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The dependence of the electrical response of acoustic wave sensors on the viscoelastic 

properties of a coating material is used for the determination of the complex shear modulus 

of thin polymer films. In this paper we briefly discuss the underlying methodological 

background and analyze a composite quartz crystal resonator. We present results of 

experiments using a 1 µm Polyisobutylene (PIB) film at the fundamental quartz crystal 
frequency and the third and fifth harmonics. Both the glassy and the rubbery polymer 
consistency were investigated. 

1. Introduction

Quartz crystals are widely used as frequency normals in modem electronics and as
sensor elements, e.g. for the quartz crystal microbalance (QCM). These applications take 

advantage of the crystal's very high quality factor (Q-factor) and the high sensitivity of the 

mechanical eigenfrequency to surface mass changes. In chemical sensor applications, 

analyte sorption in a sensitive layer, which covers one or both surfaces of the quartz disc, 

results in a measurable surface mass change. In almost all of these applications, the quartz 
resonator works as the frequency-determining element of an electrical oscillator and the 

oscillating frequency is measured. The Q-factor of the sensor is still high, hence the 

oscillating frequency is very stable and can be measured with high resolution. The 

frequency change can be related to mass or thickness changes of the coating, or the analyte 

concentration in a gas. In QCM studies, it is assumed that the film is thin and rigidly 
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coupled to the underlying substrate, thereby allowing the interpretation of resonant fre­
quency changes, /if, as film mass or thicknes�.<1 J 

2f2 2f2 p h 
/':;.+----0-m --- -0

-p h or /':;.+--f _L1._y- f- ff y- 0 NAZcq N·Zcq Piq 
(la),(lb) 

Zcq 
is the characteristic quartz impedance (8.84 MPa s m-1), N is the overtone number, m1is

the film mass, A is the electrode area, pis the density, and his the thickness. Indices q and 
f indicate the quartz crystal and the film, respectively. The initial resonant frequency is 
commonly used for f0• Equations (la) and (lb) are the same if the mechanical resonant 
frequency is used for f0. 

The exposure of the resonator to a liquid medium results in an acoustic energy loss and 
hence in a decrease of the crystal's Q-factor. However, if the crystal vibrates in the 
thickness shear mode, the energy loss is not so severe as to preclude oscillation. A shear 

wave is launched into the liquid with decay length 8 = � 1Jz where p1 and 1Jz are the
7ifoP1 

liquid density and liquid viscosity, respectively.<2J The frequency shift from contact with a 
semi-infinite Newtonian liquid is given by<3l 

(2) 

The frequency shift resulting from a thin rigid layer and from the liquid contact is 
additive_C4l These investigations opened the way for the development of deposition 
monitors, gas sensors, in situ liquid studies, e.g., the electrochemical quartz crystal 
microbalance (EQCM), QCM sensors for chemical liquid analysis and density-viscosity 
measurements. A modem application of surface-modified quartz resonators is the separate 
determination of liquid density and viscosity with a two-element concept. <5l 

Recently, quartz resonators have become popular for the determination of material 
parameters of thin films that cover the quartz crystal surface.<6-9J This development is of 
special interest for the characterization of viscoelastic materials such as polymers. These 
materials respond to external forces in a manner intermediate between the behavior of an 
elastic solid and a viscous liquid. The modulus of viscoelastic materials is not a constant 
and depends strongly on the measuring temperature and the frequency of the applied 
dynamic force. Dynamic mechanical studies of thin viscoelastic films are difficult. The 
traditional equipment does not allow the investigation of films with µm thickness and does 
not allow high-frequency measurements in the MHz range. The investigation of the 
mechanical film properties is of basic interest in materials science, stimulated, e.g., by the 
development of new materials, by the tendency towards miniaturization in the semicon­
ductor industry, and by new technologies in surface modification. 
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Mechanical film properties can also influence the transduction mechanism of acoustic 
sensors in their 'classical' application as chemical QCM sensors. Viscoelastic effects can 
contribute significantly to the shift of the resonant frequency. This contribution depends 
on the shear modulus of the coating and the experimental setupc 1

0-
13

l and should be known
for the correct calculation of the deposited film thickness and mass of the absorbed analyte. 

