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 The purpose of this study was to apply the random forest (RF), XGBoost, and LightGBM 
machine learning (ML) algorithms to land cover classification, and to present the model tuning 
process for each algorithm. Sentinel-2 satellite images were used for land cover classification, 
and the land cover map provided by the Ministry of Environment of the Republic of Korea was 
used as label data. Each ML algorithm was applied using the constructed dataset. In addition, 
each ML algorithm was optimized by three methods (grid search, random search, and Bayesian 
optimization). The grid search took the longest time to optimize the hyperparameters because it 
required the highest number of search iterations, but the accuracy was highest. The random 
search was the fastest method of optimizing the hyperparameters. The accuracy of XGBoost was 
the highest for each ML algorithm. The prediction of XGBoost was the most consistent with the 
land cover map provided by the Ministry of Environment. However, the LightGBM algorithm 
has a major advantage in terms of the algorithm optimization and application time. Therefore, 
our study is meaningful in that we obtained a higher accuracy and shorter time for each ML 
algorithm.

1. Introduction

 With the annual changes and updates of the greenhouse gas (GHG) inventory in the land use, 
land use change, and forestry (LULUCF) categories, the systematic monitoring of the area 
maintained in each category is required along with the monitoring of its changes.(1) For this 
purpose, the application of a geographic information system and remote sensing (GIS and RS) 
using satellite imagery and spatial data is instrumental. In particular, the GHG inventory 
development through the application of GIS/RS has merit in terms of accurate measurement of 
uncertainties, as it enables the development of the inventory at the Approach 3 level in the IPCC 
Guidelines.(2) Accordingly, research on changes in land use and land cover using satellite 
imagery has been continuously ongoing in accordance with the increasing public interest in 
artificial intelligence (AI) since the late 2010s. In addition, the recent interest in the application 
of machine learning (ML) technology has also increased in the field of remote sensing.(3) 
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Presently, ML is one of the fastest growing fields of technology and has a multidisciplinary 
approach owing to the adoption of computer science and statistics. ML technology can be 
viewed as playing a pivotal role in AI and data science. ML technology is now employed for 
decision-making in various fields beyond science and technology.(4,5)

 Since the launch of the Landsat satellite in 1972, various ML algorithms have been utilized 
for pixel-based image classification, such as the maximum likelihood method, ISODATA, 
K-means, support vector machine (SVM), and artificial neural networks. In particular, active 
research has been undertaken to apply the random forest (RF) algorithm for land cover 
classification.(6,7) In addition, it has been reported that the RF algorithm has a higher potential 
than existing land cover classification algorithms such as the maximum likelihood method, 
minimum distance method, decision trees, and SVM. In addition, land cover classification 
studies using the XGBoost and LightGBM algorithms based on decision trees, such as RF, have 
been conducted since 2018. In particular, a limited number of studies have been undertaken on 
land cover classification using the LightGBM algorithm.(8–10) For the above three algorithms, 
high accuracy can be achieved only through hyperparameter (HP) optimization for the 
dataset.(11) However, in land cover classification studies, the process of model tuning is omitted 
or described very briefly, leading to a lack of information about the HP optimization process in 
the field of remote sensing.
 Therefore, in this study, a land cover map was constructed by applying the RF, XGBoost, and 
LightGBM algorithms, which are widely used in the field of remote sensing. In addition, a model 
tuning process was used for each algorithm so that the optimization method could be selected 
depending on the purpose.

2. Materials

2.1 Sentinel-2 satellite imagery

 Satellite imagery from Sentinel-2 was utilized for the present study. The swath of the 
Sentinel-2 satellite was 290 km, the radiometric resolution was 12 bits, and the temporal 
resolution was 5 days (based on the equator). The images consisted of 13 bands (four 10 m bands, 
six 20 m bands, and three 60 m bands). Sentinel-2 satellite imagery provides more information in 
near-infrared (NIR) and shortwave infrared (SWIR) bands than Landsat 8 satellite imagery. 
Therefore, it is available for monitoring urban areas with precision level. In addition, land cover 
classification can be performed owing to its high temporal resolution.(12) Sentinel-2 imagery 
complements Landsat satellite imagery and SPOT satellite imagery to increase data 
availability.(13,14)

