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	 To overcome the low accuracy of visual perception caused by the small sample size and 
spatial heterogeneity of urban flood control data resulting from the use of rainfall gauge sensors, 
an urban flood visual framework based on a spatial grid was proposed. The framework is an 
aggregation framework composed of multiple submodels and algorithms. A three-level urban 
flood control grid based on the territorial management business model was designed for a local 
administrative bureau. A grid-constrained point data spatial clustering algorithm based on this 
grid division was proposed to solve the statistical bias problem. An algorithm that increases the 
number of samples was developed to support the adaptive covering heat map generation. The 
new algorithm can provide dense sensing information with only a small number of sensors. This 
framework was tested by an urban flood control business. The results demonstrate that the 
visual models and algorithms included in this framework eliminate the effects of spatial 
heterogeneity, solve the statistical bias problem, and improve the visual perception accuracy. The 
visualization framework is expected to be very helpful for the emergency response and decision 
making in urban flood control, and can also be applied to other fields such as water conservation 
and urban management.

1.	 Introduction

	 Flooding has been a prominent urban problem for many years. With the rapid increase in 
urban population and the high speed of urban construction, the area of water-impervious 
surfaces in urban built environments has rapidly grown. This problem coupled with the 
difficulty in the quantitative forecasting of local heavy rainfall in extreme weather such as 
rainstorms(1–3) has resulted in the increased probability of urban flooding and greater damage 
year by year. The heavy rainstorm in Beijing on July 21, 2012 affected nearly 780000 people and 
caused a direct economic loss of more than 14 billion yuan.(4) The National Flood and Drought 
Management Command emphasizes the need to refine information acquisition and visualization, 
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to fully inspect hidden danger points, and to specify the response rules to maintain social 
stability and sustainable economic development.(5)

	 In response to urban flooding, many countries have developed appropriate measurements to 
mitigate damage. Japan not only focuses on engineering measures such as embankments and 
urban drainage networks, but also stresses non-engineering measures such as citizen risk 
reduction, disaster insurance, and flood warning systems. In response to floods, Japan has 
gradually transformed from an administrative-oriented approach toward flood prevention and 
control to real-time flood forecasting, raising public awareness of flood defenses, and integrated 
flood management.(6) The UK has incorporated flood insurance as part of urban flood disaster 
management: the government is responsible for reducing the risk of floods and insurance 
companies are responsible for providing property flood insurance to residents and companies in 
flood-prone areas.(7) The UK has also established a Flood Forecasting Centre to issue early 
warnings of floods detected through the use of technology. UNESCO encourages urban flood 
stakeholders, which are mainly community residents, scientific institutions, and private 
organizations affected by urban flooding, to participate in urban flood control management, 
where stakeholders fully share disaster information so as to reduce decision risks.(8) With the 
development of modern information technology, the Internet Era concept is widely used in urban 
management and urban flood management. Cities have established urban flood emergency 
management systems using modern communication technology, geographic information 
technology, and Internet of Things technology at the core. For instance, Heilongjiang Province 
has established a flood control geographic information emergency command system based on 
the SuperMap platform to guarantee the rapid response of flood control emergency management 
and disaster prevention and mitigation.(9) A monitoring and early warning system for 
waterlogged urban roads based on smart devices has been designed and implemented.(10) The 
Flood Control Office and Meteorological Bureau of Yueyang, Hunan Province, jointly developed 
the Yueyang Flood Control Meteorological Forecasting and Warning System for the real-time 
monitoring of urban rainfall and to provide suggestions for flood control management.(11)