All the different applications of an acoustic sensor are based on the same physical 
background, the propagation of acoustic waves in a multilayer structure. The changes in 
the intrinsic material properties do not appear directly as linear changes in the electrical 
properties. They result from changes in the effective surface acoustic impedance seen from 
the resonator at its interface to the coating. We will show that the shear parameter 
determination with acoustic devices is applicable with sufficient accuracy under certain 
acoustic conditions. The experimental setup must be carefully adjusted to cover the part of 
interest of a broad range of possible polymer shear parameters. Coating thickness and 
measuring frequency play the dominant roles in such a process. 

2. Viscoelastic Materials

The mechanical strength of a body is described by its modulus. In the case of a shear 
stress the shear modulus, G, is applied. A thick shear mode resonator generates a 
sinusoidal stress, CJ, with the angular frequency, OJ, in the attached body. If the material is 
of a viscoelastic nature, the strain, y, will lag behind the stress by some amount. Quite often 
it is convenient to separate the viscoelastic response into in-phase and out-of-phase 
components. The in-phase and out-of-phase shear moduli, G' and G" , and the loss 
tangent, tan 8, are given as 

I 

ct" G" G" = � , G" = .. 
f 

and tan 8 = G'. (3) 

In-plane stress results in elastically stored energy which is completely recoverable, 
whereas one-fourth-cycle separated stress and strain results in the dissipation of energy, 
which is lost to the system. This behavior can be represented by complex numbers, giving 
rise to a complex shear modulus, G.: 

G.= G' + j G", (4) 

where j = H is the imaginary unity. The behavior of viscoelastic materials subjected to 
oscillatory perturbations may also be treated by generalizing the concept of viscosity rather 

' dy 
than the modulus. Newton's law becomes CJ= 17---=, where !l = 17' + j17". The relation­

- - dt 

ship between these concepts is given by 
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'( ) 
G"(m) 
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1J m = -- - an 1J m =--.
m m 

(5) 

The prominence of viscoelasticity in polymers is not unexpected due to their molecular 
structure. Four regions with very different material properties of linear amorphous 
polymers can be distinguished. In the glassy region the material is rigid. The shear storage 
modulus is about 109 Pa and decreases slowly with temperature. The shear loss modulus is 
significantly lower but increases with temperature. Molecular rearrangements on a long­
range scale are severely restricted. Distortions generated by the external stress, being of a 
rather high energy, result in the high storage modulus. 

· The transition region can be found upon increasing the temperature. In a more or less
broad temperature range (depending on the polymer) the modulus decreases several 
decades. G' and G" are of the same order of magnitude, hence the loss tangent has a 
maximum. Reorientation of chain segments to lower energy conformations is possible, 
resulting in the decrease of the storage modulus. The region is referred to as the glass 
transition region and the corresponding temperature, as glass transition temperature, T

g
. 

In the rubbery state, all configurational modes of motion within the entanglement 

coupling points can freely occur. G' is on the order of 106 Pa and G" < G'. 
· . At still higher temperatures more and more chains can escape from topological

restraints; this is the flow region.C14,
15l 

If the shear parameter determination is performed with an acoustic wave device, the 
much higher probing frequency must be taken into account. For example, at T

8
, the 

material still exhibits glasslike behavior for the acoustic wave. A further increase in 
temperature is necessary for the relaxation processes corresponding to the rapid shear 
modulus decrease to be fast enough to take place within a period of oscillation. The 
transition temperature determined by a dynamic experiment is called the dynamic glass 
transition, Ta, to distinguish it from the static glass transition, T

g
. This shift on the 

temperature scale as a result of the increased measuring frequency is a general phenom­
enon and can be described as the time-temperature correspondence principle of polymer 
relaxation. C14l 

G(T0,t) = G(T,t/aT) (6) 

T0 may act as reference temperature, aT is the shift factor. The function log aT exhibits 
similar behavior for all amorphous polymers and can be expressed as06l 

(7) 

The constants, C1 and C2, are originally thought to be universal constants ( C1 = 17.4, C2 = 
51.6), however, C1 is approximately constant whereas C2 varies quite widely (e.g., PIB: C1 

= 16.6, C2 = 104).c 17l 
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3. Acoustics

To calculate the shear parameters of a thin layer from the electrical response of a
vibrating quartz crystal, we must consider the sensor as a composite resonator. It consists
of a piezoelectric layer with multiple nonpiezoelectric layers in which an acoustic wave
propagates. The piezoelectric quartz substrate is used for generating and detecting the
acoustic wave. Changes in magnitude and phase of the electrical impedance or admittance
indicate physical property changes occurring in the contacting nonpiezoelectric layers,
including changes in the shear modulus of the film.