2.2 Land cover map by Ministry of Environment

 The Ministry of Environment of the Republic of Korea has constructed a land cover map for 
the entire area of the national territory since 1998, starting with the level-1 land cover map and 
further developing and distributing the level-2 and level-3 land cover maps. The maps are 
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classified into 7, 22, and 41 categories for the level-1, level-2, and level-3 classifications, 
respectively. The level-1, level-2, and level-3 classifications have spatial resolutions of 30, 5, and 
1 m, respectively. The level-2 land cover map, which has the same spatial resolution as the 
Sentinel-2 imagery, has been utilized to convert level-2 classification items on the level-3 land 
cover map since the last update of the map in 2013. Therefore, to match the time series with the 
Sentinel-2 imagery implemented in this study, the level-3 land cover map was utilized. As the 
categories, the following categories of the level-1 land cover map were adopted: used area, 
agricultural land, forest, grass, wetland, barren, and water.(15)

2.3 Study area

 For the study area, Wonju-si was selected, which is located on the administrative border of 
Gangwon-do, Gyeonggi-do, and Chungcheongbuk-do in the Republic of Korea (Fig. 1, 127° 
44–128° 12 E, 37° 08–37° 31 N). The total area of Wonju-si is approximately 86,644 ha. Among 
the 18 cities and counties in Gangwon-do, not only has the ratio of forest area in Wonju-si shown 
the most dramatic decrease but also the population has increased by about 6% over the past 10 
years (Fig. 1).

3. Methodology

 The data implemented in the present study were constructed through the preprocessing of 
Sentinel-2 image data. In addition, spectral values, gray level co-occurrence matrix (GLCM) 
values, and topographic data were constructed. The GLCM values were derived from the 

Fig. 1. (Color online) Study area (Wonju-si, land cover map provided by Ministry of Environment).
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spectral values by principal component analysis (PCA). The label data for training were 
constructed by implementing the land cover map of the Ministry of Environment. The land 
cover classification algorithms applied in this study were RF, XGBoost, and LightGBM, which 
are ML-based algorithms. In addition, the optimal classification algorithm was selected after 
optimization. The classification model and model tuning were applied using the ML Python 
scikit-learn library. Furthermore, a land cover map of Wonju-si was constructed using the 
optimal model, and its consistency with the land cover map of the Ministry of Environment of 
Wonju-si was examined (Fig. 2).

3.1 Preprocessing of remote sensing data 

 Using Sentinel-2 imagery, class differentiation can be maximized owing to the large seasonal 
variation in areas with vegetation. Images taken on January 3, 2019 and September 30, 2019 
were utilized to analyze the characteristics of the growth and the non-growth period.(16) The 
images of the study area on the day the images were captured were easy to analyze owing to the 
absence of clouds. The correction level of Sentinel-2 imagery was Level-1C. Sentinel-2 Level-1C 
is an ortho-image product composed of 100 × 100 km2 tiles of the UTM/WGS84 projection. In 
addition, for geometric correction, a 90 m digital elevation model (DEM) was utilized for 
resampling. Therefore, the spectral values were directly utilized for analysis without any 
pretreatment. Next, for a consistent analysis, resampling was performed at a spatial resolution of 
10 m for bands with a spatial resolution of 20 m. In addition, to cover the study area, four satellite 
images were mosaiced, and extraction by a mask was performed in the study area.

Fig. 2. Flowchart of overall research procedure.
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3.2 Selection of input variables for ML algorithms

 The spectral values of satellite imagery were utilized as input variables in the study of land 
use and cover classification using the ML algorithms. In this study, the GLCM variable, texture 
data, and topographic variables were implemented along with spectral values, which are 
commonly utilized in land use and land cover classification. The GLCM variable was derived by 
the PCA of the spectral values. The GLCM can improve the classification accuracy of the used 
area and wetland. This method was applied on the basis of previous reports indicating that an 
appropriate result for the classification of land cover is provided when the first principal 
component is utilized.(17,18) Topographical variables, including the slope and aspect derived from 
the DEM, were used as input variables in the classification process, primarily to reduce the 
misclassification of shadowed areas.(19) Therefore, a total of 39 input variables were utilized in 
this study: ten spectral variables of the Sentinel-2 imagery and eight GLCM variables of PCA1 
for both the growth and non-growth periods, and the three topographical variables constructed 
with the aid of the DEM.

