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 Energy scavengers are a promising alternative for powering the thousands of sensors 
of  next-generation air vehicles.  Genetically Optimized Neural Network Systems (GONNS) 
is proposed as the fi rst step for the optimization of energy scavengers by considering 
the ambient vibration, available space, and allowable weight.  GONNS conveniently 
represents the complex systems with multiple artifi cial neural networks (ANNs) and are 
used to determine optional operating conditions using one or more genetic algorithms (GAs).  
Single- and multiple-cluster modes of the GONNS were used in the study to match the 
dynamic characteristics of the energy scavenger to the ambient vibrations and to fi t the 
system into the available space.  The single-cluster mode represented the relationship 
between the inputs (frequency, beam length, and mass) and two outputs (voltage and 
displacement amplitudes) with separate ANNs and optimized the system using a single 
GA.  Six ANNs and three GAs working in three groups optimized the system in the 
multiple-cluster mode of the GONNS.

1. Introduction

 Future aerospace vehicles will use elaborate integrated systems health management 
(ISHM) tools to achieve the targeted safety, low-cost maintenance, operation readiness, 
and quick repair goals.  Instead of wiring all the sensors, on-the-spot energy generation 
methods such as solar cells, thermoelectric units, and energy scavengers(1) may be used 
to simplify the infrastructure and reduce the weight.  Energy scavengers are an excellent 
alternative power source particularly at the hard-to-reach places of the vehicle.  The 
dimensions and the mass of energy scavengers should be selected carefully to match their 
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resonance frequency with the ambient vibration and to fi t them into the available space.  
Tuning a large number of energy scavengers for their location will be a demanding 
task.  In this paper, use of Genetically Optimized Neural Network Systems (GONNS) is 
proposed to determine the initial dimensions of the energy scavengers.
 Piezoelectric materials generate electricity when their dimensions are changed by 
applying tension or compression.  The generated electricity is proportional to the strain 
and, of course, to the load, which creates the stress.(2)  The piezoelectric effects have 
been studied for a long time and these materials have been used to build sensors and 
actuators.(3–7)  Most of the piezoelectric materials are affordable and may be adapted to 
many applications with minimal design changes.  The effi ciency to transform mechanical 
energy to electrical energy depends on the type of material.  The piezoelectric materials 
such as lead zirconate titanate (PZT), quick pack (QP), monolithic piezoceramic 
materials embedded in an epoxy matrix, and microfi ber composite (MFC) manufactured 
out of piezofi bers have different characteristics.(8–11)

 Backpropagation (BP)(12,13) is one of the most popular ANNs.  It may be used for 
classifi cation and mapping applications.  GAs have been widely used for optimization.(14)  
Instead of using the analytical models, simulated annealing, fuzzy logic, and ANNs have 
been used with the GAs.(15)  The GA is generally slow; however, it fi nds the optimal 
solutions without converging to local minima.  In this study, GONNS was selected 
to avoid the development of neither the analytical models, which will require many 
approximations because of the complex design of the piezoelectric strip actuators, 
nor fi tting empirical models.  GONNS uses multiple ANNs to model the system and 
determine the optimal values  using GA.(16)

 Depending on the complexity of the problem, GONNS uses one or more clusters.  
Each cluster generally has multiple ANNs and one GA.  In this study, both modes of the 
GONNS were used.
 The theoretical background of the components of GONNS will be introduced briefl y 
in the next section.  Implementation of the GONNS for the design of energy scavengers 
of the aerospace vehicles, experimental setup, results, and conclusions will follow.

2. Theoretical Background

 Many implementations of the BP(12–13) are available.  In addition to the number of 
inputs and outputs, the user determines the number of hidden layers and their nodes.  
Most of the programmers connect each node to all the nodes of the next layer.  The nodes 
of the hidden and output layers use simple transfer functions to process their inputs.  
These transfer functions multiply the incoming values by weight and use a simple 
function to determine their output.  The sigmoid is the most commonly used function.  
Linear, Gaussian, and various hyperbolic functions have also been used depending on the 
need.  The network starts to process the incoming training signals with arbitrary weights.  
The error is calculated by comparing the output of the network with the corresponding 
values in the training fi le.  All the weights are adjusted by backpropagating the errors 
through the network at each interaction.  This process is repeated many times until the 
network’s output errors are reduced to an acceptable level.  The user selects the learning 
rate and the momentum to control the speed and stability of the network.
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 GAs are developed to imitate the biological evolution principles.  Natural selection 
and survival of the fi ttest are the most commonly used approaches.(17,18)  The user 
determines the number of binary digits to be assigned for each parameter and their 
boundaries.  Additional bits can be assigned for switches.  All the parameters and the 
switches are represented with a chromosome.  The algorithm tries to fi nd the best 0 and 1 
combination of this string either to minimize or to maximize the objective function.  The 
penalty functions might be used to force some of the parameters to stay in the selected 
range.  The user generally selects the population size, the number of children for each set 
of parents, and the probability of mutation.  The chromosomes are generated randomly 
for the fi rst generation.  Generally, GAs follow a fi ve-step optimization procedure that 
includes: (1) selection of the mating parents, (2) selection of the hereditary chromosomes 
from the parents, (3) gene crossover, (4) gene mutation, and (5) creation of the next 
generation.
 The GONNS uses the ANNs for modeling and GA(s) for optimization.  Generally, 
an ANN is trained to represent the relationship between all the inputs and one of the 
outputs of the system.  For most of the systems, more than one output is considered and 
multiple ANNs are used.  Our GONNS application aims to minimize or maximize one of 
the outputs while the other outputs are maintained at the desired ranges.  GONNS may 
be operated either in the single- or multiple-cluster modes.  In the single-cluster mode, 
multiple ANNs and one GA are used.  In the multiple-cluster modes, ANN and GA 
groups are used.  All the clusters are optimized at the same time.