We derived the relation between the electrical sensor response and intrinsic and
geometrical parameters of the film in a one-dimensional model from the solution of the
wave equation_C9J This is a commonly accepted approximation. The high aspect ratio
between the diameter of a quartz disc and the thickness of the crystal and the film thickness
makes this assumption reasonable. However, it has been shown experimentally(18• 19l and in
a numerical two-dimensional mode1czoJ that the real quartz exhibits effects which are
mainly related to its finite lateral dimensions. The vibrational pattern at the surface of the
quartz plate is one example. It has a maximum in the center of a circular electrode and
decays toward the edge of the quartz disc. osJ An important consequence is the deviation of
some quartz parameters from geometric or literature values.c20-21 J We replace the geometric
electrode area, and consequently the capacitance, C0, formed by the electrodes, with an 
effective value to take the vibrational amplitude distribution into account. We also use an 
effective quartz viscosity to include other energy dissipation mechanisms. We substitute
the thickness of the quartz crystal with an effective value which includes the contributions
of both electrodes. This is carried out for simplicity. Both electrodes may also be
considered as separate layers. The effective values are determined in a preceding step from
the impedance curve of uncoated quartz. We assume that the changes of the effective
values after the coating procedure are negligible. We analyzed the value of the effective
area by FEM and found a reduction of about 0.4% after casting a 1 µm polymer film onto
the electrode_czoJ We took this deviation into account although it has no significant
influence on the computed shear modulus.

Finally, under many experimental conditions, the film thickness is not perfectly
uniform and thus it is replaced by an effective value which is calculated from the frequency
shift before and after the coating procedure at a sufficiently low temperature where the
polymer film is expected to behave like a rigid material. This acoustically effective film
thickness may differ from results of other independent methods.<22J Although we must
assume glassy film conditions, we found this method to have the highest accuracy. 

The transmission line technique is convenient for modeling one-dimensional, multi­
layer structures. The impedance concept in acoustic wave propagation problems uses a
chain matrix technique. All layers of the composite resonator act as transmission lines with

finite length, h;, and a complex wave propagation constant, y. = j � . The layers are
_, 

Q; IP; 

assumed to be isotropic and uniform with a characteristic intrinsic acoustic impedance
(index a) z:; = � p; Q; . For the piezoelectric quartz layer the electrical port must be
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included as a third port. We use the KLM equivalent circuit to relate the mechanical 
vibration amplitude to the driving voltage.<23

J This model consists of two ca.scaded 
transmission lines and is composed of distributed and lumped elements. The piezoeiectric­
ity is modeled by a transformer with the tum ratio 1:N and by the element jX. The complete 
transmission line model with a single polymer film (index p) which is used for the 
description of our experimental arrangement is shown in Fig. 1. The bottom quartz surface 
at port GH is stress free, corresponding to a short-circuited acoustic port. Th� upper 
surface is coated with the material to be investigated. 

The following expression for the electrical impedance (index e), l!, can be obtained: 

e Z I ·x 1 Z � = AB = -.--+] +-2 CD 
JmC

0 N 

=-1 (1 
jmC

0 

K; 2 tan(g
q 

I 2)-K] 
g

q 1- jf cot(gq) ' (8) 

e2
h 

with ( = �� / �cq, K! = q 
. 

and g = m _q , where e
q
, E

q
, cq, 1Jq and Yq are the - £q·('cq+JW1Jq) J,'q 

quartz piezoelectric constant, permittivity, piezoelectric stiffened elastic constant, viscos­
ity and wave velocity, respectively. 
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Fig. 1. Transmission-line model for a single piezoelectric layer (AT-quartz crystal, index q) and a 
single nonpiezoelectric layer (polymer, index p ). The terminal surfaces of this composite nfsonator 
are assumed to be stress free, corresponding to a short-circuited acoustic port. 
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Z: can be transformed into a parallel circuit consisting of a static capacitance, C0, and 
the motional impedance, �:, , which itself can be split into two additive parts representing 
the uncoated quartz (Zm.q) and the transformed acoustic load (Z,,,,i): 

ze = -- -q -q 
1 ( a /K2 

-m 

jmC
0 

2 tan(Qq / 2) 
1 + - ---�---.) 1 aq s 

mC0 4.K! 1- jf /(2 tan(.Qq / 2)) (9) 

Equation (9) is exact within the one-dimensional model. It can be applied without 
restrictions to the load on the quartz. c24J The motional load, Zm,L, and the acoustic load, ��, 
are approximately proportional if ��<< 2�cq tan(Qq / 2). 

