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	 With the concepts of smart city and smart travel and the rapid development of modern 
sensors, artificial intelligence, and other modern technologies, automatic driving technology that 
can effectively solve road congestion and ensure driving safety has become the main direction of 
future industry development. Accurate lane line technology is a fundamental technology for 
realizing autonomous driving. However, in actual road environments, lane lines are often 
detected with a low accuracy because of various factors, including light intensity changes and 
lane line obstruction, which greatly affect the safety of autonomous driving. To address the 
current challenges in lane line detection, in this study, we propose a lane line detection model 
based on improved semantic segmentation for complex road scenarios, such as lane line 
occlusion, mutilation, and shadowing. The Visual Geometry Group–Special Convolutional 
Neural Network (VGG-SS) proposed in this paper, which is based on the VGG-16 network, 
introduces a self-attentive distillation model and a spatial convolutional neural network (SCNN) 
model. Empirical results show that the proposed model outperforms the current semantic 
segmentation models, achieving better detection effects and a higher F1 value of 82.6 in complex 
road scenarios. The results prove that the proposed method can effectively improve the detection 
accuracy of lane lines.

1.	 Introduction

	 In recent years, autonomous driving technology has become a research hotspot in the field of 
intelligent transportation systems and has attracted considerable attention. The development of 
the self-driving car industry can not only effectively solve the problem of road congestion but 
also provide behavioral decisions for self-driving vehicles and guarantee the safety of vehicles, 
providing an important guarantee for achieving intelligent travel; examples include lane 
departure warning, lane keep assist, automatic lane change assist, and so forth.
	 Among the technologies for autonomous vehicle driving, environmental perception of road 
surface information has been considered an important aspect. As an important road part, a lane 
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line contains semantic information about road areas, specifies travel directions, and provides 
guidance information; therefore, the lane line detection technology based on a low-cost visual 
perception model has evolved. Owing to the rapid development of deep learning and artificial 
intelligence, the lane line detection technology can provide collision warning, lane departure 
warning, and auxiliary environment perception information to autonomous vehicles, as well as 
assist the autonomous driving system to realize the role of lane path planning, thus improving 
the safety of autonomous driving.
	 The current methods for lane line detection mainly include traditional methods based on 
feature detection and model building and deep-learning-based lane line detection methods. The 
problem of road or lane perception is a crucial enabler for advanced driver assistance systems.(1) 
The tensor-voting-based road lane recognition algorithm with road lane geometric constraints 
was presented by Wei et al.(2) Tapia-Espinoza and Torres-Torriti proposed an approach for lane 
segmentation and tracking that is robust to varying shadows and occlusions.(3) Fritsch et al. 
introduced a novel open-access dataset and benchmark for road area and ego-lane detection.(4) A 
Catmull-Rom spline-based lane model that describes the perspective effect of parallel lines was 
proposed for a generic lane boundary by Yue et al.(5) In feature-detection-based lane line 
detection methods, salient features such as lane line direction and length have been commonly 
used to obtain lane-line-related information.(6) Yoo et al. proposed a gradient enhancement 
conversion method based on linear discriminant analysis to generate new grayscale images from 
RGB color images and then used adaptive Canny edge detection, Hough transformation, and 
curve model fitting methods to obtain lane line information.(7) Lin et al. first grayed out the 
original image, set a double region of interest by a perspective transformation method, and 
performed a coarse feature detection, and then detected lane lines using the Hough transform.(8) 
Gaikwad and Lokhande used a segmented linear stretching function to improve the contrast of 
the region of interest and then employed the Hough transform to detect lane lines separately.(9) 
However, the lane line detection based on a grayscale difference in pixel point edge information 
has certain limitations and is affected by many factors, including shadows and light intensity 
variations.
	 Grayscale value refers to color intensity; grayscale denotes no color, and RGB color 
components are all equal. After graying, the dimensionality of the matrix decreases, the speed of 
the operation increases significantly, and the gradient information is still retained. If the image is 
not grayed out, the color information is still retained, so the object can be recognized on the 
basis of color information. In addition, when an image is grayed out, the color information is 
lost, so these types of detection algorithm do not have a generalization capability. However, if 
features with color information in road images could be detected effectively, the lane line 
information could also be obtained. Mammeri et al. proposed a lane line detection system 
combining the most stable extremal region and Hough transform, which uses matching features 
such as the color and shape of lane lines, to detect lane lines.(10) Sotelo et al. developed a road 
segmentation algorithm based on an HIS color space and a two-dimensional constrained space 
for obtaining the lane line information.(11) Ozgunalp and Dahnoun proposed a feature-map-
based lane detection algorithm that uses an inverse perspective transformation method.(12) To 
improve the feature map signal-to-noise ratio, the feature map was matched by inverse 
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perspective transformation, and lanes were detected by Hough transformation. Although the 
detection results of lane lines obtained using RGB images are better than those obtained using 
grayscale images, these methods cannot perceive local features of image data. Kumar et al. used 
the Kalman-filter-based tracking method to detect lane lines to solve the problem of low 
robustness of detection algorithms in illuminated scenes.(13) Chi et al. used the road vanishing 
point estimation method to detect lane lines, but their model-based method is computationally 
expensive.(14) In addition, the model-based detection method is computationally intensive and 
can perform well only in specific environments, which poses certain limitations.
	 Both feature- and model-based traditional lane line detection methods are susceptible to 
external environmental factors, and their robustness is extremely low when the lane lines are 
broken, obscured, or unpainted,(15,16) which can result in incorrect or even impossible lane line 
detection. To solve the problem of low accuracy of lane line detection in complex road 
environments, convolutional neural networks have been widely used for lane line detection 
owing to their powerful feature detection capability.(17,18)  
	 In 2015, He et al. proposed the use of the SPP-net to improve the detection speed.(19) Ren et al. 
proposed the Fast-RCNN network, which was trained using a multitask loss function, allowing 
all layers to be updated while reducing the number of parameters in the fully connected neural 
network, and the detection performance was improved.(20) He et al. designed a new dual-view 
convolutional neural network strategy and used a weighted cap filter to obtain lane line 
information.(21) Aly  used Gaussian filtering and detected street lanes using line detection and a 
new RANSAC spline fitting technique.(22) Kim and Park combined convolutional neural 
networks with the RANSAC algorithm and proposed a continuous end-to-end migration 
learning method that can detect both left and right lane lines of the current lane.(23) Neven et al. 
transformed the lane line detection problem into an instance segmentation problem that 
distinguishes the lane lines and their background using a binary classification principle.(24)