3. The Problem and the Proposed Procedure

 The most common design of the energy scavengers is presented in Fig. 1.  A mass is 
attached to one side of a piezoelectric element.  The piezoelectric element is fi xed from 
the opposite end and a cantilever beam is created.  The dimensions of the beam and 
mass should be carefully selected to fi t the system into the available space, not to crack 
the piezoelectric element during the fl ight, to avoid striking the cover, and to match the 
resonance frequency with the dominant frequency of the ambient vibrations as much as 
possible.  Since the piezoelectric element has a complex multilayer structure, the tiny 

Fig. 1.   Piezoelectric element and mass.
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support, which holds the beam, fl exes, and the mass cannot be applied to a single spot; 
thus, the development of an analytical model is diffi cult.  Finite element method (FEM) 
may be used; however, estimation of the dynamic responses and voltage takes a very 
long time.  GONNS is proposed to represent the experimental results in a very compact 
form using ANNs.
 In this study, both modes of the GONNS were used.  In the fi rst mode, the GONNS 
used 2 ANNs and one GA.  Two ANNs were trained to represent the relationship between 
three inputs and one of the two considered outputs.  The inputs were the frequency, 
length of the piezoelectric stripe actuator, and the mass.  The single outputs of two neural 
networks were the amplitudes of the voltage and the tip displacements.  The diagram of 
this mode is presented in Fig. 2.
 In the second mode, separate clusters were assigned to the masses tested in the 
experiments (Fig. 3).  Generally, the multi-cluster mode is more accurate.  Six ANNs 
were used with two inputs and one output.  The inputs were the frequency and  length of 
the beam.  One of the ANNs estimates the amplitude of the generated voltage while the 
other estimates the amplitude of the beam tip oscillation.  Each cluster was assigned to 
make the optimization for a single mass value that they were trained for.

4. Experimental Setup

 American Piezo Ceramics, Inc. (APCI) (Catalog No. 40-1010 (600/200/0.60-SA)) 
piezoelectric stripe actuators were used in the experiments.  Their dimensions were 53 
mm by 20 mm with the thickness of 0.6 mm.  The diagram of the experimental setup is 
presented in Fig. 4(a).  The beam was attached to a V6100-6 VT5 Vibration Test System.  
A harmonic signal was generated using a BK Precision 4017 signal generator connected to 
the MacroTech Crown XTI 1000 power amplifi er of the exciter.  A Kaman Displacement 
Measuring System KD 2310-2S was used to measure the amplitudes of the vibrations 
of the shaker and the beam tip.  The signal of the function generator, the output of the 
piezoelectric actuator, and the proximity sensor were connected to a Nicolet Integra 10 
digital oscilloscope.  The experimental setup is shown in Fig. 4(b).
 The experimental data was collected with three different lead weights attached to 
the beam tip with 1.9, 4.7, and 6.85 g masses.  The lengths of the beam were set to 21, 
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Fig. 2. Optimization of the operating conditions using the GONNS at the single-cluster mode.
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32, and 43 mm in the experiments.  Each experiment was repeated with 10 Hz intervals 
between 10 and 190 Hz.  One more experiment was carried out for each beam length 
and mass combination to fi nd the resonance frequency and the maximum amplitudes of 
the generated voltage and tool tip displacements.  The experimental data was collected 
using the Integra 10 digital oscilloscope.  The data was stored on fl oppy disks.  The 
experimental data was assessed using Microsoft Excel and peak-to-peak voltage was 
found for each experiment.  The amplitude of the displacement was found using the 
calibration coeffi cient of the Kaman Displacement Measuring System data.

