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	 Microsprings are often used in micro-electro-mechanical system (MEMS) actuators to 
transmit force and to restore its original position by its spring force after a movement.  
Owing to its high stiffness and good capability of resisting lateral forces, the box 
microspring has the advantages of resisting induced transverse forces and preventing 
lateral deformation over other microsprings.  For better operation, the nonlinear 
behavior of the microspring should be avoided when the spring is used in MEMS 
devices.  Microspring size can significantly affect microspring performance.  In this 
paper, we report on the effect of box microspring size on the nonlinear deformation of 
the microspring.  The width (W) of the vertical beam of rectangular frames, microspring 
thickness (T), the width (B) of the horizontal beam of rectangular frames, and the spring 
number (N) of the box microspring are used as parameters to investigate the effect of box 
microspring size on nonlinear force.  The finite element software COMSOL Multiphysics 
is used as the simulation tool.  From the simulation results, the linear spring constant k 
and cubic spring constant k3 are determined and expressed in terms of T, B, W, and N 
by the regression analytical method.  The simulation results of this work can be used to 
design a microspring in an actuator such that nonlinear deformation is avoided.

1.	 Introduction

	 Microsprings are often used in micro-electro-mechanical system (MEMS) actuators 
to transmit force and recover its original position by spring force after a movement.  
They can also be used to measure forces of microactuators(1) and become the pivot of 
MEMS to connect to other components.(2–4)  There are two types of microspring often 
used:(5) one is called the box microspring and the other is called the zigzag (serpentine) 
microspring.(6)  Under the same conditions, the former has a larger spring constant k 
than the latter.  Owing to its high stiffness and good capability of resisting lateral forces, 
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the box microspring has the advantages of resisting induced transverse forces and 
preventing lateral deformation over the zigzag microspring.  In other words, to maintain 
balance in the lateral direction, the box microspring is more effective than other types 
of microspring.  Moreover, the box microspring has better controllability under applied 
force.(7)

	 For better operation, the nonlinear behavior of the microspring should be avoided 
when the spring is utilized in MEMS devices.  Microspring size can significantly affect 
microspring performance, such as displacement, deformation, and equivalent spring 
constant.  In this paper, we report on the effect of box microspring size on microspring 
deformation, particularly for nonlinear behavior.  The width (W) of the vertical beam of 
rectangular frames, microspring thickness (T), the width (B) of the horizontal beam of 
rectangular frames, and the spring number (N) of the box microspring are used as the 
parameters for determining the relationship between box microspring size and nonlinear 
force.  On the basis of variations in box microspring size, nonlinear deformations are 
investigated using the finite element software COMSOL Multiphysics as the simulation 
tool.  Moreover, from the simulation results, the linear spring constant k and cubic spring 
constant k3 are determined and expressed in terms of T, B, W, and N by the regression 
analytical method.  The results of this work can be used to design a microspring in an 
actuator such that nonlinear deformation is avoided.

2.	 Numerical Analysis on Box Microspring

	 The spring constant of a linear spring can be determined from Hook’s law.  However, 
if the applied force is large, the spring may result in nonlinear deformation and can 
be expressed as the Duffing equation,(8) in which the elastic restoring force F can be 
simplified as

	 F = kx + k3x3,	 (1)

where x is the displacement of the spring, and k and k3 are the linear and cubic elastic 
constants of the spring, respectively.
	 Owing to the complex coupling of mechanics behavior, it is very difficult to obtain 
the analytical solution of nonlinear deformation for a box microspring.  Therefore, a 
numerical method is used to investigate the displacements of the box microspring under 
various applied forces.  The finite element software COMSOL Multiphysics is used as 
the analysis tool.  To compare deformations, linear and nonlinear modes are introduced 
in the numerical simulations.
	 It is assumed that the microspring is made of polysilicon with Young’s modulus of 
169 Gpa.  The schematic of the box microspring with four geometric sizes is shown 
in Fig. 1.  Because the sizes of MEMS devices are often limited, the length of the box 
microspring will be constrained for practical use.  In our design, the horizontal beam 
length (L) and the total length of the box microspring are maintained at 200 and 670 µm, 
respectively, throughout the entire simulation.  B, T, and W are considered as the size 
parameters that affect the nonlinear displacement of the box microspring, as shown in Fig. 1.  
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Another parameter called the density of spring number, N, defined as the number of turns 
within a constant total spring length, also affects the nonlinear displacement.
	 When the tensile and compressive forces are applied, the box microspring has a 
different deflection behavior, as shown in Figs. 2(a) and 2(b), respectively, where W = 
10 µm, B = 5 µm, T = 2 µm, L = 200 µm, the spring number of turns N = 1, and the total 
length of the microspring is 670 µm.  Because tensile force is used, the four beams of 
the box microspring are all elongated owing to the bending moment, as shown in Fig. 
2(a).  However, the directions of the displacements of the horizontal and vertical beams 
are different in the figure.  On the other hand, when compressive force is applied to the 
box microspring, the lengths of the four beams are still elongated owing to the bending 
moment.  However, the horizontal and vertical deformations are in the same direction, 
as shown in Fig. 2(b).  By using the same size and N as those in Fig. 2, Fig. 3 shows 
the displacements of the box microspring under compression and tension, in which the 
compressive box microspring has a larger displacement than the tensile one.  Particularly, 
when the applied force is large, the difference in displacement can be up to six times.  
Consequently, buckling may occur easily in the microspring under compression because 
of its large displacement.  Because the microsping under compression will result in a 
large displacement and may not be well controlled in practice, in this work, we only 
consider the deformation of the box microspring under tension.  The effect of the beam 
size of the box microspring on nonlinear deformation is investigated.
	 The static analysis of plane strain of structural mechanics module for nonlinear 
and large deformations is employed.  Under different forces, displacement can be 
obtained using COMSOL Multiphysics.  To understand the nonlinear behavior of a 
box microspring, it is necessary to find the starting point of nonlinear deformation; 

