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In this study, we investigate the squeeze film damping of a perforated planar
micromechanical structure that oscillates in the normal direction to the substrate.  We focus
on the experimental data regarding the squeeze film damping compared with theoretical
models based on matched-asymptotic-expansions, in terms of the size and number of
perforations.  A set of ten different structures, having three different sizes and different
numbers of perforations, has been fabricated and tested.  The experimental Q-factors,
measured from the fabricated structures, are compared with two different theoretical
values, estimated by finite element analysis (FEA) and matched-asymptotic-expansions.  It
is found that FEA overestimates the experimental values of the Q-factors by up to 150%.
This major discrepancy is caused by the inaccuracy of the zero pressure boundary
condition along the perforated edges.  The values obtained from the matched-asymptotic-
expansions, assuming nonzero pressure along the edges of the plates, are in good agree-
ment with the experimental values within 20% margin of error.

1. Introduction

Recently, planar microstructures oscillating perpendicular to substrates (Fig. 1) have
been widely used in microelectromechanical devices, such as microphones,(1)

microaccelerometers(2,3) and tunable microoptical interferometers.(4,5)  The micromechanical
dynamics of perpendicularly oscillating planar structures are strongly governed by the
viscous damping of the squeeze fluid medium.  The significance of squeeze film damping
increases when the micromechanical response of planar microdevices is controlled over a
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wide frequency range or at resonance.  Thus, a clear understanding and suitable specifica-
tions of squeeze film damping are important in the design of a wide bandwidth or resonant
microstructures.

Extensive studies on squeeze film damping have been performed by Starr,(3) Sadd and
Stiffler,(6) Blech,(7) and Andrews et al.(8)  They have focused on the viscous damping and
compressible spring effect of the fluid layer confined between parallel unperforated plates.
Most surface-micromachined planar microstructures, however, are fabricated in the form
of perforated plates to etch the underlying sacrificial layers and to reduce the squeeze film
damping effect.

Recently, the squeeze film damping of perforated plates has been analyzed by Novack(2)

and Kim et al.(9) using the finite element method (FEM) and by Kim et al.(10) using the
matched-asymptotic-expansion method.  In the finite element analysis (FEA),(2,9) the
squeeze film damping of the perforated plates was evaluated using the conventional
squeeze damping theory with zero pressure boundary conditions along perforation edges.
In matched-asymptotic-expansion, however, the slow viscous flow due to the oscillating
motion of the perforated plates was considered when the distance between the substrates
and the perforated plates was much smaller than the characteristic dimensions of the plates.

In this study, we measured the incompressible squeeze film damping of unperforated
and perforated plates.  We have designed ten different damping structures, including a
unperforated plate structure (Fig. 2) and nine perforated plate structures (Fig. 3), having
different types of perforation in an equivalent damping area.  We fabricated the test
structures by two-layer polysilicon surface micromachining and compared the measured
results with the estimated results from FEA (Appendix A.2) and matched-asymptotic-
expansion (Appendix A.3).  The discrepancy between the measured damping factors and
the estimated results is discussed.

2. Perforated Plates and Test Structures

2.1 Test structure design
Figure 2 shows a damping test structure (H0), in which two pairs of folded microflexures

(Table 1) support a unperforated square plate.  We also consider square perforated plates
(H1, H4, and H9) with square holes (Fig. 3) to characterize the effect of the perforation on
squeeze film damping.

The size and number of square perforations in Fig. 3 satisfy the following conditions: 1)
the net damping area of the perforated plates should be identical to that of the unperforated
plate, 80×80 μm2; 2) the plates in each row of Fig. 3 are required to have a constant area

Fig. 1. Cross-sectional view of vertically oscillating planar microstructure.
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ratio (AR), defined as

AR N l
l

(%) = ×h h

o

2

2 100 , (1)

where Nh, lh, and lo are the numbers of perforated holes, the hole size, and the outer edge
length of the plate, respectively.  The test structures in Fig. 3 have three different AR values
of 3.4, 6.8, and 13.6%, respectively.  An identical center-to-center distance separates the
perforated holes.  For the plates in each row of Fig. 3, which have identical AR values, the
edge length of the outer plate is fixed whereas the edge lengths of the inner holes increase
by factors of two and three successively in the row direction.  For the plates in each column
of Fig. 3, which have the same number of holes, both the outer edge length and the inner
edge length increase as AR increases in the column direction.