The acoustic load of a single viscoelastic polymer film (to indicate the polymer, we use 
the index p instead of the load index L) with finite thickness, hp, and without an additional 
load at the surface, can be calculated as: 

za = J0(p G ) 112 tan(m[P h l = J·z tan[m .E..!!_ h )·
-P P-P G p -Cp z p 

-P -cp 

(10) 

Equation (10) has general validity and is illustrated in Fig. 2. The complex acoustic 
impedance is separated into its imaginary (Figs. 2(a) and 2(c)) and real parts (Figs. 2(b) and 
2(d)). The range of Q_ values includes the glassy and rubbery states of polymers as 
discussed in the previous section. At the fundamental frequency (Figs. 2(a) and 2(b)) one 
can distinguish between a rather planar area at the right and the upper parts of the 3D 
diagrams and significant extremes in theJower left corner. The flat area is almost parallel 
to the zero plane, and the real part in that range is very small (less than 100 Pa s m -1). This 
plane region reflects the validity f4:Ulge of the gravimetric regime of the quartz resonator. 
The length of the arrows hitting the flat area in Fig. 2(a) differ by less than 0.15%. They 
symbolize the frequency shift due to the presence of the 1 µm coating, which is propor-
tional to - Im(�;) in almost the whole range of G' and G" .c25l It includes the Sauerbrey 
requirement of a rigid film, which is fulfilled on the right side of the diagrams. Here, the 
material is in the glassy state. The additional lines represent -Im(�;) at G' = 109 Pa for
the third and the fifth harmonic. In agreement with eq. (1) the length of the arrows is 3 
times Ord harmonic) or 5 times (5th harmonic) the arrow length at the fundamental 
frequency. 

The acoustic load generated due to the 1 µm polymer fihn in the rubbery state is totally 
different. Im(�;) shows huge changes with changes in both G' and G". The extremes 
are related to acoustic film resonance.<26l This is the viscoelastic regime of the quartz 
resonator. Re(�;) is a measure of the attenuation of the quartz oscillation and increases 
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Fig. 2. Imaginary (a,c) and real (b,d) parts of the acoustic load of a single polymer layer of 1 µm 
thickness. The probing frequency is 5 MHz (a,b) and 25 MHz (c,d). The arrows in (a) indicate the 
shift of the planar area due to the presence of the polymer film on the blank quartz crystal surface at 
the fundamental frequency and the 5th harmonic. The arrow length is proportional to the frequency 
shift of the resonance frequency. 
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rapidly, just where Im(�;) is very sensitive to changes in Q.. However, this wave 
propagation phenomenon should not be confused with the acoustic energy loss. 

It is obvious from Figs. 2(a), 2(b), and eq; (10) that film thickness and film shear 
modulus cannot be determined under the same experimental conditions. To determine the 
coating thickness, the acoustic load should be independent of Q.. This is given for a small 

<p = m �h
P
, i.e., small h

P 
and/or large fi.p, where the tan function can be approximated 

�Qp 

by its argument: �; = jwp
P
h

P
. To determine the film thickness of a rubbery film, the 

temperature should be decreased to achieve a glassy film consistency. To dete1mine the 
shear modulus of a glassy material, either the film thickness or the probing frequency or 
both must be increased to obtain a sufficient large <p. The frequency dependence of the 
shear modulus should not be a problem as long as the probing frequency does not coincide 
with relaxation processes in the material. The effect of such a change in the experimental 
conditions on �; is shown in Figs. 2(c) and 2(d). In this example, the film thickness is left 
at 1 µm, and the oscillation frequency is increased to 25 MHz. The acoustic impedance 
behaves quite differently. At the fundamental frequency �;exhibits large planar areas in 
Figs. 2(a) and 2(b). By contrast, under the experimental conditions of Figs. 2(c) and 2(d) 
the remaining planar area is shifted downwards to the value indicated in Fig. 2(a) (note the 
different scaling of the ordinate), but at the same time, the extremes shift to higher values 
of G' and G" and new extremes arise in the lower left region. The real part is small only 
in the glassy range and within small gaps between the maxima. The main maximum and 
the partly hidden 'crest' perpendicular to the main maximum is of special interest for the 
investigation of the glass transition because the paths of G' and G" must cross this area. 