Fig. 1.   Schematic of box microspring with the size parameters.
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unfortunately, it is very difficult to find.  We, therefore, define a “critical” point of 
nonlinear deformation as follows.  If the linear deformation has a magnitude of 90%, it 
is defined as the “critical” point of nonlinear deformation behavior and is regarded as the 
beginning of the nonlinear behavior of the box microspring.  In this work, the force when 
the critical point occurred is called the critical nonlinear force for convenience.
	 Figure 4 shows the simulated results of linear and nonlinear deformations for different 
applied forces, where the microspring is pulled under tensile force.  The sizes used in the 
simulations in Fig. 4 are the same as those in Fig. 3, but N = 10 in Fig. 4.  Three curves 
(lines), namely, linear, nonlinear, and 0.9*linear, are presented in Fig. 4, where 0.9*linear 
denotes that the magnitude of this line reaches 90% of its original linear displacement.  

(a) (b)

Fig. 2.   Deformations of box microspring under (a) compressive force and (b) tensile force.
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Fig. 3.   Displacements of box microspring under compression and tension.
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Because the applied force is small, the linear and nonlinear deformations only show a 
small difference.  However, as applied force increases, the difference between the linear 
and nonlinear deformations becomes significant, in which the nonlinear deformation is a 
curve, bending with decreasing slope and having a magnitude less than that of the linear 
deformation.  The intersection point of the 90% linear deformation line and nonlinear 
deformation curve, denoted as the nonlinear point in Fig. 4, is regarded as the beginning 
of the nonlinear deformation behavior in this study.
	 In the first group of simulations, shown from Figs. 5 to 8, the sizes of B and T can 
be varied from 1 to 5 µm, and N from 1 to 10, while W is maintained at 10 µm.  In the 
simulations for determining the critical nonlinear force, the size parameters B, T, and 
W, the number of turns N, and trial force were given first.  By carrying out linear and 
nonlinear analyses using COMSOL Multiphysics, linear and nonlinear displacements 
are obtained.  The critical nonlinear force will be found if the nonlinear displacement is 
about 90% of the linear displacement.  By obtaining the critical nonlinear forces under 
different size parameters B, T, and W, and number of turns N, the relationship between 
nonlinearity and the parameters can be found.  In the second group of simulations, shown 
from Figs. 9 to 11, B, T, and W can be varied from 1 to 5 µm, and N from 1 to 10.  Note 
that the total microspring length is 670 µm; hence, the heights of the box microspring, 
H, are different for different numbers of turns.  If the length connecting two adjacent 
rectangular boxes is 30 µm, H can be calculated as H = [670–30×(N–1)]/N.  For example, 
if N = 5, H = 110 µm.  The larger the N, the smaller the H.

Fig. 4.	 Simulated results of linear, 0.9*linear, and nonlinear deformations for different applied 
forces, where W = 10 µm, B = 5 µm, T = 2 µm, L = 200 µm, N = 10, and the total length the 
microspring is 670 µm.
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3.	 Results and Discussion