	 Urban flood monitoring and the disaster response are undergoing a gradual transition. In 
existing urban flood control systems, the management mode of “verticality and parallelism” is 
mostly adopted.(12) Parallelism refers to setting up a flood control office, water bureau, and other 
sections with the county and district government as the working unit. They are responsible for 
collecting information on pre-flood material reserves, hidden dangers, rescue teams, the flood 
season and flood conditions, and other information, and also the dispatch work. Verticality 
includes many departments such as municipal, drainage, housing, and other departments, which 
temporarily undertake rescue and mitigation work within their own working scope in the flood 
season. Because each unit has different responsibilities, this management mode can easily form 
“information islands”; secondly, it is difficult to archive basic information, which reduces the 
level of data utilization.(13) Therefore, in modern urban flood control, the management concept 
should be changed into a data-driven model to enhance the potential of data information 
application. Among these changes, graph- or map-based information presentation is an 
important visualization method, and many map-based works have been reported. As examples 
of research on interactive mapping, Qi et al. optimized a mathematical hierarchical model of 
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thematic data in maps to optimize the hierarchical visualization of thematic data.(14) Andrienko 
and coworkers conducted the visualization analysis of interactive mapping by studying the 
transformation of visual variables.(15–17) Schnabel and Hurni used thematic statistical symbols as 
a basis to study the construction of geometric elements in map symbols, and they used geometric 
elements for the visual representation of map symbols(18) by analyzing thematic mapping modes 
in smart cities. Ren and Du proposed four thematic mapping modes, “subscription-based mode”, 
“order-based mode”, “custom-made mode”, and “intelligent mode”, and carried out the 
corresponding technical implementation.(19)

	 However, the existing visualization studies do not consider the dependent territory 
management of urban flood control and the spatial heterogeneity of flood information. In these 
studies, rainfall values were sensed by rainfall gauges at fixed positions. The distributions of 
rainfall and disaster prevention materials are spatially heterogeneous; therefore, f lood 
measurement at a certain location is different from that at other locations. The direct application 
of existing geographic information spatial visualization technology can easily lead to a statistical 
bias problem in the spatial interpolation of flood control information. This problem is mainly 
due to the dependent territory management model of urban flood control. The formulation of 
urban flood measurements relies on urban flood control information, which has specific spatial 
regional characteristics. Therefore, a new visualization method constrained by spatial units for 
urban flood control information should be developed. 
	 The contributions of this paper are summarized as follows:
(1)	A visualization model framework with spatial grid constraints is proposed. The framework is 

an aggregation of several submodels with the spatial grid as the constraint. It focuses on 
solving statistical bias problems in the spatial distribution and spatial interpolation of urban 
flood control information, and can avoid the inaccurate estimation by the spatial interpolation 
of urban flood control information. 

(2)	An urban f lood monitoring information system was designed and implemented to 
demonstrate the usability of the visualization model. Some key applications were engaged to 
validate the system. The results show that the proposed visualization model framework can 
be extended to other applications of urban grid-based management.

	 The rest of this paper is organized as follows. Section 2 describes the novel visualization 
method for urban flood information. In Sect. 3, the system design and implementation are 
described and some functional modules are introduced. We conclude our work and provide 
directions for future work in Sect. 4.

2.	 Visualization Model of Spatial Grid Constraints

2.1	 Visualization model framework

	 Spatial heterogeneity means that spatial information is distributed unevenly across subspaces. 
The geographic processes or geographic phenomena characterized at various geographic scales 
vary widely. Therefore, there is a problem of local inaccuracy of the information in the study 
area used for decision making and inference in urban flood control decision making and 
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emergency responses. Most of the existing studies on flood control information visualization 
assume good spatial and temporal smoothness of urban flood control information(20,21) while 
ignoring the heterogeneity among data. In the visualization of urban flood control information, 
one of the difficulties is to eliminate the influence of spatiotemporal heterogeneity to the 
maximum extent to ensure an accurate visualization of the urban flood control information for 
decision making and emergency responses. Various methods of identifying and eliminating 
spatiotemporal heterogeneity have been proposed. For the spatiotemporal heterogeneity of 
geographical spatiotemporal processes (urban PM2.5), Fan et al. proposed a spatial heterogeneity 
partitioning of the study area using the REDCAP clustering algorithm, a temporal partitioning 
using data slicing, then conducted spatial interpolation in the subspace to improve the spatial 
interpolation accuracy.(22) The sandwich estimation model adopts a hierarchical strategy to 
divide the study area into a sampling layer, a partitioning layer, and a reporting layer, and 
employs a twice-stratified statistical strategy to take spatial heterogeneity into account, so as to 
improve spatial interpolation accuracy. However, it is only suitable for conducting spatial 
interpolation on small samples towards study objects with spatial heterogeneity.(23,24) In this 
paper, a spatial-grid-constrained model framework for visualizing urban flood control 
information is proposed to solve this problem by combining spatial regional characteristics and 
the territorial management model of urban flood control management and policy formulation.
	 The visualization model framework is an aggregation method composed of multiple 
visualization submodels and algorithms, including a grid partitioning model, a point data grid 
clustering visualization model, and a heat map visualization model with spatial interpolation. 
Several visualization models were designed and implemented in the framework according to the 
spatial regional characteristics and the territorial management mode of urban flood control 
management and policy formulation. The framework focuses on solving the statistical bias 
problems in the spatial distribution and spatial interpolation of urban flood control information, 
and it can avoid the problem of inaccurate estimation of urban flood control information by 
spatial interpolation. The conceptual design of the framework is shown in Fig. 1.