3.3 Labeling the image

 The dataset is an important component in satellite-image-based land cover classification. To 
construct the dataset for the application of each ML algorithm, 86644 (approximately 1%) of the 
8664400 pixels were randomly sampled, corresponding to approximately 1% of the total study 
area.(20) The dataset extracted through this process was randomly divided in a ratio of 7:3 for 
training and validation, and the testing of each ML algorithm. The constructed dataset is 
presented in Table 1.

3.4	 Implementing	the	ML	algorithm	for	land	cover	classification	

 For the land cover classification algorithm, ensemble algorithms based on the decision tree  
were utilized with the ML algorithms. A decision tree is a non-parametric method that does not 
require assumptions, such as the linearity, normality, and equal variance of the data, and is 
highly beneficial for general types of data.(21) Ensemble algorithms based on decision trees are 
mainly divided into bagging and boosting algorithms. In this study, the RF algorithm (based on 

Table 1
Land cover classes and dataset pixel numbers collected for the classification.

Class Dataset
Training and validation Testing

Used area 3412 1455
Agricultural land 6758 2977
Forest 40553 17419
Grass 6449 2679
Wetland 888 365
Barren 1943 823
Water 647 276
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bagging) and the XGBoost and LightGBM algorithms (based on boosting) were utilized. RF has 
been extensively applied to the field of remote sensing since the 2000s and has been adopted for 
land cover classification.(6,22) The high applicability of RF to land cover classification has 
already been demonstrated.(23) XGBoost and LightGBM have relatively been developed recently, 
are based on the gradient boosting decision tree, and have the advantages of short training time 
and high accuracy. These three algorithms were utilized owing to their strengths, and the results 
were compared.(24)

 RF is a bagging-type ensemble algorithm that synthesizes predictions utilizing multiple 
decision trees. The RF classifier generally has a higher classification accuracy than a single 
decision tree. In particular, RF is effective when using small sample sizes with high-dimensional 
data input.(25) RF is the integrated form of the bootstrap, random subspace, and aggregation 
algorithms. In particular, the bootstrap and aggregation algorithms are also called bagging 
algorithms.(26,27)

 XGBoost is a decision-tree-based ensemble ML algorithm and is a popular gradient boosting 
library with parallel computation. In bagging, each decision tree is connected in parallel to 
derive different data and results. However, in gradient boosting, each decision tree is connected 
hierarchically and the result obtained from the input to the individual decision trees is reinstated 
to other individual decision trees. That is, a new predictor is trained on the basis of the residual 
error derived from the previous individual decision tree. XGBoost provides an environment that 
enables the parallel processing of serial-structured algorithms.(28,29)

 LightGBM is an algorithm with a learning time that is greatly reduced by implementing a 
gradient boosting algorithm with a lighter computational load than other ensemble algorithms, 
and its memory usage is low. A characteristic of LightGBM is that, whereas existing decision 
tree algorithms equally split the depth of trees, LightGBM does not consider the depth of trees 
but splits the node with the maximum value of loss to build an asymmetric tree. Therefore, the 
time required to equally divide the tree depth is reduced, but the risk of overfitting is greater 
than that of other decision-tree-based algorithms. Therefore, the application of the LightGBM 
algorithm is not recommended for less than 10000 items of data because of the high risk of 
overfitting.(30)