Figure 3 shows a qualitativemaR of how sensitive �; responds to the shear storage and 
the shear loss modulus of a 1 µm polymerfilm at the fundamental frequency (5 MHz) and 
the 5th harmonic (25 MHz). It combines the opposite effect of a large gradient in 
Im(�;) and a high Re(�;) , separated into G' and G". The darker the grey color, the 
better the response. All four cases show quite different results. As predicted from Fig. 2 
the shear modulus can be determined in a limited range which depends on the relation 
between coating thickness and probing frequency. The requirements for a successful shear 
modulus calculation are fulfilled in a significantly broader range for the storage modulus, 
G', at both the fundamental frequency (Fig. 3(a)) and the 5th harmonic (Fig. 3(c)). The 
acoustic load responds to the storage modulus even at glassy G values at the fundamental 
frequency. �; is sufficiently sensitive to G" only if the film is in the rubbery state or in the 
transition range (Figs. 3(a) and 3(b)). If the film is probed with a 25 MHz acoustic wave, 
the glassy state is more accessible. At this stage, film resonances hinder the analysis of the 
rubbery state (Figs. 3(c) and 3(d)). 

Based on these analyses, the electrical impedance is expected to be sufficiently 
- sensitive to the complex film shear modulus at the fundamental frequency and Q. values
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Fig. 3. Map of sensitivity of �; to changes in the shear storage modulus (a,c) and the shear loss 

modulus (b,d) at the fundamental frequency ( a,b) and the 5th harmonic ( c,d). The darkness of the gray 
increases with the sensitivity·of the acoustic device. 
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typical of a material in the transition range and rubbery state. At higher harmonics, the 
quartz should respond significantly to shear modulus changes in the glassy state of the film. 
We, furthermore, expect a highly damped oscillation of a quartz with a 1 µm rubbery 
coating at the 5th harmonic. The shear storage modulus should be calculated in an 
extended material parameter range. 

4. Experimental Details

Polyisobutylene (PIB), obtained from Aldrich, with a medium molecular weight of 
380,000, a density of 0.92 g/cm3

, and a static glass transition temperature T
g 

= - 68°C, has 
been examined. 

All experiments were pe1formed using a polished 5 MHz AT-cut quartz crystal 
(Maxtek, Torrance, CA) of 2.54 cm diameter. The electrode geometry contains a 12.9 mm­
diameter grounded electrode on one side, while the other side contains a 6.6 mm-diameter 
electrode which is at the RF potential. 

The quartz crystal was mounted in a measuring cell and electrically contacted with pin 
contacts. The parasitic contact resistance and capacitance have been taken into account 
during the calibration at room temperature and the fitting of measured impedance data. A 
constant flow of dry nitrogen was supplied to prevent any influence of humidity. The 
whole cell was mounted in a temperature test chamber (Tenney Environmental, Parsippany, 
NJ, USA). The temperature was controlled with a thennocouple in the measuring cell 
adjacent to the quartz crystal. The temperature was increased from -50°C to l 50°C at 
0.26 K min-1

• A HP 8752A (Hewlett-Packard) network analyzer was used to measure the 
complex reflection coefficient directly at the quartz contacts. This value is related to the 
electrical impedance by 

S 
= z.; -Zo 

-11 ze+z '
-l 0 

(11) 

where Z0 is 50 Q. Measurements were performed 3 times at 801 points centered about the 
fundamental, third- and fifth-harmonic resonant frequencies. 

The polymers were prepared by spin-casting onto the resonator at 1,500 rpm from a 
solution in chloroform/toluene mixture. The solvent was driven off during a postannealing 
process at 150°C for at least 30 min. The resulting film thickness was about 1 µm. It was 
optimized with regard to the glass transition. 

Every experiment started with a scan of the uncoated quartz crystal at every 5 K for the 
fundamental frequency, the 3rd and the 5th harmonic. It was followed by the coating 
procedure. The coated device was scanned with the same procedure as for the uncoated 
quartz. The measurement was automatically controlled and recorded using HP VEE for 
Windows (Hewlett-Packard). 
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5. Results and Discussion

