed that 
the common pathogens responsible for wound infection include P. aeruginosa, E. coli, 
A. baumannii, S. aureus, S. epidermidis, K. pneumoniae, and S. pyogenes.(16–18)  These 
seven species of bacteria used in our test were purchased from the Chinese National 
Institute for the Control of Pharmaceutical and Biological Products, and the National 
Center for Medical Culture Collection.  After three successive generations of subculture, 
the purchased bacteria became stable, and were then inoculated into agar slants.  The 
headspace gas of bacteria in each slant was imported into the enose for the test.  The 
test period for each sample comprises a baseline step (3 min), an adsorption step (3 
min), and a desorption step (4 min).  Ten minutes after each test, the next test can be 
started.  The zero gas and sample gas pass through the enose at a rate of 50 ml/min, with 
a sampling frequency of 110 Hz.  Each of the seven species of pathogens was cultured in 
two test tubes, and each tube was measured fi ve times.  We obtained 70 measurements.  
A typical response curve of a gas sensor to the seven species of bacteria and a response 
curve of the gas sensor array to one species of bacteria are shown in Figs. 2(a) and 2(b), 
respectively.
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Fig. 1.   Box plots for the selected features (left) and maximum features (right).
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 Half of the data was randomly selected as the training set and the other half as the 
testing set.  The identifi cation result can be expressed as

 , (13)

where xij denotes the number of samples of class i determined to belong to class j (the 
judgment is correct when i = j, and incorrect otherwise), and m is the total number of 
classes in the test set.

(a)

(b)

Fig. 2. (a) Response curves of a gas sensor (TGS2620) to seven species of bacteria. (b) Response 
curves of gas sensors array to one species bacteria (E. coli).
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 The identifi cation accuracy, sensibility, and specifi city of samples in class i are 
defi ned using eqs. (14)–(18).  The identifi cation results of PNN with the maximum 
feature and those with the selected feature are given in Tables 3 and 4, respectively.

 Accuracy(i) = Σ xij – Σ xji + Σ xij Σ xij × 100%
i,j = 1

m

j = 1
j ≠ i

i,j = 1j = 1
j ≠ i

m m m

 （14）

  （15）

 Specificity(i) =  1 – Σ xji Σ xij – Σ xij   × 100%
m m m

j = 1, j ≠ i i,j = 1 j = 1
 （16）

Table 4
Results of single-pathogen detection for seven species (with the selected feature).

1 2 3 4 5 6 7 Accurcy Sensitivity Specifi city
1 5 0 0 0 0 0 0 100% 100% 100%
2 0 5 0 0 0 0 0 100% 100% 100%
3 0 0 5 0 0 0 0 100% 100% 100%
4 0 0 0 5 0 0 0 100% 100% 100%
5 0 0 0 0 5 0 0 100% 100% 100%
6 0 0 0 0 0 5 0 100% 100% 100%
7 0 0 0 0 0 0 5 100% 100% 100%

1–7 are the same as in Table 1.

Table 3
Results of single-pathogen detection for seven species (with the maximum feature).

1 2 3 4 5 6 7 Accurcy Sensitivity Specifi city
1 5 0 0 0 0 0 0 100% 100% 100%
2 0 5 0 0 0 0 0 88.6% 100% 86.7%
3 0 2 3 0 0 0 0 94.3% 60% 100%
4 0 1 0 4 0 0 0 97.1% 80% 100%
5 0 0 0 0 5 0 0 100% 100% 100%
6 0 1 0 0 0 4 0 97.1% 80% 100%
7 0 0 0 0 0 0 5 100% 100% 100%
1, P. aeruginosa; 2, E. coli; 3, S. aureus; 4, S. epidermidis; 
5, A. baumannii; 6, K. pneumoniae; 7, S. pyogenes;
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3.2 Detection of mixed pathogens
 More than one species of pathogens may exist in an actual wound infection.(15)  The 
detection ability of the enose for mixed pathogens was further demonstrated in our 
work.  We classifi ed S. epidermidis, S. pyogenes and A. baumannii into one group, and 
S. aureus, K. pneumoniae and P. aeruginosa into the other group.  The headspace gas 
of each pathogen was blended with that of the other species in the same group, and we 
obtained 6 samples, each of which contained two different species of pathogens mixed 
together.  The samples were then guided into the enose for the test.  Each sample was 
measured 7 times.  We obtained 42 measurements altogether.  We randomly selected 24 
of these 42 measurements as training samples and the other 18 as test samples.  Table 5 
shows the identifi cation results of PNN. 

3.3 Antidrift ability of enose
 The enose usually classifi es the test samples according to the modes of the training 
samples.  However, because of the short-term drift and long-term drift of the gas sensors, 
the training and test samples measured at different times and under different conditions 
will be affected by various factors, which often results in misjudgment.  The drift of 
the gas sensors is mainly caused by changes in the temperature and humidity of the test 
environment, the presence of trace components, and the aging of the gas sensors.  Each 
feature extraction method should take into consideration its ability to prevent short-
term drift and long-term drift.  With this in mind, the test samples in § 3.1 were affected 
by interfering signals of short-term drift and long-term drift using eqs. (17) and (18), 
respectively.(19)

 Sshort-term(t) = s(t) + kdt （17）

Here, t is the sample time, d is the drift constant (1, 5, 10, 20 and 50%, respectively), k is 
the mean slope of the original signal, and k = (max(s)–min(s))/length(s).

  （18）

Here, s is the original signal,  is its mean, d is the drift constant (1, 5, 10, 20 and 50%, 
respectively), and  is a constant.

Table 5
Results for detection of mixed pathogens.

Accuracy Sensitivity Specifi city
S. epidermidis + S. pyogenes 94.4% 100% 93.3%
A. baumannii + S. epidermidis 100% 100% 100%
A. baumannii + S. pyogenes 100% 100% 100%
S. aureus + K. pneumoniae 100% 100% 100%
S. aureus + P. aeruginosa 100% 100% 100%
K. pneumoniae + P. aeruginosa 94.4% 66.7% 100%
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 By using the PNN classifi er, the classifi cation accuracies for the maximum feature 
and selected features are shown in Figs. 3 and 4, respectively.  Under the infl uence of 
a strong drift, classifi cation accuracy decreases, but the anti-drift ability of the selected 
feature is obviously stronger than that of the maximum feature.

4. Conclusion

 The traditional identifi cation method for wound bacteria is laborious and time-
consuming, which prevents wound infection from being diagnosed immediately.  A rapid 
method of identifying pathogens is proposed and realized in this study.  By using the 
gas sensor array, the rapid identifi cation was achieved by analyzing the headspace gas 
of wound pathogens.  Theoretical analysis and experimental results show that the newly 
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Fig. 3.   Ability to restrain the short-term drift for different features.

Fig. 4.   Ability to restrain the long-term drift for different features.
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constructed intelligent detection system for wound pathogens, in combination with the 
new feature extraction method, can accurately identify the seven common pathogens 
present in wound infection.  The identifi cation results of single and mixed components 
reached 100% and 94.4%, respectively.  Moreover, with a strong anti-drift ability, the 
system can be further used in the real-time detection of wound infection.
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