3.5 HP optimization with grid search, random search, and Bayesian optimization

 A parameter refers to a variable used to determine the functional relationship between several 
variables. In ML, parameters indicate values determined internally by the model, and HPs 
indicate values directly set by a researcher in modeling. In general, as there is no set way for 
finding an optimal value for an HP, it is determined by a subjective empirical method, termed as 
a manual search. The drawbacks of this method are that there is no guarantee that the value of an 
HP determined empirically is the optimal value in the actual model and that determining the 
optimal value becomes more difficult with increasing number of HPs. In addition, many ML 
models in the field of remote sensing in previous studies were fit using default parameters. 
However, there has not yet been a thorough examination of the parameter sensitivity. We 
analyzed the relationship between parameters and performance.(10,24,31) To address these 
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limitations, we applied all three methods of grid search, random search, and Bayesian 
optimization, which are widely used as HP optimization methods. The optimal HP selected for 
each method, the search iteration, the required time, and the accuracy are presented, and each 
optimization method was comparatively analyzed to enable its appropriate selection and 
utilization in future research.
 In a grid search, the researcher sets up a grid of HP values and builds a model for every 
combination of HPs for a comparative accuracy assessment. The grid search method has the 
advantage of being able to perform an exhaustive search for all values that HPs can take. 
However, it also has a disadvantage in that the required computation time increases exponentially 
with the number of HPs and the optimal values may never be revealed depending on the interval 
between HP values.
 In a random search, the range of values is specified for each HP, and the values of the HPs are 
randomly selected and compared. A random search has an advantage in that the number of 
search iterations can be directly specified to adjust the required time for computation, and the 
optimal parameter within the HP range can also be searched for. On the other hand, the method 
has a disadvantage of not utilizing the previous data because the values are randomly selected 
for every search.
 Bayesian optimization is a model optimization technique that defines an objective function 
and determines the optimal solution of the HP to maximize the objective function. Bayesian 
optimization allows the systematic search of HPs utilizing previously searched information.
 In the HP optimization process, the two HPs tuned in the RF algorithm are n_estimators and 
min_samples_split, where n_estimators is the number of trees in a forest, that is, the number of 
trees to be built, and min_samples_split is the minimum number of samples of the node at node 
splitting. The five HPs tuned in the XGBoost algorithm are max_depth, min_child_weight, 
gamma, subsample, and learning_rate: max_depth is the maximum depth when building a tree; 
min_child_weight is the number of samples used for additional partitioning in a tree and is 
utilized to prevent overfitting; gamma is also adopted in additional partitioning in a tree, and the 
larger the value, the less likely a node will be split in a tree, resulting in a conservative model; 
subsample is the ratio when creating a subset from the original dataset and is also implemented 
to prevent overfitting; learning_rate is the weight of the new tree in the gradient boosting model, 
and overfitting is prevented by reducing the learning rate in the gradient boosting model. For 
LightGBM, the same HPs as those in XGBoost were selected except for gamma, which does not 
correspond to an HP of LightGBM.
 The search range was set on the basis of an existing study that performed HP optimization 
using a grid search.(32) For RF and XGBoost, the search range was set to be the same as in 
previous studies, and the search range for LightGBM was set to be the same as that for XGBoost. 
In addition, the gamma parameter was excluded because of its inapplicability. In addition, the 
search iteration for the random search and Bayesian optimization was set to 75 with reference to 
the analysis of previous studies using ML algorithms in other fields (Table 2).(33)

 K-fold cross-validation was adopted to select the optimum HP. This method can obtain 0.1–
3% more accurate results than the hold-out method, which performs training and validation only 
once.(34) K-fold cross-validation divides the training and validation datasets into K subsets, 
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utilizes only one subset as validation data, performs model training with K − 1 subsets, and is 
iterated K times.(35) The average accuracy of the training and validation datasets divided into K 
subsets was calculated as the HP accuracy. The HP with the highest average accuracy was 
selected as the optimum HP.(36)

3.6	 Classification	performance	and	precision	evaluation

 Test datasets were utilized to evaluate the classification algorithm. To evaluate consistency, a 
land cover map of the study area was constructed by implementing the optimal model for each 
algorithm and was compared with the land cover map of the Ministry of Environment. As 
evaluation measures, the overall accuracy (OA) and kappa coefficient were utilized. The user 
accuracy (UA, recall) and producer accuracy (PA, precision) were adopted as secondary 
measures [Eqs. (1)–(6)].(37–39)

 ( ) ( ) ( )
( ) ( )
   

   
   

TP True Positive TN True Negative
Overall Accuracy OA

TP FP False Positive TN FN False Negative
+

=
+ + +

 (1)

 ( )   TPUser Accuracy UA
TP FN

=
+

 (2)

Table 2
Searches for optimum HPs by ML algorithms.
Classification 
algorithm

Optimization
 method HP Search 

range
Search 

iterations

RF

Grid search n_estimators [100, 110, ..., 990, 1000] 270min_samples_split [7, 13, 20]
Random search/

Bayesian 
optimization

n_estimators [100–1000]
75min_samples_split [7–20]

