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The objective of this study is to simulate physical adsorption on the surface of
semiconductor sensors and to develop a method of analyzing qualitatively and quantita-
tively the chemical species reacting on the surface of semiconductor sensors.  In ordinary
studies of the detection of gas species by semiconductor sensors, researchers attach
importance to the chemical sensitivity of sensors and note the output of sensors in the
stationary state in terms of response characteristics.  However, the response in the transient
state, the region between the beginning of adsorption and the achievement of equilibrium,
contains much information about processes of gases adsorbing on the surface of sensors.  In
this study, we discuss the relationship between the response of a semiconductor sensor and
the amount of physically adsorbed gas and construct mathematical models of adsorption on
the surface of the sensor.  We simulate the signal of a model sensor using an autoregressive
model in which the exponential behavior is extracted from the response, and show that
gases can be identified and their concentrations can be determined.

1. Introduction

Gas identification is one of the most attractive areas of research in the field of gas
sensing.  Usually, in the study of gas detection by semiconductor sensors, the selectivity
and sensitivity of sensors for specific chemical species, namely, the development and
application of sensors to selectively detect a chemical species, are important.(1,2)  However,
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a sensor always returns a response from mixed gases, but sensors that selectively react with
specific chemical species have not yet been developed.  These problems can be partly
solved by introducing many sensors, namely, a sensor array.(3–9)  A sensor array is
developed to simultaneously detect multiple chemical species, and this makes the detection
of specific gaseous chemical species possible by determining the correlation among large
amounts of sensor output.

Imagine a physical adsorption of gas molecules on a sensor surface.  The transient
period, the time between the beginning of adsorption and the attainment of equilibrium,
contains significant information about the adsorption of gases onto the surface of the
sensor because the adsorption rate and its behavior over time depend on the chemical
species and their concentrations in the neighborhood of the surface with respect to the
adsorption on the surface.  From this view, we developed a new approach of identifying a
gas using the integral transformation method.(10,11)  This method is not as analytically
precise as the expected result, and it requires a long calculation time to complete the
analysis.

The objective of this study is to simulate physical adsorption on the surface of a
semiconductor sensor and to provide a method of analyzing qualitatively and quantita-
tively the chemical species that adsorb on the surface of a semiconductor sensor using an
autoregressive (AR) model in which the exponential behavior is extracted from the signal
over time, which is widely used in signal processing for purposes such as voice recognition
and control.  The AR technique is a well-known method for analyzing time-series data.(12–18)

For analyzing gas sensor signals, Derbel et al. described possible techniques of modeling
fire detector signals for the design of fire recognition algorithms.(16)  Osuna et al. reported
a sensor excitation and signal processing approach that combines temperature modulation
and transient analysis to enhance the selectivity and sensitivity of metal-oxide gas sen-
sors.(17)  Karjalainen et al. reported the estimation of modal decay parameters from noisy
measurements of the reverberations of resonating systems.(18)

In this study, we first discuss the relationship between the response of a semiconductor
sensor and the amount of physically adsorbed gas and construct mathematical models of
the adsorption on the surface of the sensor.  Second, we simulate the signal of a model
sensor using an AR model in which the exponential behavior is extracted from the
response.  Finally, we show that gases can be identified and their concentrations can be
determined.

2. Conductivity of Semiconductor

In the semiconductor gas sensor, electrical conductivity (or resistance) varies with the
physical adsorption of gas molecules.  We usually detect the change in voltage of a certain
part of the circuit in the sensor system.  In this section, we discuss the relationship between
the electrical conductivity of the semiconductor and the amount of adsorbed molecules.

In the following, we briefly summarize the theory of the electrical conductivity of a
semiconductor.(19)  In general, the electrical conductivity of a semiconductor, σ, is propor-
tional to the concentration of carrier electrons, ne:
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σ ∝  ne. (1)

The concentration of carrier electrons is related to the band gap, Eg, between the valence
band and the conduction band:

ne
E∝ e g–β . (2)

In the above, β =
1

k TB
, where kB and T are the Boltzmann constant and the temperature,

respectively.  Therefore,

σ σ β= ce
g– E , (3)

where σc is a proportionality constant.
We imagine the adsorption of gas molecules on the surface of a semiconductor.  For a

small amount of adsorption, the effect of the adsorption on the width of the band gap is so
small that we can treat the adsorption as a perturbation of the semiconductor.  According to
perturbation theory in quantum mechanics,(20) the band gap changes as