	 Figure 5 shows the relationship between critical nonlinear force and the width of 
the horizontal beam of rectangular frames B for different Ns.  For a fixed N (except 
for N = 1), critical nonlinear force increases rapidly if B is large, while the increase is 
slow if B is small, as shown in Fig. 5.  The simulated results also indicated that critical 
nonlinear force remains almost the same when N ≥ 4 and B ≤ 3 µm.   Furthermore, 
critical nonlinear forces significantly differ for 1 < N ≤ 4 with B = 4–5 µm.  Figure 6 
shows the relationship between critical nonlinear force and the number of turns N under 
different Bs.  From Fig. 6, when B ≥ 4 µm, critical nonlinear force increases rapidly as N 
increases.  At B = 3 µm, critical nonlinear force shows no increase at N ≥ 2; it eventually 
approaches a limit of about 1500 µN.  For B = 1 and 2 µm, there is no gain of the critical 
nonlinear force from N = 1–10.  It is thus concluded that if a box microspring is used to 
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Fig. 5.	 Relationship between critical nonlinear force and B, under different numbers of turns N 
with W = 10 µm, T = 2 µm, and L = 200 µm.
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resist the nonlinear behavior, a larger B can extend the point of the nonlinear force and 
its nonlinear behavior can be avoided.
	 As seen in Figs. 5 and 6, it is very clear that the increase in critical nonlinear force 
is quite different from the effects of B and N.  If N is fixed, the increasing B makes the 
critical nonlinear force an exponential curve (Fig. 5); if B is fixed, the critical nonlinear 
force increases following a logarithm-like curve when N is increasing (Fig. 6).
	 The effect of T on critical nonlinear force is shown in Fig. 7 for different Ns, where 
the critical nonlinear force increases linearly as T increases at the same N.  Notice that 
the slope ratio is larger when N is larger, and the critical nonlinear force has a smaller 
difference, in comparison with the smaller N, from N = 5 to 10 for the same T.  Figure 
8 shows the relationship between critical nonlinear force and N under different Ts.  
The curve of critical nonlinear force looks like a logarithmically growing curve as N 
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increases for a specific T.  However, for higher T, the increase rate of critical nonlinear 
force is larger than that for smaller T.  From the results in Figs. 6 and 8, it is found that 
the relationship between critical nonlinear force and the number of turns N is very similar 
for various Bs and Ts.  Nevertheless, the critical nonlinear force in Fig. 8 is much larger 
than that in Fig. 6 since T is maintained at 2 µm in Fig. 6.  Consequently, the nonlinear 
behavior hardly happens for a thicker microspring and a larger number of turns, as well 
as for a larger width of the box microspring.
	 For the analysis of the linear spring constant k and the cubic spring constant k3, FEM 
simulation was performed to determine the relationship between critical nonlinear force 
and displacement, under different spring numbers of turns N.  Regressive analysis is used 
to obtain the linear spring constant k and the cubic spring constant k3 using eq. (1).  These 
simulations are performed using the large deformation option module of COMSOL 
Multiphysics.
	 The thickness of the box microspring, T, versus k and k3 for different Ns is shown 
in Figs. 9(a) and 9(b), respectively, where B = 5 µm and W and L are the same as the 
previous values.  It indicates that for the same N, k decreases with increasing T.  Also, 
the larger the N, the larger the k for the same T, whereas k decays quicker if N is larger, 
as shown in Fig. 9(a).  Similarly to Fig. 9(a), Fig. 9(b) shows that the larger N results in 
a larger magnitude of k3, which decays quicker if N is larger.  However, the magnitude 
of k3 is smaller than that of k, and has a negative sign.  At T = 2 µm, the width B versus 
k and k3 for different Ns is shown in Figs. 10(a) and 10(b), respectively.  The nonlinear 
behaviors shown in Figs. 10(a) and 10(b) are very similar to those shown in Figs. 9(a) 
and 9(b), respectively, where the role of T in Fig. 9 is replaced by B in Fig. 10, and will 
not be described again for simplicity.  For B = 5 µm, T = 2 µm, the values of k and k3 
versus W for different Ns are shown in Figs. 11(a) and 11(b), respectively, which have 
almost the same nonlinear behaviors as those shown in Figs. 9 and 10.
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Fig. 9.	 Relationship between T and spring constants (a) k and (b) k3, under different numbers of 
turns N with W = 10 µm, B = 5 µm, and  L = 200 µm.
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	 By using the simulation results in Figs. 9, 10, and 11, the spring constants k and k3 
in terms of T, B, W, and N can be determined by employing the regressive analytical 
method.  The derived equations of k and k3 can be expressed as

	 k = 21.86T–0.57B–0.21W–1.7N0.87,	 (2)

	 k3 = 8.183×10–4T–0.93B–0.95W–3.13N0.66.	 (3)
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Fig. 10.	Relationship between B and spring constants (a) k and (b) k3, under different numbers of 
turns N with W = 10 µm, T = 2 µm, and  L = 200 µm.
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Fig. 11.	 Relationship between W and spring constants (a) k and (b) k3, under different numbers of 
turns N with B = 5 µm, T = 2 µm, and  L = 200 µm.
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4.	 Conclusion

	 In this paper, we report the effect of box microspring size on the nonlinear 
deformation of a microspring.  The width (W) of the vertical beam of rectangular frames, 
microspring thickness (T), the width (B) of the horizontal beam of rectangular frames, 
and the spring number (N) of the box microspring are used as parameters to investigate 
the effect of box microspring size on nonlinear force.  The finite element software 
COMSOL Multiphysics is used as the simulation tool.  From the simulation results, the 
linear spring constant k and cubic spring constant k3 are determined and expressed in 
terms of T, B, W, and N by the regression analytical method.  It is concluded that a larger 
B of a box microspring can extend the point of nonlinear force and its nonlinear behavior 
can be avoided.  Furthermore, the nonlinear behavior may hardly happen in the case of a 
thick microspring, a large number of turns, and a large box microspring width.
	 The simulated results of this work can be used to design a microspring in an actuator 
such that the nonlinear deformation is avoided.
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