XGBoost

Grid search

max_depth [2, 4, 6, 8, 10]

3125
min_child_weight [1, 2, 3, 4, 5]

gamma [0, 0.1, 0.2, 0.3, 0.4]
subsample [0.6, 0.7, 0.8, 0.9, 1]

learning_rate [0.01, 0.05, 0.1, 0.2, 0.3]

Random search/
Bayesian 

optimization

max_depth [2–10]

75
min_child_weight [1–5]

gamma [0–0.4]
subsample [0.6–1]

learning_rate [0.01–0.3]

LightGBM

Grid search

max_depth [2, 4, 6, 8, 10]

625min_child_weight [1, 2, 3, 4, 5]
subsample [0.6, 0.7, 0.8, 0.9, 1]

learning_rate [0.01, 0.05, 0.1, 0.2, 0.3]

Random search/
Bayesian 

optimization

max_depth [2–10]

75min_child_weight [1–5]
subsample [0.6–1]

learning_rate [0.01–0.3]
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4. Results

4.1 Optimization of HPs in ML algorithms

 The OA derived from HP selection decreased in the order XGBoost > LightGBM > RF. 
XGBoost with the grid search showed the highest performance in terms of OA, and RF with the 
random search showed the lowest performance. The random search was effective in rapidly 
finding HPs, while the grid search required a long computational time. The computational time 
of the grid search method in RF was about twice that of the other optimization methods. The 
grid search in XGBoost and LightGBM took more than 50 times longer than the random search 
(Table 3).

4.2	 Evaluation	of	classification	performance	in	ML	algorithms

 Tables 4–6 show the relationship between the label data and the corresponding classified data 
for each ML algorithm. The OA and kappa coefficient were 82.87 and 65.91% for the RF model 
with the grid search, 83.24 and 66.91% for the XGBoost model with the grid search, and 83.08 
and 66.73% for the LightGBM model with Bayesian optimization, respectively. The classification 
performance decreased in the order XGBoost > LightGBM > RF. The accuracy evaluated using 
the receiver operating characteristic (ROC) curve also decreased in the order XGBoost > 
LightGBM > RF. In the three ML algorithms, the accuracy of each land cover item evaluated 
using the ROC curve decreased in the order water > used area > forest > agricultural land > 
wetland > barren > grass. The three ML algorithms showed no significant difference in accuracy 
(Fig. 3). 
 The calculated results of the feature importance exhibited differences between the three 
models. The feature importance of the RF model decreased in the order Band 4 > Band 3 > Band 
5 for satellite images taken during the growth period. For the XGBoost model, the feature 
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Table 3
Results of HP selection according to the optimization method by algorithm.
Algorithm Optimization method HP Optimal value OA Time (min)

RF

Grid search n_estimators 680 0.8270 58min_samples_split 7

Random search n_estimators 678 0.8268 17min_samples_split 8

Bayesian optimization n_estimators 898 0.8269 20min_samples_split 8

XGBoost

Grid search

max_depth 10

0.8327 613
min_child_weight 2

gamma 0
subsample 0.8

learning_rate 0.1

Random search

max_depth 8

0.8318 15
min_child_weight 2

gamma 0.38
subsample 0.85

learning_rate 0.17

Bayesian optimization

max_depth 9

0.8313 36
min_child_weight 2

gamma 0.19
subsample 0.93

learning_rate 0.16

LightGBM

Grid search

max_depth 8

0.8305 50min_child_weight 5
subsample 0.6

learning_rate 0.1

Random search

max_depth 8

0.8303 1min_child_weight 4
subsample 0.71

learning_rate 0.09

Bayesian optimization

max_depth 2

0.8279 4min_child_weight 3
subsample 0.89

learning_rate 0.06

importance decreased in the order Band 3 > Band 4 > Band 2 for satellite images taken during 
the growth period. For the LightGBM model, the calculated order of the feature importance 
during the growth period was DEM > Band 8 > Band 2. In addition, the values of feature 
importance, which was calculated differently for each model, were summed, and the resulting 
value was assumed to be the relative feature importance of each variable.(40) The calculated 
relative feature importance during the growth period was in the order Band 3 > Band 4 > Band 
2. In addition, the RGB band was selected as the most important predictor. This result was 
consistent with the findings of a previous study that reported a high level of separation in the 
images taken during the growth period in the classification process. This was due to the higher 
likelihood of separated classification in the images taken during the growth period than those 
taken during the non-growth period (Fig. 4).
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Table 4
RF–label data confusion matrix. (Unit: pixel)