Eg → Eg+ε, (4)

and the first order effect, ε, is proportional to the strength of the perturbation.  In other
words, the number of adsorbed molecules N is

ε = cN, (5)

where c is a proportionality constant, the value of which depends on the identity of the
adsorbed molecules.  Then, the electrical conductivity of the semiconductor with adsorbed
molecules, σa, becomes

σ σ β ε

a ce
g= +– ( )E

= σ βe c– N , (6)

and therefore the relative change in the electrical conductivity due to adsorption, Rσ, is
proportional to the number of adsorbed molecules,

Rσ
σ σ

σ
≡ a –

= σ βε– – 1
≈ –βε
= –cβN , (7)

the value of which also depends on the identity of the adsorbed molecules.  In the above, we
approximate the exponential function in the first order since the perturbation ε is small.
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When the number of the adsorbed molecules varies every second, we must define the
relative change in the electric conductivity that depends on time Rσ(t) as

Rσ(t) ≡ aN(t), (8)

where a is a proportionality constant.

3. Gas Adsorption on Surface of Semiconductor

Consider a physical adsorption process in which a mixed gas composed of I kinds of
chemical species G(1), G(2), G(3), ..., G(I) is physically adsorbed on the surface of the
semiconductor M, and G(1)M, G(2)M, G(3)M, ..., G(I)M are produced.  The adsorption and
desorption corresponding to this process are given as

G(1)+M k

k
+⎯ →⎯← ⎯⎯

1

1–
G(1)M,

G(2)+M k

k
+⎯ →⎯← ⎯⎯

2

2–
G(2)M,

G(3)+M k

k

+⎯ →⎯← ⎯⎯
3

3–
G(3)M, (9)

  M

G(I)+M k

k

I

I

+⎯ →⎯← ⎯⎯
–

G(I)M,

where k+i (k–i) is the adsorption (desorption) rate, G(i) is the surface density of the gas, M is
one of the sites available for adsorption, and G(i)M is one of the sites adsorbed.

To simulate the adsorption process, adsorption rate expressions are required.  The rate
expressions, however, depend on the conditions of the experiments.  In measurements of
gas detection by semiconductor sensors, we consider two types of experiments: an experi-
ment in a hermetic chamber and one under a flow of gas.  In the former, we lead gas into a
hermetic chamber, stop the flow of gas, and detect the signal from the sensors.  In the latter,
fresh gas is continuously introduced during the experiment, and we detect the signal in the
existence of the gas flow.  We discuss these two cases in the following and show that the
relative change in electrical conductivity behaves exponentially in both cases.

3.1 Experiment in hermetic chamber
This is the usual case for physical adsorption.  Typical responses of sensors for this case

are shown in Fig. 1.
This figure expresses response signals of three sensors in a hermetic chamber for

instant noodles.  The breath odor measurement was carried out with the following
procedures: The base level of each sensor was measured for 30 s and then expiration was
introduced into the experimental bottle for 5 s.  The three sensor outputs increased after the
introduction of the expiration.  Usually, the measurement was completed between 60 and
120 min from the beginning of the experiment.

In this model, we introduce the following assumptions.  (1) The temperature of the gas
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is the same as that of the surface of the sensor.  (2) We neglect the diffusion of gas from the
surface.  (3) We regard the adsorption process on the surface as physical adsorption.  (4)
The number of sites available for adsorbtion is much larger than the number of sites that
actually adsorb gas during the measurement.  (5) This model identifies the species of gas on
the basis of the rate of adsorption.  (6) We neglect secondary and/or higher-order adsorp-
tions for simplicity.

We find that the curves behave exponentially.  In this case, the rate expressions for the
adsorption (9) are given as

d
d

i
i i i i

G Gt
t

k t M t k N t( ) – ( ) ( ) ( )–= ++    (i=1, 2, 3,···, I)   , (10)

d
d

M t
t

k t M t k N ti i i i
i

I

G( ) – ( ) ( ) ( )–= +{ }+
=
∑

1
  , (11)

d
d

i
i i i i

N Gt
t

k t M t k N t( ) – ( ) ( ) ( )–= ++   (i=1, 2, 3,···, I)  , (12)

where Gi(t), M(t) and Ni(t) are the time-dependent surface densities of G(i), M and G(i)M,
respectively.