Fig. 1.	 Grid-based urban flood visualization framework.
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2.2	 Urban flood control grid division

	 A cellular grid is the smallest unit of urban grid-based management. Grid division methods 
include the regular rectangle method, road network method, and administrative division method. 
These methods have been widely used in grid community management, grid emergency resource 
management, and grid land resource management. The regular rectangle method divides areas 
into regular square grids with fixed length and width, or latitude and longitude. The spatial 
location of a square grid is determined by its center [Fig. 2(a)]. This method is simple owing to 
its results always being given for areas with regular shapes, and the data are easily processed. 
However, this method ignores the influence of large buildings, lakes, and administrative 
boundaries. This often results in geographic entities crossing grid boundaries. An urban road 
network has obvious boundary lines and geographic entity differentiation, so the road network 
method [Fig. 2(b)] has clear grid boundaries and is simple to operate, but the unevenness of the 
road distribution leads to large differences in grid areas. Moreover, a single grid may contain 
multiple administrative areas, leading to contradictions in administrative authority attribution 
and governance.
	 As an example of division into administrative regions, Beijing is divided into three levels of 
administrative units, namely, districts, subdistricts, and communities, which are responsible for 
issues related to government work. For urban flood control emergency management, the 
different levels of administrative units are responsible for flood control data collection, flood 
control business management, and flood control emergency response. The administrative 
division method has a similar relationship to flood control in terms of territorial division and 
authority management, which can avoid the overlapping of grid units or territorial omission and 
achieve seamless boundaries. Regarding grid coding, administrative codes can be used as grid 
codes, since the coding method is unified nationwide, which is conducive to data sharing among 
departments.
	 Taking an urban district in Beijing as an example, the district flood control office is 
responsible for the management of the flood control and coordinating the flood control of the 
district’s streets and commissions such as landscaping, sanitation, and drainage groups. The 
district–subdistrict (commission)–community three-level model is mainly adopted to deliver 
flood control information. We divide the urban flood control grid into three levels: district, 
subdistrict, and community levels (see Fig. 3). The whole urban area is divided into one district-

Fig. 2.	 (Color online) Grid division methods: (a) regular rectangle method, (b) road network method, and (c) 
administrative division method.

(a) (b) (c)
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level grid to facilitate information sharing and exchanging with Beijing’s first-level grid. At the 
subdistrict commission level, the district is divided into 15 grids according to administrative 
divisions. At the community level, the district is divided into 255 grids, which correspond to the 
community administrative units, for the territorial management of flood control. This grid 
model establishes a model with clear authority and responsibility for flood control information 
delivery and management.