5 .1 Film thickness determination 

The (effective) coating thickness necessary for unambiguous determination of the shear 
modulus must be measured under glassypolynier conditions. It was calculated from the 
resonant frequency at - 50°C after film deposition for every ham1onic. Although this
temperature is higher than the static glass transition temperature of PIB, it is sufficiently 
low at 5 MHz (see eq. (7)). The uncoated quaitz was also measured at the cooled 
temperature to account for the temperature dependence of the resonator properties. We 
analyzed the theoretical thickness errors from different approximations.c25l The thickness
error depends on the kind of oscillator used to excite the quaitz or on which characteristic 
frequency (zero-phase frequencies, impedance minimum or impedance maximum fre­
quencies) was selected from the impedance plot. It also depends on the frequency used for 
/0 and on the str�y capacitance in the experimental setup. For a glassy material of 1 µm film 
thickness, the theoretical error has a maximum of+ 0.3% at fundamental frequency and the 
3rd harmonic, and increases to about+ 0.7% at the 5th h ·armonic. These results are based 
on calculations using eqs. (lb), (9) and (10) with the �xperimentally determined effective 
quartz parameters, including an external capacitance. Although these errors are very small 
and negligible for most applications, the shear modulus calculation is much more sensitive 
to deviations of the calculated film thickness from the real value. The more the acoustic 
load approaches the gravimetric regime, the greater the changes of the complex shear 
modulus, which are necessary to 'compensate' even very small errors in the calculated 
thickness to achieve the measured acoustic load (see Fig. 2). This mathematical coupling 
between film thickness and complex shear modulus is a major limitation in the film 
modulus determination with acoustic devices in the glassy state, and is more important than 
the experimental error in the impedance measurement. Note that all deviations are 
positive, i.e., the calculated film thickness is too thick. 

In contrast to previously published investigations<9
•
21 l we further adjusted the coating 

thickness with the full transmission line model at higher harmonics to account for the 
higher film thickness error. We assumed a glassy film consistency for the higher harmon­
ics. As discussed in the Viscoelastic Material section, this assumption is reasonable 
because the material exhibits glassy behavior at the fundamental frequency at a measuring 
temperature of - 50°C. 

5.2 Shear parameter set of PIE 
The computation of the shear storage and the shear loss moduli of the polymer fihn was 

performed by fitting theoretically calculated curves directly to the reflection coefficient 
set, eq. (11), using eq. (8) for the electrical impedance, Z'. The fitting algorithm includes 
the following two steps. 
A) In the first step, the effective quartz values, thickness, viscosity, and (electrode) area
were determined using eq. (8) with s = 0. This procedure requires an impedance analysis
in the frequency range which includes both the serial and the parallel resonant frequency of
the uncoated quartz. We used the complete data set of 801 measuring points for this part.
The computation was performed at every temperature for the fundamental frequency as
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well as for the third and fifth harmonics. An external capacitance, Cx, parallel to C0 was 
introduced into the equivalent circuit to account for parasitic capacitance. In contrast to Co, 

this external capacitance does not influence the acoustic transmission line. From that data 

set, the quartz parameters Qq and K! can be calculated, leaving z.; the only unknown

variable. 
B) In the second step, the unknown shear parameter set was determined from eq. (8)
together with eqs. (4), (10) and (11). Q cannot be extracted from the transcendental eq. (10)
without approximations. Unfortunately there is no sufficiently accurate approximation of
the tan function. The argument varies within the range shown in Fig. 2 from 0 to 7r
(imaginary part) or 0 to 1r/3 (real part) at the fundamental frequency. A new method
exploits different approximations of the tan function with different validity ranges, which
all allow the separation and direct calculation of Q. An algorithm selects the best adapted
approximation. C27) 

In this study we use· an optimized fitting procedure. At low quartz damping the 
procedure minimizes the average fitting error between the theoretically calculated reflec-

tion coefficient plots and the experimental values by changing G' and G". The new 
version extracts 201 measuring points, centered about the zero phase serial resonant 
frequency of the coated resonator, equivalent to Im(S11) = 0, in a preceding step. This 
method limits noise problems near the parallel resonance frequency, which occur pa1ticu­
larly when the quartz is only slightly damped. If the quartz is highly damped and this serial 
frequency does not exist, the complete measuring curve is used. The program starts its 

search at a certain combination of G' and G", compares the theoretical and the experimen­

tal values and tries new combinations of G' and G" until the best fit is found. The 

direction and step width of the G' / G" changes are automatically calculated from preced­
ing steps. To illustrate the necessity of a sophisticated search algorithm, we calculated the 
complete fitting error field for some selected temperatures. Note, that the fitting algorithm 
calculates only the values along the search trace. Figure (4) shows as two examples, parts 
of the fitting field at 0°C and 120°C. The darker the gray, the smaller the complex error 

vector and the better the fit. Figure 4(b) shows a significant black dot at G' = 2.8 Mf'.a and 