	 Considering that lane lines are striped targets with a strong structural continuity, the 
previously proposed networks that do not use the spatial relationship fully in lane line detection 
cannot achieve the required detection accuracy in complex road scenarios. To solve the problem 
of low lane line detection accuracy of the existing methods in complex road scenes, in this paper, 
we propose an end-to-end semantic segmentation network model based on the Visual Geometry 
Group–Spatial Convolutional Neural Network (VGG-SS), which represents an optimized VGG-
16 network and improves the lane line detection accuracy by embedding a self-attentive 
distillation model between the encoder and the decoder, and a spatial convolution neural network 
(SCNN) model in the top implicit layer. The proposed model is trained with the CULane dataset 
using the designed reasonable hyperparameters and training strategies.
	 In this paper, we propose a lane line detection method based on improved semantic 
segmentation, which solves the problem of low detection accuracy because of damaged and 
obscured lane lines in complex road scenes.
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2.	 Lane Line Detection in Complex Road Scenes

	 The semantic segmentation model for lane line detection is constructed using an encoder-
decoder structure with reference to the U-net network structure,(25) and the spatial information 
acquisition of lane lines with a long-distance structure is improved by the detailed design of each 
part of the model feature encoder and via the introduction of additional operations, such as self-
attention distillation (SAD), spatial convolution, and fusion upsampling.