2.3	 Grid clustering algorithm for point data

	 Urban flood management information includes rescue materials, hidden trouble spots, 
waterlogged spots, rainfall, and other types of information that are essential in determining the 
warning level of flood control, response plan, and dispatch of rescue personnel. The visualization 
technology for this type of information is usually based on pictures, text, and tables. Thematic 
mapping modes were previously analyzed and four thematic mapping modes have been 
proposed, “subscription-based mode”, “order-based mode”, “custom-made mode”, and 
“intelligent mode”, which are used to carry out the corresponding technical practice.(19) To 
address the problem of data classification in thematic maps, mathematical grading models have 
been used to optimize thematic data grading in maps and visualization effects.(14) In addition, 
spatial clustering is also an effective method for synthesizing various data and finding 
information features rapidly. The basic principle of clustering is to divide a data set into several 
classes or clusters according to certain rules, so that objects in the same class or cluster have 
greater similarity and the disparities between different classes or clusters are as large as possible, 
allowing different features of the data set to be discovered.(25) The clustering results can express 
the spatial distribution characteristics and potential relationships of point data. Clustering 
algorithms can be classified into the following categories based on their characteristics: division-
based clustering, hierarchy-based clustering, density-based clustering, grid-based clustering, 

Fig. 3.	 Three-level grid for case study: (a) district grid, (b) subdistrict grid, and (c) community grid.

(a) (b) (c)
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model-based clustering, and fuzzy clustering.(26) For large-scale and high-dimensional data, 
most of the current algorithms are ineffective. Sun et al. proposed a novel sparse representation 
framework based on the latent space that learns dictionaries,(27) which can reduce dimensionality 
to obtain hidden information. Undesirable outliers are another issue in clustering, and the 
multistep clustering method was proposed for robust clustering.(28) 
	 In the implementation of point clustering algorithms, mainstream map service plug-ins (such 
as Baidu Maps API, Google Maps API, OpenLayers, and Leaflet) provide point clustering 
algorithms. In the implementation of such algorithms, the grid, the distance, or the grid and the 
distance are used to process the data set, then the data distribution characteristics are described 
in the form of aggregate points. This reduces the amount of calculation while solving the 
problem of point data occlusion during the visualization of massive data. However, in the 
application of urban flood control information visualization, the territorial authority of urban 
flood control information management is not taken into account and spatial bias exists in the 
statistics. In other words, the real information of an administrative unit is different from the 
spatial statistics. In addition, the spatial location of the aggregation points representing the 
aggregated information is uncertain, and it is very likely to be outside the spatial grid range it 
represents.
	 To address the above problems, we propose a point data clustering algorithm with spatial grid 
constraints. The basic idea of this algorithm is to divide the data set into multiple subsets and 
perform point clustering with the spatial grid as the smallest spatially constrained unit. The data 
set is validated and classified according to the point data grid and location attributes. Data that 
meet the validation conditions are grouped into the same subset, and data that do not meet all the 
validation conditions are deleted, thus forming multiple point data subsets with the cellular grid 
boundary as the constraint, on which point data clustering is performed. The algorithm is shown 
in Fig. 4.

2.4	 Heat map generation algorithm for spatial interpolation

	 The kernel density heat map is a classical method of spatial point pattern analysis and 
visualization, and is commonly used in crime analysis, public health, transportation planning, 
and other fields of applied research. Many map vendors provide open-source interfaces for heat 
map production, such as Baidu Maps, Amap, ESRI, OpenLayers, and Leaflet. The selection of 
radius parameters is the key to the generation of a heat map, which greatly affects the visual 
perception effect and user information decision. As shown in Fig. 5, a heat map has a good 
visualization effect at a certain map scale [Fig. 5(a)], but when the map is zoomed, the map scale 
is changed, and it is easy to show that a heat map cannot cover all the areas or the density is 
concentrated [Figs. 5(b) and 5(c)]. Therefore, the adaptive determination of parameters has 
become a hot topic of research, resulting in various methods such as the thumb method, cross-
validation method, and adaptive cross-validation method. To balance the accuracy of parameter 
selection and computational efficiency, a fast adaptive heat map generation algorithm based on 
quadtree partitioning that is suitable for big data analysis and visualization has been proposed.(29) 
However, for small sample data for urban flood control, the drawback of heat maps is their high 
computational complexity.
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	 To address the above problems, we design a spatially encrypted heat map generation 
algorithm that takes the spatial coverage ratio into account. The basic principle is to use a spatial 
interpolation algorithm to spatially enrich the sampling points to ensure the full coverage of the 
heat map to solve the coverage ratio problem at different scales. It is also helpful for improving 

Fig. 5.	 (Color online) Visualization by heat maps with different scales.