Label data

RF

Type Used 
area

Agricul-
tural land Forest Grass Wetland Barren Water Total UA (%)

Used area 1128 123 71 183 5 189 6 1705 66
Agricultural 
land 149 2138 94 467 174 177 20 3219 66

Forest 25 240 16844 974 35 115 16 18249 92
Grass 123 435 375 1010 59 202 9 2213 46
Wetland — 5 — 15 79 3 3 105 75
Barren 26 32 33 30 2 122 2 247 49
Water 4 4 2 — 11 15 220 256 86
Total 1455 2977 17419 2679 365 823 276 25994
PA (%) 78 72 97 38 22 15 80
OA (%) 82.87
Kappa (%) 65.91

Table 5
XGBoost–label data confusion matrix. (Unit: pixel)

Label data

XGBoost

Type Used area Agricul-
tural land Forest Grass Wetland Barren Water Total UA (%)

Used area 1107 111 57 174 7 176 4 1636 68
Agricultural 
land 135 2129 85 429 129 157 20 3084 69

Forest 36 215 16799 891 28 102 11 18082 93
Grass 133 447 431 1112 63 218 10 2414 46
Wetland 4 29 5 33 122 7 10 210 58
Barren 39 42 40 39 3 150 3 316 47
Water 1 4 2 1 13 13 218 252 87
Total 1455 2977 17419 2679 365 823 276 25994
PA (%) 76 72 96 42 33 18 79
OA (%) 83.24
Kappa (%) 66.91

Table 6
LightGBM–label data confusion matrix. (Unit: pixel)

Label data

LightGBM

Type Used area Agricul-
tural land Forest Grass Wetland Barren Water Total UA (%)

Used area 1111 116 66 174 7 172 3 1649 67
Agricultural 
land 129 2127 89 431 132 162 10 3080 69

Forest 28 206 16765 885 24 98 8 18014 93
Grass 128 427 443 1079 51 208 16 2352 46
Wetland 4 40 2 42 130 11 13 242 54
Barren 52 57 47 64 3 161 2 386 42
Water 3 4 7 4 18 11 224 271 83
Total 1455 2977 17419 2679 365 823 276 25994
PA (%) 76 71 96 40 36 20 81
OA (%) 83.08
Kappa (%) 66.73
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Fig. 3. (Color online) ROC curves: (a) RF, (b) XGBoost, and (c) LightGBM. 

(a)

(b)

(c)
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4.3	 Distribution	of	land	cover	classification	by	ML	algorithms	

 Figure 5 shows the land-use land-cover maps obtained by adopting the three land cover 
classification models. The Ministry of Environment’s land cover map classified all narrow 
streams and roads with a resolution of 1 m. However, the results of ML algorithms that classified 
maps were generated using satellite images with a spatial resolution of 10 m. Therefore, small 
streams were classified as grass or agricultural land, and narrow farm roads were classified as 
agricultural land.

4.4 Precision evaluation with land cover map

 We compared the consistency between the land cover maps of the study area constructed 
using the land cover classification models and the land cover map of the Ministry of 
Environment. All three models exhibited an OA of approximately 83% and a kappa coefficient 
of about 66%. The average OA of the RF model was 82.90% and its kappa coefficient was 
66.15%, the average OA of the XGBoost model was 83.39% and its kappa coefficient was 
67.39%, and the average OA of the LightGBM model was 83.10% and its kappa coefficient was 
66.92%. The average OA and kappa coefficient were the best in XGBoost among the three 
models (Tables 7–9).

Fig. 4. Ten most important features: (a) RF, (b) XGBoost, (c) LightGBM, and (d) sum of feature importance values.

(a) (b)

(c) (d)
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Fig. 5. (Color) Classification maps: (a) RF, (b) XGBoost, and (c) LightGBM.