5. Results and Discussion

 The modeling of the dynamic characteristics of the piezoelectric beams using the 
ANNs was a great challenge compared with many other applications.  Frequency 
response curves make sharp peaks around the natural frequency of the beam.  It was 
not easy to orient these sharp peaks to ANNs with two or three inputs.  Some of the 
ANNs made large errors at the frequencies surrounding the peaks.  These errors were not 
detected during the training process since there was no training data at those frequencies.  
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Fig. 3.   Optimization of the battery dimensions in the multiple-cluster mode.
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Two modes of the GONNS were tested in this study because the number of inputs of the 
ANNs of the multiple-cluster modes is one less than the other mode, and ANNs learn the 
training data better.  In the fi rst mode, two neural networks with three inputs were trained 
and the optimum was found using one GA.  The second mode used three clusters with 
two ANNs and one GA in each cluster.  Each cluster was optimized for one of the tested 
masses.
 In the fi rst mode (Fig. 2), two ANNs were trained using 177 experimentally obtained 
cases.  ANNs made over one million iterations.  The average estimation errors of the 
ANNs are presented in Table 1.  The genetic algorithm used the ANNs with 16 and 10 
hidden nodes for the estimation of the amplitude of the generated voltage and tool tip 
displacement, respectively.
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Fig. 4.   (a) Diagram of the experimental setup.  (b) Picture of the experimental setup.
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 In the second mode (Fig. 3), 6 ANNs were trained to estimate the amplitudes of 
either the generated voltage or the tool tip vibration for three different mass values.  
The average estimation errors of the ANNs (Table 2) were lower when 8 hidden nodes 
were used; however, there were some large errors at the surroundings of the peaks at 
the natural frequencies.  We preferred to use the ANNs with 12 hidden nodes for the 
optimization using the GA.
 The accuracy of the trained ANNs is presented with the 3-D graphs in Figs. 6 
and 7.  The experimentally observed amplitudes of the generated voltage and tool tip 
displacements are presented in Fig. 5.  The parameters of experiments are presented 
in Table 3.  In these 3-D graphs, the locations of the icons indicate the experimental 
conditions including the frequency, and the beam length and mass as per Table 3.   The 
match of the experimental values in Fig. 5, estimations of the 2 ANNs of the single-
cluster GONNS in Fig. 6, and estimations of the 6 ANNs of the multiple-cluster GONNS 
in Fig. 7 indicate the excellent performance of the ANNs.
 The limitations of even excellent models can be seen in Fig. 5 of ref. 19.  Two stacks 
of 2 piezowafers with 45.974×20.574×0.254 mm3 dimensions attached to a plate were 
used.  There was no additional mass.  The analytical model estimated the three modes 
extremely well.  However, at low frequencies up to half of the natural frequency, the 
estimation of the analytical model signifi cantly deviated from the experimental results. 
The experiments were performed using harmonic function in this study to obtain the best 
possible accuracy.  Also, the ANNs performed well at this critical low frequency range as 
shown in Figs. 5–7.
 The genetic algorithm quickly converged and estimated the best operating condition.  
For one case, the selection of the parameters for the optimization and the results are 
presented in Figs. 8 and 9.  The user wanted to maximize the voltage variation while 
the amplitude of the beam tip displacement was kept below 4 mm (Fig. 8) when the 
scavenger operates at a location with the ambient vibration of 80 Hz dominant frequency.  
The optimization of the genetic algorithm was stopped after 30 s (Fig.9).  Over 2400 
iterations were completed in that time interval.  The GONNS recommended a 21 mm 
beam length and 2.39 g mass.

Table 1
Average estimation error of the 2 ANNs (in the fi rst mode) after over 1 million iterations.  Results 
are presented for 10, 16, and 20 hidden nodes.
Number of hidden nodes Voltage estimating with ANN

(Average estimation error with 
respect to the full range)

Amplitude estimating with ANN
(Average estimation error with 

respect to the full range)
10 1.93 1.31
16 1.73 1.37
20 1.87 1.83
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Table 2
Average estimation error of the 6 ANNs (in the second mode) after over 1 million iterations.  
Results are presented for 8 and 12 hidden nodes.
Mass (g) Number of hidden nodes Voltage estimating with ANN

(Average estimation error 
with respect to the full range)

Amplitude estimating with ANN
(Average estimation error with 
respect to the full range)

1.9 8 1.117 0.53
1.9 12 1.29 1.62
4.7 8 1.22 0.63
4.7 12 0.82 0.92
6.85 8 0.65 0.496
6.85 12 1.15 0.87
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Fig. 5. 3-D graph of the experimental results.  The amplitude of the generated voltage (a) and the 
tool tip vibration (b) are presented.
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Table 3
Parameters of experiments.
Experiments Beam length (mm) Mass (g)