2.1	 Improved VGG-16 network

	 The classification performance of VGG-16 as a base network is very good; the network 
structure of VGG-16 is very regular and relatively easy to modify. The model trained on 
ImageNet has been published and can be fine-tuned on this basis for other datasets and has good 
adaptability to other datasets. There are many network structures using VGG-16 as a base 
network in the field of target detection, and the same effect is also very good. These advantages 
of VGG-16 made us choose it as the model for detection.
	 VGG-16 is a classical convolutional network model for image classification tasks, which was 
proposed in the ImageNet image classification and localization challenge in 2014.(26) The 
structure of VGG-16 is shown in Fig 1. The original VGG-16 network consists of 13 convolutional 
layers, five pooling layers, and three fully connected layers. Compared with the AlexNet 
network,(27) the VGG-16 network has a simple structure and possesses fewer hyperparameters, 
and its convolutional layers all use the same convolutional kernel parameters.
	 In the VGG-16 network, the convolutional kernel size is 3 × 3, so finer detailed features can 
be obtained. Also, the pooling layer of the VGG-16 network uses a maximum pooling kernel 
with a size of 2 × 2, so better results can be achieved when capturing local information of 
features, such as image edges and texture.

Fig. 1.	 (Color online) VGG-16 network structure.
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	 The last three fully connected layers in the VGG-16 network structure contain a large number 
of parameters, which greatly affect the computational efficiency of the network. In addition, the 
input images must be of a specific size, which does not facilitate subsequent image input work. 
To solve these two problems, all three fully connected layers in the VGG-16 network are replaced 
with convolutional layers, as shown in Fig. 2.

2.2	 Dilated convolution (DC) and jump structure

	 The addition of a pooling layer in the convolutional network will result in the loss of feature 
information in the training process, which decreases accuracy. However, if the pooling layer is 
removed and the convolutional kernel is expanded, the training accuracy will increase. 
Therefore, in this work, the DC is used.(28) The schematic diagrams of the void convolution are 
shown in Fig. 3, where red dots denote the convolutional kernel, and the light green color 
represents the perceptual field in the original input.
	 In Fig. 3(a), a 3 × 3 convolution with a dilation rate of one is presented, where the receptive 
field is 3 × 3. When the dilation rate is two, as shown in Fig. 3(b), although the number of 
convolutional nuclei is fixed, the receptive field increases to 7 × 7. If the dilation rate continues 
to increase, then in a scenario where the number of convolutional nuclei is fixed, the receptive 
field can increase to 15 × 15 under the dilation rate of four, as shown in Fig. 3(c). Thus, the 
convolutional kernel receptive field grows exponentially with the dilation rate.

2.3	 SCNN model

	 To address the problem that, in complex road scenarios, the number of lane line pixels in an 
image is much less than that of background pixels, which leads to inefficient feature information 
transfer between alternate convolutional layers, the SAD method has been proposed in Ref. 29. 
This method allows enhancing the model’s performance without increasing its training time, 
which represents a self-representation learning ability. Similar to the self-attention 
mechanism,(30) the SAD allows a network to use the attention map of its own layer as a learning 

Fig. 2.	 (Color online) Replacement of fully connected layers with convolutional layers in VGG-16 network.
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target for its lower layers, and this attention detection mechanism has often been used to 
complement segmentation-based supervised learning, as shown in Fig. 4.
	 In actual road scenes, complex scenarios with broken and discontinuous lane lines often 
occur, causing the disadvantage of low efficiency of feature information transfer during the 
network training process, which can be compensated for by the SAD. The SAD has been mainly 
added during the network training process to provide information for deeper feature maps by 
learning the low-level feature maps so that the network can obtain richer contextual information. 
Therefore, the VGG-16 model adds the SAD model after the 13th convolutional layer located 
between the encoder and the decoder so that the spatial information can also be better 
transferred.
	 Although the improved VGG-16 model has a powerful feature detection capability, lane line 
detection can still be difficult when there are continuous-shaped targets with long distances. To 
improve the efficiency and accuracy of lane line detection, a new method has been proposed in 
Ref. 31; this method uses a SCNN by fully mining the spatial relationships of rows and columns 
in an image to obtain semantic information on targets with strong spatial relationships but weak 
shape coherence in appearance, such as obscured or even missing lane lines. The structure of 
this network is shown in Fig. 5.