 Fig. 4.	 Point data clustering algorithm.
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the accuracy of visual perception and meeting the user’s decision-making needs. To address the 
balance between the number of interpolation points and computational efficiency, we design an 
algorithm to calculate the minimum number of required points, thus avoiding the problem of a 
large computational load. The flow chart of this algorithm is given in Fig. 6.
	 To facilitate the calculation of the minimum number of interpolation points, the concept of 
the reference scale is introduced. Its definition is as follows: when the visualization effect of the 
heat map is satisfactory, its current scale is defined as the reference scale, which is expressed by 
its scale denominator Mr. Then, the relationship between the number of points required for the 
heat map Nr and the reference scale can be determined. When the map scale changes, the 
formula for calculating the minimum number of encrypted points is as follows:

	 1
1

r
r

MN N
M

= × ,	 (1)

where Mr is the reference scale, M1 is the current map scale, Nr is the number of points in the 
reference scale scene, and N1 is the minimum number of encrypted points required at the current 
scale.

3.	 System Design and Implementation 

3.1	 Development environment

	 The system adopts a browser/server (B/S) framework with Java and HTML and CSS 
languages on the server and client sides, respectively. The integration environment of the system 
uses IntelliJ IDEA 2018.3 x64 and JetBrains WebStorm 2017.2.3 x64. In the spatial data 
processing, we apply the open-source GIS desktop software QGIS for coordinate conversion and 
other related works, and we use Baidu Maps API for JavaScript to complete the grid map 
visualization. The system environment is shown in Table 1.
	 The system is developed using Spring Boot technology based on the model–view–controller 
(MVC) mechanism, which divides the presentation layer of the three-level framework into three 
parts: the model, view, and controller. The model mainly includes business logic data, such as 
the Action and DAO classes in the Web. The model is independent of the data format, so the 

Fig. 6.	 (Color online) Flow chart of heat map generation based on increasing the number of samples.
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model can be used with multiple views once written in the actual development, reducing code 
repetition. The view is generally a user interaction interface composed of HTML. The controller 
controls the interface data updates according to user operations and plays a connecting role in 
the model and view.(30) The Spring Boot technology, as a set of concise development methods 
based on the Spring framework, simplifies the development model, reduces the difficulty in 
project building, and makes the development, testing, configuration, deployment, and monitoring 
of the project easier.

3.2	 Grid clustering visualization for hidden points

	 To better describe the spatial distribution of hidden points in flood control in each cellular 
grid and solve the overlaying problem, this module implements grid-based visualization. The 
data include construction sites, underground spaces, human defense projects, and other hidden 
points. The main code functions are shown below in Algorithm 1. These functions adopt the 
spatially constrained point clustering algorithm designed in this paper to achieve the spatial 
clustering of point data of different grids, which allows flood control management personnel to 
perceive the flood control information more accurately and facilitate the decision making of 
inspection and emergency rescue materials and manpower deployment. The effect of grid-based 
clustering is shown in Fig. 7. The different colors and sizes of the circles are used to identify the 
different levels of aggregated data, and the aggregated points are accurately located in this grid.

Table 1
Configuration of system environment.
Development environment type Development environment name
Server language Java
Client languages HTML/CSS

Integrated development environment IntelliJ IDEA 2018.3 ×64
JetBrains WebStorm 2017.2.3 ×64

Database SQL Server2008
Desktop GIS QGIS 3.6.0
GIS API Baidu Maps JavaScript API

Algorithm 1
Algorithm of grid-based clustering for hidden point data.