G" = 1.6 MPa. The fitting algorithm has high accuracy. By contrast, the best-fit area in 

Fig. 4(a) has the shape of a needle. G' is well defined with 148 MPa but G" generates an 

almost constant fitting error between G" = 101 and 105 Pa. This unpropitious situation 

reflects the sensitivity of the acoustic load response to changes in G' and G" as presented 
_ in Fig. 3 (white area in Fig. 3(b) for these moduli) and is the practical reason why we could 

not determine G" values at low temperatures. The shear storage modulus values are still 
useful. 

The Sr I plots recalculated from the shear parameters coincide with the experimental 
results, except at high temperatures where the quartz is extremely damped. Here we found 
an increasing bias between the electrical admittance plot, X', calculated from the experi­
mental results and the fitted data. We assume a calibration problem in the wire admittance. 
A small deviation of the calibration admittance parallel to the quartz influences the 
absolute values of _re. Characteristic frequencies, such as the frequencies at Im(I') = Max, 
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Fig. 4. Part of the fitting error field where the algorithm searches for the global error minimum 
between the experimental values from network analyzer measurements and theoretical values at two 
different temperatures corresponding to (a) the glassy state (0°C) and (b) the rubbery state (120°C). 
The darker the gray, the better the fit. 

Im(Y') = Min, or , Im(!'.')= Max, remain unchanged. Under some approximations which- Re(.r') 
can be applied under high acoustic load conditions, the motional load impedance, Zm,L, can 
be calculated from characteristic frequencies. 

z:,;,L = 2�c -z;_qU) @j = 1(Im(!'.') = Max)
Re(l:') 

( 
Max

)z:,,_L = !z;,q (f) + z;,L I-z�.q (f) @ f = f Im(K') = Min 
(12) 

The complex shear modulus is subsequently determined with a fitting procedure to the 
. acoustic load, z.;, which can be calculated from Zi

n,L by the second term of eq. (9). The 
accuracy of this method depends mostly on the accuracy of the characteristic frequency 
determination. 

We also included an empirical admittance into the equivalent circuit parallel to the 
quartz and determined the shear parameter set. The results are summarized in Fig. 5 and 
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Fig. 5. lm(X') and Im(X')/Re(X') calculated from S.11 measurements with a network analyzer at 
120°C without (meas) and with an empirical parallel admittance correction (corr), and the theoretical 
values recalculated from the respective complex shear moduli, Q_ (fit, cofit, both curves overlap, and 

approx). The moduli were determined by a fitting procedure from the original ,5'11 data set (fit) and 

from the data set corrected with the parallel admittance (corr), and the approximations, using eq. (12) 
(approx). 

Table 1 

Shear storage modulus, G', and shear loss modulus, G", calculated by the fitting procedure from the 

original ,5'11 measurements at 120°C (fit), from the ,5'11 data set corrected with an empirical parallel 
admittance (corr) and from the approximations, using eq. (12) (approx). 

fit 
corr 

approx 

G'/MPa 

8.366 
8.575 

8.845 

G"/MPa 

9.072 
9.222 

9.427 
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Table 1 for the 120°C measurement at the third harmonic. The noisy curves are the plots 
calculated from the measured S.11 parameter set without and with an additional parallel 
admittance. The smooth lines are the plots recalculated from the shear moduli itj Table 1. 
They deviate only slightly from each other and fit quite well with the measurement plot 
which was corrected with the parallel admittance. The more important result is the 
acceptable difference of less than 6% between the .G-values. Although the theoretical fit to 
the original data is significantly worse than that under low load conditions the shear 
modulus determination procedure is appreciably accurate. The .G calculation frmp charac­
teristic frequencies is also applicable. 

Figure 6 presents the shear moduli and the loss tangent of PIB for the .. fundamental 
frequency at 5 MHz and the 3rd and 5th harmonics (15 MHz and 25 MHz, respectively). 
The results demonstrate the feasibility of shear parameter determination with quartz crystal 
resonators. The material undergoes a phase transition within the measurement rartge. The 
shear storage modulus decreases by two orders of magnitude. The shear loss modulus has 
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Fig. 6. Shear storage modulus, G', shear loss modulus, G", and loss factor tan i5 = G" I(]' of PIB 
extracted with the full transmission-line model between -50 and 150°C. 
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a maximum, and the 'width' increases with the probing frequency. The loss factor has a 
maximum (fundamental frequency) or at least a shoulder (5th harmonic). The maxima in 
the loss factor correspond to a phase transition temperature of 65°C, 75°C or 80°C. The 
difference in the transition temperature to the static glass transition temperature is more 
than 130°C. The transition area is very broad (about 100°C) when running through a 
temperature regime. 