We introduce the dilute gas approximation as

i
i

I

G t M t
=
∑ <<

1
( ) ( )   . (13)

This means that the number of gas molecules in the neighborhood of the surface is so small
that the surface of the sensor is not covered with them.  As the adsorption proceeds, Gi(t)
and M(t) gradually decrease and Ni(t) gradually increases; however, the relative decrease of
M(t) is very small.  Therefore, M(t) can be approximated to be constant over time:

Fig. 1. Responses of sensors to acetone in hermetic chamber.  Three typical signals from metal
oxide gas sensors (solid line, broken line and dotted line) are shown.
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d
d

M t
t
( )

≈ 0  . (14)

We then express the adsorption rate equations in the dilute gas approximation as

d
d

i
i i i i

G Gt
t

k t k N t
( )

– ( ) ( )
~

–= ++ ,

d
d

i
i i i i

N Gt
t

k t k N t( ) ( ) ( )
~

–= −+ , (15)

where

k Mki i

~
+ += (16)

and M is the initial value of M.  We solve the above coupled differential eqs. (15) under the
conditions that the initial value of Ni (t) is 0:

i i
i i

k k tG Gt k

k k
i i( ) –

~

~
–( )

~
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~
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+
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⎨
⎩

⎫
⎬
⎭

+

+

++1 1 e , (17)

where Gi is the initial value of G(i).  The amplitude of the solution to eq. (17) is proportional
to the initial surface density of the gas.

We assume that the gas molecules of each chemical species contribute independently to
the relative changes in the electrical conductivity of the sensor.  As shown in the previous
section, the relative change in the electrical conductivity of the sensor is proportional to the
number of adsorbed molecules.  Therefore, we have

R a ti i
i

I

Nσ =
=
∑

1
( )

                                   =
+

−⎧
⎨
⎩

⎫
⎬
⎭=

+

+

+∑ +a k

k k
i i

i

I i

i i

k k tG i i

1
1

~

~

–

–( )
~

–e (18)

              ≡ −⎛
⎝

⎞
⎠=

∑ i
i

I
k tG i˜

1
1 e–

~

, (19)

where

k Mk ki i i

~

–= ++
, (20)

i i i
i

i i
G Ga Mk

Mk k

~

–

=
+

+

+

, (21)
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k̃i  is the effective adsorption rate constant and is unique for each combination of chemical
species in the gas and also to the sensor.  G̃i  is the amplitude of the sensor response for
chemical species G(i) and is proportional to the initial surface density of G(i).  Equation (19)
shows that the relative change in the electrical conductivity of the sensor due to the
adsorption of gas tends exponentially toward a stationary value; the chemical species can
be identified by the exponent, and its surface density can be determined by the amplitude.

3.2 Experiment under gas flow
Typical responses for this case are shown in Fig. 2.  This figure expresses a sensor

response signal for the mixed gases in air flow.  The current-voltage characteristics of
sensor responses were measured by a data acquisition system under repeated gas flows
(500 sccm) between NO2 (diluted in standard air) and standard air (O2: 20%, N2: 80%)
controlled by a mass flow controller (SG-7S1, Aera Japan, Ltd.).  The sample was held
inside a temperature-controlled electrical furnace at 180°C (ARF-40k, Asahi-Rika Co.).

We find that the signal from mixed gases demonstrates the additivity of the signals and
that the curves behave linearly over time when the adsorption is at equilibrium.  This
behavior results from the flowing gas.  Therefore, in this case, we must take into account
the gas flow.

We assume that the gas flows with velocity v from minus infinity to infinity along the
x axis and that a bulk sensor is placed from 0 to L along the x axis (see Fig. 3).  Due to the
gas flow, a gradient in the surface density of the gas exists at the sensor because of
adsorption.  Therefore, we have the following reaction rate equations in the dilute gas
approximation:

∂
∂

∂
∂

i
i i i i

iG G N Gx t
t

k x t k x t v x t
x

, – , , – ,~

–
( )

= ( ) + ( ) ( )
+ ,

∂
∂
i

i i i
N G N

x t
t

k x t k x ti

, , – ,
~

–
( )

= ( ) ( )+ (22)

with the boundary conditions

i iG Gx x( , )0 = ( )δ , (23)

Gi (0, t) = Gi  (t ≧ 0) (24)

iN x, 0 0( ) =   x ≠( )0 . (25)