1 21 1.9
2 21 4.7
3 21 6.85
4 32 1.9
5 32 4.7
6 32 6.85
7 43 1.9
8 43 4.7
9 43 6.85
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Fig. 6. 3-D graph of the estimations of two ANNs of the single-cluster GONNS in  Fig. 2.  The 
similarities of the data of the amplitudes of the generated voltage (a) and the tool tip vibration (b) 
to those shown in Figs. 5(a) and 5(b) indicate the excellent performance of the ANNs.
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Fig. 7. 3-D graph of the estimation of six ANNs of the multiple-cluster mode of GONNS in Fig. 3.  
The similarities of the data of the amplitudes of the generated voltage (a) and the tool tip vibration (b) 
to those shown in the Figs. 5(a) and 5(b) indicate the excellent performance of the ANNs.
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 The GONNS, which use multiple-clusters, also recommended the similar dimensions 
and mass weight when the optimization was requested under similar conditions (Fig. 10).  
In this mode, GONNS can recommend only one of the masses used for the collection of 
the training data.  When we allowed the GONNS to use the full range and asked to fi nd the 
optimum operating conditions, it selected the longest beam with the heaviest mass (Fig. 11).
 Generally, the ambient vibration frequency and available space will be given.  The 
engineers should select the range of the inputs and one of the outputs while the other 
output is maximized or minimized.  The frequency range that will be selected is very 
small in most of the applications just around the dominant frequency of the ambient 
vibration.  The length of the beam and most probably the allowable tip vibration 

Fig. 8.   Selection of optimization goals using the GONNS.

Fig. 9.   Optimization results with the GONNS.
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amplitude will be selected to fi t the system into the desired space.  The optimization will 
be performed to obtain the best possible amplitude for the generated voltage.  The user 
may also determine the range of the amplitude of the generated voltage by considering 
his/her circuit and may look for the minimum vibration amplitude to fi nd the smallest 
possible dimensions.

Fig. 11.   The GONNS suggested using the maximum piezoelectric element length and heaviest 
mass when we allowed it to use the experimental data collection range.

Fig. 10.   For the installation of the scavenger on a machine part with 80 Hz natural frequency, 
GONNS recommended the shortest beam length and the smallest mass to operate very close to the 
natural frequency of the system.
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6. Conclusions

 Engineers should customize the energy scavengers of the structural health monitoring 
systems by considering the ambient vibrations because the generated electricity is very 
high at the resonance frequency of these devices.  Fitting them into the limited spaces of 
hard-to-reach locations and not to crack the piezoelectric element with overloading will 
be the other important concerns.  The analytical models will not work very well since 
many assumptions will be required to model the the piezoelectric elements with very 
thin multiple layers.  Also, the semirigid supports holding the piezoelectric beams will 
degrade the accuracy of the analytical models.  FEM models take a very long time and 
require an optimization platform such as the GONNS.  The feasibility of the use of the 
GONNS is evaluated in this paper, to design the optimal energy scavengers purely from 
the experimental data without considering any empirical equations or analytical models.
 A simpler analytical model may also work well for optimization of the energy 
scavenger design if three important ingredients are correctly obtained: parameters, proper 
assumptions, and derivation.
a) First, the characteristic parameters of the beam should be obtained.  Unless the 

correct parameters are provided by the manufacturer it is not easy to determine them 
experimentally.  If the energy scavenger is going to operate at high temperatures the 
typically distributed parameters obtained at ambient conditions may need signifi cant 
correction.

b) The boundary conditions of real applications may not be represented well by the 
analytical models.  There is some fl exibility in the clamping mechanism which holds 
the beam.  This fl exibility varies with the length of the beam and the mass.  The mass 
has a signifi cant contact area with the piezoelectric element instead of being held at 
a single line at the end of the beam.  The strain is signifi cantly different within this 
contact area.  Depending on the length of the piezoelectric element and mass size, the 
model may need signifi cant corrections.

c) It is not easy to derive and simplify the analytical model of a bimorph piezoelectric 
beam for estimation of the vibration amplitude and voltage generation at any given 
external excitation (amplitude and frequency).  The bimorph material we used had 
seven layers on it.  It is diffi cult to include the concerns in (a) and (b) in the model.

 GONNS used either 2 or 3 input ANNs to represent the relationship between the 
inputs and outputs.  Two different modes of the GONNS were used in the study.  These 
approaches enabled the optimization either by using two 3-input ANNs with one GA 
or the three clusters each having two ANNs and one GA.  The second approach is 
more reliable; however, it may recommend only one of the three masses used in the 
experiments.  The training of the ANNs was a challenge because there were sharp spikes 
at the resonance frequencies of the beams, and working with multiple inputs made the 
problem worse.  The estimation accuracy of the GONNS was improved using multiple-
clusters.
 The study indicated that GONNS is a perfect platform to represent the experimental 
data in a very compact form using ANNs and to determine the optimal working 
conditions to maximize or minimize the concerned output parameter.
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