Input: hidden point data
Output: point data clustering map

1 #get the array of hidden points, street grid boundaries, community grid boundaries
2 YHPoint;streetBound;comBound;
3 #hidden point grid grouping function
4 function groupYHPoint(){
5    return YHPointMarkers
6          };
7 #define aggregation parameters
8 minClusterSize;gridSize;style
9 #perform point aggregation operations

10 markerClusterer = new BMapLib.MarkerClusterer(map, {markers:YHPointsMarkers}); 
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Fig. 7.	 (Color online) Point data clustering result: (a) point data and (b) point clustering result.

(a) (b)

Fig. 8.	 (Color online) Result of Kriging spatial interpolation.

3.3	 Multiscale visualization of rainfall trend

	 This function was designed to indicate whether the station reports rainfall information 
correctly by setting different colors for station icons. By clicking a station icon, a large amount 
of information can be shown, such as the station location, rainfall value, grid, inspectors, and 
other related information, as labeled in Fig. 8. In our work, the rainfall value was collected by a 
network of gauges deployed at fixed positions. Therefore, the rainfall needs to be estimated at 
positions with no gauges. To better estimate the rainfall information in the whole region, this 
system adopts the ordinary Kriging interpolation algorithm based on the exponential variation 
function for interpolation. The core code of the spatial interpolation function is listed in 
Algorithm 2. The visualization result is shown in Fig. 8.
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3.4	 Visualization of emergency evacuation routes of population in hidden areas

	 In the traditional flood control data management mode, people prefer to use spreadsheets and 
publicity boards to show statistics and the evacuated population. To mitigate the problems of 
insufficient information, poor timeliness, and unsatisfactory results of traditional methods, we 
have developed a statistical visualization function based on maps to facilitate population transfer 
information for this module. This module quantitatively demonstrates the number of evacuated 
people and their transfer direction, and provides accurate visual perception information. The 
destination point represents the location to which people are evacuated. When the cursor follows 
the curve, the number of evacuated people in the transfer direction is displayed. Flashing dots in 
different grids represent the migration and migration information of people whose homes lie 
within the grid. An image of the prototype system is presented in Fig. 9.

Algorithm 2
Kriging spatial interpolation.

Input: Locations of sampling points and rainfall amounts
Output: Kriging spatial interpolation results

1 #define interpolation range, color array, interpolation data source, rendering container
2 boundary;colors;arrRain;canvas;
3 #get interpolated data variogram
4 var variogram = kriging.train(t, x, y, “exponential”, 0, 100);
5 #determined by the size of the interpolated pixel
6 var pix = 0.0005;
7 #interpolation operations
8 kriging.grid(boundary, variogram, pix);
9 #draw to canvas

10 kriging.plot(canvas, grid, boundary, color);
11 #get interpolation results for any point
12 kriging.predict(x, y, variogram);

Fig. 9.	 (Color online) Population evacuation flow map.
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4.	 Conclusions

	 In this paper, we proposed a framework for visualizing urban flood control information 
constrained by a spatial grid that addresses the problem of inaccurate visual presentation of 
information required for localized urban flood control management. The framework is an 
aggregation framework composed of several submodels and algorithms. We proposed a grid-
constrained point data clustering algorithm for the point data of hidden points and emergency 
material used in flood control. The new clustering algorithm eliminates the problems of 
inaccurate clustering points and biased clustering information statistics caused by spatial 
heterogeneity, and can thus meet the territorial management needs of urban flood control. The 
accuracy of the visual perception of the heat map of flood control information is studied, and an 
algorithm for the spatial interpolation of a heat map is proposed to solve the problem. This 
algorithm can fully spatially cover the study area at different scales. Using the urban flood 
control visualization model proposed in this paper, an example of urban flood control area in a 
district of Beijing was examined. The results show that the framework can provide accurate 
visual perception information, which can help in decision-making. The proposed framework can 
also be applied to other areas of urban refinement management. However, further improvement 
of the framework is still required. For example, the framework depends on dense sample points. 
If there are insufficient rainfall gauges, a suitable spatial interpolation algorithm must be chosen 
to generate pseudo sample points. The suitability and robust validation of the framework for 
other interpolation algorithms will be future work.
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