Since all the adsorbed molecules contribute to the signal of the sensor, we must integrate
the solution of eq. (22) with respect to x as

G t xG x ti i
L( ) ( , )= ∫ d
0

, (26)

N t xN x ti i
L( ) ( , )= ∫ d
0

, (27)

The above coupled partial differential equation, eq. (22), can be solved exactly by the
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Laplace transformation.  The exact solution is, however, too complex for us to apply to the
analysis of the signal of the sensor (see Appendix).  Therefore, we approximate the partial
differentiation of Gi(x, t) with respect to x and set it constant as

∂
∂

λ
ν

G x t
x

G
L

i i i( , ) –≈ , (28)

where λi is a positive definite. We then have an approximated differential equation,
d

d
i

i i i i i i
G G Gt

t
k t k N t( ) – ( ) ( )
~

–= + ++ λ ,
d

d
i

i i i i
N Gt

t
k t k N t( ) ( ) ( )
~

–= −+ , (29)

Fig. 2. Response of sensor in gas flow.  The broken line, dashed line and solid line correspond to the
signals of nitrogen dioxide, formaldehyde and the mixed gas, respectively.

Fig. 3. Semiconductor sensor in tube with flowing gas.  The gas flows with velocity v from minus
infinity to infinity along the x axis, and a bulk sensor is placed from 0 to L along the x axis.
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and obtain the solution with

G t G k
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. (30)

Therefore, the relative change in the electrical conductivity becomes

R t G t
k

i i
i

i

k t

i i

I
i

σ λ
λ( ) –
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~ – ˜

= +
⎛

⎝
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∑ 1 1 e . (31)

The relative change in the electrical conductivity of the sensor in the flowing gas, eq.
(31), is composed of two kinds of terms: a linear term in time, which we have already seen
in Fig. 2, and the exponentially saturating term.  Removing the linear term in time using the
trend-second differentiation with respect to t, and other methods, we have an exponentially
saturating or decaying term with an amplitude that is proportional to the surface density of
gas:

R t G
k

i
i i

I
i

i

k ti
σ

λ( ) – –
~

~
– ˜

→
⎛

⎝
⎜

⎞

⎠
⎟( )

=
∑ 1 1 e , (32)

d
d

e
2

2

2
1R t

t
G k

k
i

i i

I

i
i

i

k tiσ λ( ) –
~ ~

~
– ˜

=
⎛

⎝
⎜

⎞

⎠
⎟

=
∑ . (33)

The behavior expressed in eqs. (32) and (33) is eponential, the same as in eq. (19).
Therefore, we can both identify the chemical species and determine its surface density for
experiments in flowing gas.

4. Autoregressive (AR) Model

It is important to estimate parameters characterizing the signal using the time series
data analysis.  However, it is still difficult to build a mathematical model because of the
influence of noise.  One solution is to adopt the probability process model that is
appropriate for the time series data.  The AR model is one common moethod for character-
izing the dynamic input-output relationship and is a regression analysis used for the
analysis of a time series signal.  It is used widely in signal processing for purposes such as
voice recognition and control.  In the AR model, the parameters describing exponential
behavior, namely, the decay constants and the amplitudes, are sought using the least-
squares method.  Therefore, we analyze the relative change in the electrical conductivity of
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the semiconductor sensor with the AR model and reproduce the reaction rate constants and
the initial amplitudes.

We express the observed signal as 
  

x n Nn | , , , –={ }0 1 1L .  The K-th order ordinal AR
model is expressed by the following equation:

ˆ –x a xn m
m

K

n m=
=
∑

1
, (34)

where x̂ n
 and an are a predicted value and an AR coefficient, respectively.  When we

estimate the AR coefficient from adjacent data, the predicted values are greatly influenced
by noise.  In experiments, one ordinal technique to reduce the influence of noise is the
repetition of measurement.  From the viewpoint of the repetition of a measurement, we
divide the signal points into d sets as

1 : x0 xd  x2d ··· ,
2 : x1 xd+1 x2d+1 ··· ,
3 : x2 xd+2 x2d+2 ··· ,

  M   M   M
d : xd-1 x2d-1 x3d-1 ··· ,

and therefore modify eq. (34) and introduce a repetitive number d in the subscript of x as

ˆ –x a xn m
m

K

n m d=
=

×∑
1

. (35)

As a result, we have a set of d AR equations and we solve the combined equation.  This
means that the time interval of signals in the modified AR model is d times coarser than in
the original one, but the measurement is repeated d times.