Fig. 3.	 (Color online) Schematic diagram of void convolution. (a) 1-DC, (b) 2-DC, and (c) 4-DC.

Fig. 4.	 (Color online) Jump connection. A brief demonstration of how jump connection is structured and how it 
works.

(a) (b) (c)
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	 Compared with the traditional networks in which feature pixel information is passed from all 
directions, thus causing a data redundancy problem, the SCNN model passes information in a 
sequential way, as shown in Fig. 6. In the SCNN model, each pixel is passed to the next layer in 
rows or columns, thus saving much computation time and increasing the computation efficiency. 
Therefore, the SCNN model can be easily integrated into any part of a network model.

2.4	 Proposed network model

	 The network used in this study is based on the VGG-16 model, and additional models are 
introduced, such as expanded convolution and self-attentive distillation, to propose the VGG-SS 
network. The VGG-SS network has 16 convolutional layers and five pooling layers, all using 
ReLU as the activation function. The encoder mainly parses and classifies the lane line pixels. In 
the decoder part, the number of deconvolution layers corresponds to that of convolution layers in 
the encoder part, i.e., the decoder’s deconvolution is expanded into five stages, with each stage 
consisting of a deconvolutional layer and a full convolutional layer. The feature map output by 
the encoder is passed to the decoder according to the characteristics of the jump structure to 
strengthen the detailed information lost in the upsampling process. The VGG-SS structure is 
shown in Fig. 7.

Fig. 5.	 (Color online) Structure of spatial convolution model.

Fig. 6.	 (Color online) Information transfer chart.
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3.	 Experiments and Analysis of Results

3.1	 Dataset and parameter settings

	 The CULane dataset containing a total of 133235 images was used in the experiments. The 
parameters of the CULane dataset are given in Table 1. The CULane dataset includes data from 
nine scenes, including common, crowded, and night scenes. The proportion of each of the scenes 
is shown in Fig. 8.
	 The experiments were conducted on a computer with the NVIDIA 1080Ti graphics processor, 
8 GB video memory, and Windows 10 operating system. The network was developed and trained 
using the Python3 language and TensorFlow deep learning framework platform under Windows 
10.
	 During the VGG-SS network training, Adam’s gradient optimization strategy was used to 
decrease the training time and improve the convergence speed. The training parameters of the 
VGG-SS network are given in Table 2.
	 In this study, we use the cross-entropy loss function (Cross Entropy) based on binary 
classification to distinguish lane lines and backgrounds, and we set the distance d. When the 
distance between two different categories of pixel sets is greater than the threshold d, the model 
will not be updated. In this study, the initial learning rate of training is 0.001 and the weight 
decay factor is 0.0001. Since the memory capacity of the GPU used in this study is only 8 GB, 
the batch size of the dataset is set to 10. In other words, 10 images are input into the network for 
training each time, and the polynomial learning rate decay strategy is used for network training.

3.2	 Detection accuracy evaluation indexes

	 Different datasets have different parameters and pixel sizes owing to differences in vehicle 
type and acquisition equipment, so different accuracy evaluation indexes should be used for 
different datasets.