The effective stiffness of four double-folded tethers in the vertical direction, ksq, is

Fig. 2 (left). Top view of unperforated square plate, H0, suspended by two pairs of folded
microflexures.
Fig. 3 (right). Perforated square plates with different sizes and numbers of holes. The outer area,
Atotal, and the sizes and numbers of perforation have a given area ratio, AR, at a fixed effective
damping area, Aeff, of 6400 μm2, where Aeff = (Atotal–Ahole) and AR = Ahole/Atotal×100%.

Table 1
Dimensions of microstructure of Fig. 2.

lp l1 w1 l2 w2

80 μm 311 μm 4 μm 32 μm 12 μm
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where I1 = (t 3w1/12) is the moment of area of beam 1; t, w1, and  l1 are the thickness, width,
and length of beam 1, respectively.  Other symbols in eq. (2) are defined as α = GK2 /EI1, βi

= GKi /EIi, and λ = (α+1)/(2α+1),  where Ki = (ti
3wi / 3){1–0.627(ti /wi)tanh(πti /2wi)}.  The

effective mass of the test structure, suspended from two pairs of double-folded tethers, is

m m m me,sl p= + +
1754
3360

1
41 2, (3)

where mp is the mass of the plate; m1 and m2 are the masses of the beams 1 and 2,
respectively.

2.2 Microfabrication
The test structures are fabricated by six-mask, two-layer, polysilicon surface-

micromachining, as shown in Fig. 4.
The process begins with the phosphorus doping of 4-inch, n-type (100) silicon wafers,

using POCl3 as the dopant source.  Next, a 1-μm-thick thermal silicon dioxide (SiO2) layer
and a 0.2-μm-thick low pressure chemical vapor deposition (LPCVD) silicon nitride
(Si3N4) layer are deposited as electrical isolation layers.  Reactive ion etching (RIE) of the
nitride/oxide sandwich layer is performed for the contact on the doped ground layer, as
shown in Fig. 4(a).  LPCVD of a 0.2-μm-thick polycrystalline silicon layer (1st poly) is
followed by phosphorus doping performed at 970°C for 30 min, resulting in a sheet
resistance of 5.27 Ω/��.  The polysilicon electrodes are defined by RIE, as shown in Fig.
4(b).   A 2-μm-thick sacrificial PSG layer is deposited on the wafer (Fig. 4(c)).  In Fig. 4(d),
a 4.3-μm-thick undoped polycrystalline silicon layer is deposited by LPCVD at 622°C
after the removal of the native oxide in the contact area between the first and the second
polysilicon layers.  After the deposition of a 1.5-μm-thick PSG layer (Fig. 4(d)), an
annealing is performed at 1000°C for 2 h not only to release the residual stress of the
polysilicon layer, but also to obtain a symmetric diffusion of phosphorus onto the surface
of the second polysilicon layer.  After the PSG patterning, RIE using Cl2 plasma (Fig. 4(e))
anisotropically etches the polysilicon structural layer.  After the removal of the sacrificial
PSG layer using a BOE solution, the wafer is rinsed and dried.  To reduce adhesion, the
wafer is rinsed in isopropyl alcohol and dried using an infrared lamp.  The process is
completed by the lift-off fabrication of a titanium-gold pad for wire bonding (Fig. 4(f)).
The lift-off process uses PR as a mask material and titanium as an adhesive material for the
gold evaporated by e-beam.  Figure 5 shows a set of the microfabricated test structures with
unperforated and perforated plates.
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3. Experimental Results and Discussion

For the squeeze film damping measurement, the planar microstructures were actuated
electrostatically using  an AC drive voltage of 18 V peak-to-peak amplitude.  The velocity
response of the planar microstructures was measured using a Mach-Zehnder interferometer
as shown in Fig. 6.

Fig. 4. Microfabrication of test structures.

(a)

(d)

(b)

(c)

Fig. 5. Microfabricated test structures: (a) unperforated plate; (b)–(d) perforated plates.
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The drive voltage frequency was discretely swept from 500 to 30 kHz, while the
velocity of the vertical plate motion was monitored.  All damping tests were performed at
1 atm and room temperature.  We repeated the damping test five times for each test
structure.

Values of the experimental damping factor, ζ, were extracted from the damping curves
(solid lines in Fig. 7), that minimize the sum of the squared error, SSE, between the
theoretical velocity curves and the measured velocity responses (dots in Fig. 7):

SSE V Vi i
i

≡ − ( )( )
=
∑ ζ

2

1

N

, (14)

where Vi is the ith normalized output voltage and Vi (ζex) is the normalized theoretical
response for ζ.  From the experimental damping ratio, ζex, the experimental damping
coefficient, bex, is obtained:

b f mnex ex e= ( )2 2ζ ω π . (15)

Figure 8 shows the theoretical Q-factors with the experimental values. In Fig. 8, two
different theoretical Q-factors are estimated from FEA with zero-pressure boundary
conditions as well as from the matched-asymptotic-expansion analysis with nonzero
pressure along the edges of the plate.  The experimental Q-factors in Fig. 8 are measured
from the damping test structures of the perforated plates (H1, H4, and H9).   In Fig. 9, we
show the Q-factors of Fig. 8 in terms of the total edge length of the unperforated (H0) and
perforated plates.