5. Numerical Simulation

Numerical simulations are performed in order to check the validity of our model and
technique.  A sensor output model is the sum of three exponential functions, i.e., three
chemical species and noise en:

x C en i
i

k n t
n

i= ( ) +
=
∑

1

3
1 – –e Δ

. (36)

The values of the reaction rate constant ki and the amplitude Ci are shown in Table 1.  The
numerical simulations are performed with some noise level e, a sampling time interval Δt
(0.025 s), a number of data points N (65536 points), and a repetition number for the
measurement d.  The repetition number of the measurement d is 1 or 449 (in the case of no
noise).  The number 449 was determined so that x1/xd = 0.85.

For the waving signal, the characteristic time is the time of one period of the signal.  For
the exponential curve, it is the width of the half value.  Therefore, we selected d as half of
the width of the half value.

If parameter d is small, the estimation error becomes large.  If parameter d is large, the
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time resolution becomes low.
The noise level was set to 0, 0.001 and 0.01.  These were values relative to the initial

total amplitude of 4.0000.  For example, when e = 0.01, we made the uniform random
number in the range of ±0.04 noise.  We determined the order of the AR model by the least-
squares method.

The results of numerical simulations are shown in Table 2 and Fig. 4.  In this table, only
the data with large amplitudes are retained.  The case of d = 1 is equivalent to the traditional
AR model.  The AR model using our technique (d = 449) successfully reproduces the
parameters of the sensor output model with sufficient accuracy.  On the other hand, with
calculations not using our technique (d = 1), even for the signal without noise (e = 0), it is
hard to separate the exponential curves.  For signals with noise, the AR model using our
technique (d = 448 or 449) successfully reproduces the parameters of a sensor output model
with sufficient accuracy.  Therefore, the idea of the repetition of measurements is essential
in order to reduce the influence of noise and to obtain results with sufficient accuracy.

Table 3 shows results of calculations varying the repetition number of measurement d
(Δt = 0.025, N = 65536, e = 0.001).  The influence of noise becomes larger when d is small,

k1 C1 k2 C2 k3 C3

0.0050 1.0000 0.0100 1.0000 0.0200 2.0000

Table 1
Reaction rate constants and initial concentrations.

noise (e) d     k1 C1 k2 C2 k3 C3

0 1 0.0060 1.6339 0.0191 2.3661           —              —

0 449 0.0050 1.0000 0.0100 1.0003 0.0200 1.9999

0.0001 1 0.0140 3.7080 6.8148 0.0684           —              —

0.0001 449 0.0050 1.0107 0.0101 1.0089 0.0201 1.9807

0.01 1 0.0448 1.8340 6.6666 0.5476           —              —

0.01 448 0.0051 1.0999 0.0115 1.1849 0.0211

Table 2
Results of numerical simulations.  The numerical simulations are performed with some noise level e,
the sampling time interval Δt (0.025 s), the number of data points N (65536 points), and the repetition
number of the measurement d.  The noise level is set to 0, 0.001 and 0.01.  The repetition number of
measurement d is 1 or 449 (in the case of no noise).  The number 449 was determined so that x1/
xd=0.85.  The case of d=1 is equivalent to the traditional AR model.
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Fig. 4. Simulated responses with different levels of noise and fitted curves.  The solid line, broken
line and dotted line express the original exponential functions, the fitted curves obtained using the
traditional AR model (d=1) and the one obtained by our method (d=449), respectively.  (a) Noise
level=0, (b) noise level=0.001 and (c) noise level=0.01.
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and the accuracy becomes poor according to the decrease in resolution time when d is too
large.  It is expected that intermediate d  values give good results.  For example, a value of
d which makes x1/xd ≈0.85 may be a good choice.

As a preliminary application of the experimental data, we analyzed the responses of the
sensor shown in Fig. 2 using the AR model.  The calculated adsorption rate constants and
the surface density for NO2 and HCHO are given in Table 4.  Unfortunately, because of a
bulge in the curve for mixed gases, we obtained irrational oscillating solutions and could
not verify the identification of chemical species and the additivity of the signals.

 d(x1/xd)      k1    C1    k2    C2   k3    C3

  290(0.90) 0.0050 1.0122 0.0101 1.0087 0.0200 1.9796
  620(0.80) 0.0050 1.0124 0.0101 1.0106 0.0200 1.9772
1003(0.70) 0.0059 1.3425 0.0159 1.8563 0.0255 0.7898
1460(0.60) 0.0048 0.9107 0.0092 0.9974 0.0197 2.0913
2021(0.50) 0.0050 1.0366 0.0104 1.0537    –    –

Table 3
Results of numerical simulations for various d.  The numerical simulations are performed with the
noise level e (0.001), the sampling time interval Δt (0.025 s), and the number of data points N (65536
points).  In this table, only the data with large amplitudes are retained.