Fig. 7.	 (Color online) Structure of proposed VGG-SS network model.
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	 To evaluate the lane line detection accuracy of the proposed model, each lane line was 
regarded as a line with a width of 30 pixels. In the evaluation process, Intersection over Union 
(IOU) between the predicted result and the true value was calculated. The IOU represents the 
ratio between the intersection part and the merge part of the predicted result and the true value. 
The threshold value was set to 0.6, and when IOU ≥ 0.6, the detection was adjudged correct. 
When the set threshold value was exceeded, the detection was judged to be correct and regarded 
as true positive (TP); otherwise, the detection was regarded as false positive (FP).
	 The F1 score is a statistical measure of the accuracy of a binary classification model, which 
takes into account the precision and recall of the classification model. The precision, recall, and 
F1 measure are respectively expressed as

Table 1 
Dataset parameters

Dataset Total number 
of images

Training 
set

Validation 
set Test set Pixels Environment Source Evaluation

indicator
TuSimple 6408 3268 358 2782 1280 × 720 Expressway Santiago Accuracy

CULane 133235 88880 9675 34680 1640 × 590 Urban Expressway 
rural Beijing F1Score/IOU

Table 2 
Training parameters of VGG-SS network.
Parameter Value
Dataset CULane
Input image size 800 × 290 pixels
Initial learning rate 0.001
Power 0.9
Batch size 10
Weight decay 0.0001
Maximum iteration number 60000

Fig. 8.	 (Color online) Sampling map of the dataset and scale map of each scene.
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where TP stands for true positive (prediction is positive and the actual value is also positive); TN 
stands for true negative (prediction is negative and the actual value is also negative); FP stands 
for false positive (prediction is positive, but the actual value is negative); and FN stands for false 
negative (prediction is negative, but the actual value is positive). The closer the precision is to the 
recall, the larger the F1 value will be, and a larger F1 value indicates a higher precision.

3.3	 Experimental and comparison results

(1)	DC-VGG-SAD model detection results
	 The test set selected included a total of 5000 images of five road types in the CULane dataset, 
namely, normal road scenes, congested scenes, scenes with blocked lane lines, scenes without 
light at night, and scenes without painted lane lines; 1000 images were selected for each road 
type for testing.
	 The DC-VGG-SAD convolutional network was compared with the existing high-quality 
networks by adding the DC and SAD models in terms of detection accuracy. The experimental 
results are shown in Fig. 9, where it can be seen that under road conditions with fewer vehicles 
and more vehicles, the detection accuracy of the DC-VGG-SAD network was slightly higher 

Fig. 9.	 (Color online) Comparison of F1 scores of different network models on CULane dataset.
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than those of the other networks; compared with that of the single SAD network, the detection 
capability of the DC-VGG-SAD network was improved, indicating its advantages in lane line 
detection. However, at night and in road environments without lane lines, when completely 
obscured, the lane lines cannot be effectively identified, and the detection accuracy of the DC-
VGG-SAD network was lower than that of the SCNN network. However, when partially 
obscured, the lane lines can be partially identified effectively, and therefore, the lane lines can be 
extracted and predicted.
(2)	VGG-SS model detection results
	 In the experiment, three road environments were selected for the test set, namely, the normal 
road environment, the congested road environment, and the road environment with blurred lane 
lines under shaded light. As shown in Fig. 10, the trained network model was used to detect the 
lane lines in the first row of the original image data separately. The results showed that the VGG-
16 network detection performed well in the normal road environment, but when the conditions of 
the road environment changed from simple to complex, especially when the road was obscured 
by vehicles, the VGG-16 network performance decreased, the VGG-16 network could not 
accurately detect the lane line pixels, and the detection results will appear to identify only part of 
the lane line, not all the lane lines. The detection effect was significantly improved when the 
expanded convolution and SAD models were added to the VGG-16 network, which avoided the 
incomplete detection of lane lines due to occlusion and lane line mutilation, but there was 
obvious unsmoothness in the lane line edge area.

Fig. 10.	 (Color online) Performance of convolutional network in lane line detection under different scenarios: (a) 
normal, (b) crowded, and (c) shadow.