For the squeeze film damping of the unperforated plate, the finite element solution of Q
= 0.27 slightly overestimates the experimental value of Q = 0.18±0.2, whereas the
matched-asymptotic-expansion solution of Q = 0.21 shows better agreement with the
experimental value.  For the perforated plates, the theoretical Q-factors estimated from
FEA tend to overestimate experimental values by up to 150% (or underestimate the
experimental damping effect), whereas the theoretical Q-factors estimated from matched-
asymptotic-expansion are in agreement with the experimental values within 20% margin of

Fig. 6. Velocity measurement of squeeze plate.
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errors.  Figure 8 shows that the discrepancy between the finite element Q-factors, and
experimental Q-factors increase as the number or the AR of the perforation increases.

In Fig. 9, we find that the discrepancy between the experimental and the finite element
results is related to the total edge length of the perforated plate for an identical net-damping
area.  The matched-asymptotic-expansion solutions, assuming the nonzero pressure along
the edges, are in good agreement with the experimental values.  We conclude that the major
errors in the finite element solutions result from the zero pressure along the edges of plates
and perforations.  The matched-asymptotic-expansion solutions show that in the squeeze
film damping of the perforated plates, the pressure along the edges is nonzero, thus
resulting in a larger squeeze damping than the values estimated from FEA.

Fig. 7. Extraction of damping factors from least-squares fit of the normalized frequency-dependent
velocity response of fabricated plates: (a) H0; (b) H1_AR3.4; (c) H4_AR3.4; (d) H9_AR3.4.
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4. Conclusions

We performed a theoretical and experimental study on the viscous damping of perfo-
rated planar microstructures that oscillate perpendicular to the substrate.  We designed,
fabricated, and tested a set of squeeze film dampers, having planar plates with ten different
types of perforation.  Compared with the measured Q-factors, we found that the theoretical
Q-factors estimated from FEA underestimate the squeeze damping effects, whereas the
theoretical Q-factors estimated from matched-asymptotic-expansions are in good agree-
ment with the experimental results.  The discrepancy between the experimental Q-factors
and the finite-element solutions tends to increase as the total edge length of the perforated
plates increases.  By assuming a nonzero pressure along the edges of the perforated plates,
the matched-asymptotic-expansion solutions were in good agreement with the experimen-
tal Q-factors.
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Fig. 8 (left). Theoretical and experimental Q-factors for perforated plates of Fig. 3: EXP, FEA, and
MAE indicate the experimental values, theoretical values from finite element analysis, and theoretical
values from matched asymptotic expansions, respectively.
Fig. 9 (right). Theoretical and experimental Q-factors in terms of total edge length of perforated
plates of Fig. 3 with identical net damping area: EXP, FEA, and MAE indicate the experimental
values, theoretical values from finite element analysis, and theoretical values from matched asymptotic
expansions, respectively.
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Appendix Theoretical Analysis

A.1 Analytic solutions for unperforated plates
For a small-amplitude motion (Fig. 1), the micromechanical dynamics of the microstructure (Fig.

2) can be considered as a linear system.  The dynamic behavior of the micromechanical system is
described by the second-order ordinary differential equation

m b k F te e e˙̇ ˙ cosχ χ χ ω+ + = ( ) , (4)

where me, be, and ke represent the effective mass, effective damping coefficient, and effective
stiffness, respectively.  In eq. (4), F and ω indicate the amplitude and frequency of the periodic drive
force, respectively.  The independent variable, χ, is the relative displacement with respect to the
equilibrium position.

The dynamic characteristics of the damping test structures are represented by the damping ratio,
ζ, and the natural frequency, fn, respectively defined as

ζ =
b

m k
e

e e
, (5)

f k
mn = e

e
. (6)

At resonance, the Q-factor is defined as Q = 1/2ζ.
A fluid film of uniform thickness, d0, confined between the substrate and the square plate,

develops a pressure disturbance when the plate is oscillating perpendicular to the substrate.  A
nondimensional squeeze number, σ, is defined(11) for the fluid film underneath the plate as

σ
μω

=
12 2

0
2

l
d Pa

, (7)

where μ, ω and l are the fluid viscosity, oscillating frequency, and width of the square plate,
respectively.