        Gas       k1     C1      k2        C2

HCHO (600 ppb) 0.028034 0.493381      –     –
NO2 (300 ppb)       –      – 0.016444 –1.105810
Mixture 0.040600 0.150000 0.010300 –0.799871

Table 4
Calculated reaction rate constants and concentrations for Fig. 2.  The calculations are performed with
the sampling time interval Δt (0.02 s) and the number of data points N (42400 points).  The repetition
number of measurement d was determined so that x1/xd=0.85.
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6. Concluding Remarks

In this study, we have shown that the relative change in the electrical conductivity of a
semiconductor sensor due to adsorption is proportional to the amount of adsorbed mol-
ecules and the corresponding proportionality constant depends on the identity of the
adsorbed molecule.  To the extent that the interaction between the adsorbed molecules is
negligible, the additivities of the electrical conductivities of the semiconductor sensor are
valid.  Therefore, the relative change in the electrical conductivity becomes the sum of the
contributions of all the chemical species adsorbed.

We provided two mathematical models of an adsorption on the surface of a sensor: an
experiment in a hermetic chamber and one under gas flow.  For both models, the relative
change in the electrical conductivity of the sensor due to the adsorption of gas tended
exponentially toward a stationary value, and the chemical species were identified by the
exponents and their surface densities were determined by the amplitudes of the signals.

In order to analyze the time series signal that behaves exponentially, we modified the
AR model, introduced the idea of repetitive measurements to reduce the influence of noise,
and obtained the exponents and amplitudes with sufficient accuracy.

One problem remaining is to treat a large number of experimental data points and to
verify that the mathematical model of the semiconductor sensor and the modified AR
model work well.
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Appendix

In this appendix, we solve the coupled partial differential equation eq. (22) with the boundary
conditions of eqs. (23)–(25).  Hereafter, we omit the subscript i for simplicity.

We define the Laplace transformations of G (x, t) and N (x, t) as

g x s G x t dtst( , ) ( , ) –=
∞

∫ e
0

(37)

n x s N x t dtst( , ) ( , ) –=
∞

∫ e
0

(38)

Then, eq. (22) becomes

v g x s
x

s k g x s kn x s G x∂
∂
( , ) –( ˜) ( , ) ( , ) ( , )= + + + 0 ,

( ) ( , ) ˜ ( , )s k n x s kg x s+ = . (39)

We can easily solve this coupled differential equation as

g x s G s h s e G x h sh s x v( , ) ( ) ( , ) ( )( ) /= −{ } +− − − −1 1 10 ,

n x s k
s k

g x s( , )
˜

( , )=
+

, (40)

where

h s s k kk
s k

( ) ˜ ˜
= + −

+
. (41)

Integrating g (x,s) and n (x, s) with respect to x from 0 to L,  we have

g s g x s dsL( ) ( , )= ∫0

=
+ + +

+
+ +

⎧
⎨
⎪
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⎬
⎪
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−{ }−–

˜

( ˜ )
–

˜

( ˜ )

˜ –
( ˜ )

( ) /G k
k k

v k
s

k
s k k

k k
s s k k

e h s L v
2 2 2

1

+
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⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
G

k k
k
s

k
s k k

1
˜ –

˜
˜ , (42)

n s n x s dsL( ) ( , )= ∫0

=
+ + +

+
+ +

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

−{ }−–
˜

( ˜ )
–

( ˜ ) ( ˜ )
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s s k k s s k k
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2 2 2
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+
+ + +

⎧
⎨
⎩

⎫
⎬
⎭

G k
k k s s k k

˜
˜ – ˜

1 1
. (43)

Finally, expanding the exponential function in the Taylor series, we carry out the anti-
Laplace transformation on each term in the series and obtain

G t G k
k k

i i
i

i i

( )
˜

( ˜ )
= −

+

− + −{ }− −( ) +
−

+
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−
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i i
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where
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