(a) (b) (c)
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Fig. 11.	 (Color online) VGG-SS network lane line detection results.

Fig. 12.	 (Color online) Lane line detection results of VGG-SS network for normal road scenarios.

Fig. 13.	 (Color online) Lane line detection results of VGG-SS network for backlit scenes in road images.

(3)	VGG-SS lane line detection results
	 The lane line detection results of the proposed VGG-SS network on the CULane dataset are 
shown in Figs. 11–15, where (a) indicates the original figure and (b) indicates the detection result 
of the lane line. As shown by the purple dashed circle in Fig. 11, the part that did not belong to 
the lane line was not detected, which ensured low false detection and leakage rates, and also 
guaranteed the lane line detection accuracy. 
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Fig. 15.	 (Color online) Lane line detection results of VGG-SS network for obscured road scenarios.

Fig. 14.	 (Color online) Lane line detection results of VGG-SS network for shaded scenes in road images.

(4)	Comparative experiments
	 The improved network VGG-SS was compared with the existing VGG-16, SAD, and SCNN 
network models. The test dataset used in the comparison experiment was the same as that used 
in the previous experiments, and the obtained detection results are given in Table 3.
	 As shown in Table 3, the F1 score of the proposed VGG-SS network on the CULane dataset 
was much higher than those of the existing networks, such as VGG-16 and SAD. In simple road 
scenarios, the F1 score of the VGG-SS was 94.7, which was higher than the F1 score of the 
SCNN with a strong spatial information transfer capability. However, in complex road scenarios, 
when the lane lines were broken or blocked, the detection accuracy of the VGG-SS network 
decreased significantly, but it was still higher than those of the VGG-16, SAD, and SCNN neural 
models. The comparison results prove that the proposed method can improve the detection 
accuracy of lane lines in complex road scenarios.
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4.	 Conclusion

	 To solve the problem of low detection accuracy of the existing lane line detection methods in 
complex road scenes, where lane lines are often damaged and obscured, in this study, we 
propose a lane line detection method based on improved semantic segmentation. The SAD and 
SCNN models are used to optimize the encoder-decoder network structure based on the 
improved VGG-16. The proposed VGG-SS model is trained on the CULane dataset and then 
compared with state-of-the-art semantic segmentation network models. Experimental results 
show that the lane line detection accuracy of the VGG-SS model is average when the lane lines 
are obscured and shaded, and higher when there are fewer road vehicles and the lane lines are 
clearly visible, but its detection accuracy can still reach 82.6%, which is significantly higher than 
those of the other semantic segmentation models. This proves that the proposed method can 
improve the detection accuracy of lane lines in both simple and complex road scenarios.
	 The fully self-driving car system should not only detect and extract information related to 
lane lines, but also provide insights into the detection of various lane signs, such as steering, 
speed limit, and crosswalks. In this paper, the VGG-SS network is constructed on the basis of 
the VGG-16 network, and several models are introduced and modified. The lane line detection in 
complex road conditions achieves good results. However, this experiment is only applied to 
pictures, and lane line extraction on video and moving images is still something that should be 
studied in the future. Subsequent work can combine convolutional neural networks with different 
tasks to form a complete multitask neural network, providing important technical support for 
self-driving cars.

Supporting Data

	 The data that support the findings of this study are available in Github at https://github.com/
Mcwbiubiubiu/Lane-line-detection.git. These data were derived from the following resources 
available in the public domain: http://mmlab.ie.cuhk.edu.hk/

Table 3 
Comparison of accuracy and operating speed of different network models.
Network model F1 score (simple scenes) F1 score (complex scenes) Running time (ms) 
VGG-16 80.8 61.4 20.7
SAD 87.3 64.1 13.2
SCNN 91.6 76.6 134.2
DC-VGG-SAD (ours) 91.7 66.7 17.7
VGG-SS (ours) 94.7 82.6 147.5
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