At low squeeze numbers, i.e., less than 0.3,(3) the fluid is squeezed without compression; hence,
the fluid stiffness effect is negligible.  The squeeze film can be analyzed using the Navier-Stokes
equation under the assumption of a small Reynolds number, i.e., less than 1, an isothermal squeeze
and a small pressure variation in the fluid film, and a small-amplitude motion compared with the
nominal film thickness:

∂
∂

∂
∂

μ ∂
∂

2

2

2

2
0

3
12P

x
P

y d
d
t

d d+ = , (8)

where d is the fluid film thickneess, x and y are the spatial coordinates, and Pd is the pressure
distribution whose boundary conditions are zero along the edges, and zero pressure gradient at the
center of the film.  The pressure integrated over the plate surface gives the damping force.  Thus, the
damping coefficient, b, for a perfectly unperforated square plate(2) becomes
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b l
d

= 0 422
4

0
3. μ

. (9)

A.2 Finite-element solution for perforated plates
For the perforated plates, a finite element program, ANSYS, is used to estimate the damping

coefficients, natural frequencies, and modal shapes of each damping test structure.  The damping
coefficients and the distribution of the pressure in the squeeze film are analyzed as follows:  Reynolds
equation for the squeeze film damping pressure, eq. (8), is analogous to the Poisson equation,(12)

governing two-dimensional heat conduction for temperature, T :

∂
∂

∂
∂

2

2

2

2
T

x
T

y
q
k

+ =
˙

, (10)

where q̇  is the rate of heat generation per unit volume and k is the isotropic thermal conductivity.
We apply zero-pressure boundary conditions to the nodes on the edges of the plate and holes for the
FEA.  We calculate the damping forces from the integration of the pressure over the plate area, from
which we obtain the damping coefficient.

A.3 Matched-asymptotic-expansion solutions for perforated plates
When the damping gap is much smaller than the characteristic sizes of the plates, the damping

coefficients and pressure distribution due to the motion of the unperforated and perforated plates can
be estimated by matched-asymptotic-expansion.(10)  The pressure distribution underneath the oscillat-
ing plate is determined by solving the two equations

∂
∂

∂
∂

2
3

2

2
3

2 12P
x

P
y

– –+ = , p–3 0
∂Ω

= , (11)
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∂

∂
∂

2
2

2

2
2

2 0P
x

P
y

– –+ = , p p
n–
–

2
3

2∂
∂

∂
∂Ω

Ω

=
CB , (12)

where p–3 and p–2 are the first- and second-order expressions of the pressure, respectively, expanded
in an asymptotic series of p = ε–3p–3 + ε–2p–2+..., ∂Ω denotes the edge of the plate and perforations, n
is the outward normal direction, and CB = –1.27 is a constant determined by the damping gap and
structure thickness.  Pressure and coordinate variables are nondimensionalized with μW/l and l,
respectively.

Equation (11) is the well-known Reynolds equation and eq. (12) corresponds to the edge effect,
which amounts to a considerable part of the total pressure. Integrating the pressure over the plate, we
obtain the damping coefficient on the plate:

b F
W

l p p dxdy= = +( )∫μ ε ε–
–

–
–

3
3

2
2Ω , (13)

where Ω denotes the region of the plate except the perforations, F is the normal force on the plate, and
W is the characteristic velocity of the plate.

Figures 10 and 11 show the pressure distributions under the unperforated and perforated plates
oscillating perpendicular to the substrate, estimated from FEA and matched-asymptotic-expansion,
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Fig. 11. Matched asymptotic expansions of pressure distribution under plates: (a) H0; (b) H1_AR3.4; (c)
H4_AR3.4; (d) H9_AR3.4.

Fig. 10. FEA of squeeze film pressure underneath plates: (a) H0; (b) H1_AR3.4; (c) H4_AR3.4; (d) H9_AR3.4.

respectively.  From the matched-asymptotic-expansion, we estimate the maximum amplitudes of the
pressure along the edges of the plates (Fig. 12) and perforations (Fig. 13).  Figures 12 and 13 show
that the pressure amplitude along these edges is higher than the zero pressure assumed in FEA.
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Fig. 12. Pressure amplitude of plate edges under plates, from matched asymptotic expansions: (a) H0; (b)
H1_AR3.4; (c) H4_AR3.4; (d) H9_AR3.4.

Fig. 13. Pressure amplitude of perforation edges under perforated plates, from matched asymptotic expansions:
(a) H1_AR3.4; (b) H4_AR3.4; (c) H9_AR3.4.