As mentioned already, the coating thickness cannot be optimized for glassy and 
rubbery films at the same time for all measuring frequencies. In the lower temperature 
range, our film approaches the gravimetric regime, i.e., the film is too thin, and the acoustic 
impedance is almost Q. independent. In the temperature range above 100°C the quartz 
oscillation at higher harmonics is highly damped. The theoretically calculated curves do 
not perfectly coincide with the experimental curves as found for the other data points. The 
film is now too thick to obtain optimal results. This is why we do not want to overinterpret 
the results obtained at the fundamental frequency under the glassy film consistency and at 
higher harmonics for a rubbery film. 

However, the shoulders in the G' curves below 0°C and the increase of tan /5 at high 
temperatures are significant and can be found even with a slightly varied film thickness, 
indicating a material effect. It will be analyzed in a separate investigation. 

Figure 7 shows the transition temperatures determined from our acoustic measurements 
with other mechanically determined values available from the literature.07•28l The data 
from calorimetric investigations (,cc;) are added for comparison. Our data are signifi­
cantly lower (in terms of frequency) or higher (in terms of transition temperature) than 
McCrum et al.'s determined from G" measurements.<17l The same applies for Donth et

al.' s values calculated from tan /5 measurements at low frequencies.<28l As is well known, 
the tan /5 peaks are shifted to lower frequencies wh�n compared to the Gf f peaks. Donth et

al. also distinguish between two different transition phenomena, the a relaxation ( open 
squares) and the c/J relaxation (full squares). The PIB master plot shows a main maximum 
and a second shoulder on the high-frequency side. The a- and c/3-relaxation phenomena 
are assumed to be related to large-scale and small-scale glass transitions, respectively. The 
local process is also called a "cooperative /3 relaxation."<28l Unfortunately, the frequency 
difference between the acoustic and the mechanical experiments is very large. At the 
moment we cannot decide whether our results have a common trace with one of the low 
frequency experiments. 

We also have no indication of systematic errors in our experiment except the limitations 
discussed already. A systematic error could arise from cross-film inhomogeneities as 
reported by Bandey et al. <29l In contrast to our experiments they used a quartz crystal with 
a rough surface. Here, the part of a polymer layer attached to the surface behaves like a 
rigidly coupled material due to surface roughness. Only the outer layer exhibits viscoelas­
ticity. We should, however, mention that at least the pa1t of the thin film in direct contact 
with a solid surface does not necessarily behave like a bulk material or a free thin film. 
Owing to interfacial forces at the quartz substrate/film interface, the molecular mobility 
can be decreased. Strong adhesion would be expected to have an effect similar to that of 
cross-linking on bulk specimens. The chain connectivity extends the influence of the 
surface much farther into the film than a few segment lengths. Wallace et al. reported on 
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Fig. 7. Arrhenius plot of the main transition of PIB determined from different measurements: 
mechanical tan 8, separated into a-relaxation (open squares) and c/3 (full squares),(29l shear loss 
mofulus (triangles)<17J (stars),<29J calorimetric (crosses),<29> and acoustic (full circles). 

thermal expansion coefficient observations of polystyrene.<30l They found a T
8 

shift of at 
least 60 K for thin films up to 400 A and 25 K for a 200 nm film. 

It is beyond the scope of this work to elaborate on those discussions; however, the 
capability of the acoustic method to provide additional information on the mechanical 
properties of thin films in the high-frequency range is clear. 

6. Conclusions

The analysis of the electrical impedance of a coated quartz crystal resonator with a 
network analyzer is a feasible method of determining the shear storage and shear loss 
modulus of thin polymer films at high probing frequencies. Changes in material properties 
result in changes in the electrical impedance of the coated quartz crystal via changes in the 
acoustic impedance of the film. The physical background of acoustic wave propagation in 
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a multilayer structure can be modeled successfully in a one-dimensional transmission line 

model. The experimental design must be optimized regarding the relationship between 

probing frequency and coating thickness, as well as the shear storage and shear loss 

modulus and complex acoustic load. 
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