Table 8
XGBoost–land cover map confusion matrix. (Unit: pixel)

Label data

XGBoost

Type Used 
area

Agricul-
tural land Forest Grass Wetland Barren Water Total UA (%)

Used area 3692 401 191 515 22 564 20 5405 68
Agricultural 
land 445 7158 295 1549 409 498 57 10411 69

Forest 89 605 55874 3021 86 334 26 60033 93
Grass 445 1442 1406 3822 231 706 50 8101 47
Wetland 8 78 9 92 455 35 36 714 64
Barren 158 155 120 157 12 554 6 1162 48
Water 8 17 7 10 50 26 700 817 86
Total 4845 9855 57900 9166 1265 2718 895 86644
PA (%) 76 73 96 42 36 20 78
OA (%) 83.39
Kappa (%) 67.39

Table 7
RF–land cover map confusion matrix. (Unit: pixel)

Label data

RF

Type Used 
area

Agricul-
tural land Forest Grass Wetland Barren Water Total UA (%)

Used area 3722 428 223 568 24 627 22 5616 66
Agricultural 
land 503 7187 288 1644 577 536 74 10809 66

Forest 78 709 55977 3316 109 377 37 60604 92
Grass 407 1366 1291 3484 210 663 46 7467 47
Wetland 3 26 1 38 292 17 17 392 74
Barren 120 121 114 103 7 470 2 938 50
Water 11 18 6 12 46 28 697 818 85
Total 4845 9855 57900 9166 1265 2718 895 86644
PA (%) 77 73 97 38 23 17 78
OA (%) 82.90
Kappa (%) 66.15

(a) (b) (c)
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5. Discussion

5.1 HP optimization

 The search time of the optimal HPs differed according to the combination of the ML 
algorithm and the optimization method. The combination of LightGBM and the random search 
took the shortest time to optimize the parameters, and the combination of XGBoost and the grid 
search took the longest time. Regardless of the ML model, the time required for the optimization 
method increased in the order random search < Bayesian optimization < grid search. In addition, 
the number of searches of the HPs affected the search time in the optimization of the HPs over 
the search range. In addition, although the number of searches was set to be the same for the 
random search and Bayesian optimization, the required times for the optimization analysis were 
highly different owing to the HPs. The combination of XGBoost and Bayesian optimization took 
the longest time, and the combination of LightGBM and the random search took the shortest 
time. In particular, the larger the value of the HP n_estimators, the longer the time required to 
build the model. In this study, the random search was superior to Bayesian optimization in terms 
of analysis time. The random search and Bayesian optimization are characterized by random 
optimization. Bayesian optimization is a process of determining new parameters by setting the 
objective function and fitting the Gaussian model, resulting in the time required being longer 
than that of the random search.

5.2 Model evaluation

 In terms of the OA and kappa coefficient, XGBoost was the best model. The kappa coefficient 
of the matrices for the three ML algorithms was more than 60%, and both the classification 
results and the label data were consistent. In addition, UA and PA were highest for forest and 

Table 9
LightGBM–land cover map confusion matrix. (Unit: pixel)

Label data

LightGBM

Type Used 
area

Agricul-
tural land Forest Grass Wetland Barren Water Total UA (%)

Used area 3718 439 203 556 25 584 21 5546 67
Agricultural 
land 444 7091 309 1585 403 497 55 10384 68

Forest 84 591 55757 2992 78 332 20 59854 93
Grass 396 1403 1451 3677 201 659 37 7825 47
Wetland 14 121 18 134 483 50 43 863 56
Barren 180 185 153 208 16 568 11 1321 43
Water 9 24 10 14 59 28 707 851 83
Total 4845 9855 57900 9166 1265 2718 895 86644
PA (%) 77 72 96 40 38 21 79
OA (%) 83.10
Kappa (%) 66.92
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lowest for barren. This is because the spectral characteristics of barren are similar to those of 
fallow agricultural land, construction sites in the used area, and grassland. 
 In addition, in the classification process using 1-m-resolution images, misclassification 
occurred because the landscaping areas where herbaceous plants were planted were mixed with 
label data within one pixel.

5.3 Limitations and future research 

 In this study, we constructed a dataset using existing spatial data. The advantage of this 
method is that labeling data can be quickly obtained over a large area. However, even though 
images produced in the same year as the spatial data were used, the label data were inconsistent 
for areas that changed rapidly, such as harvested areas in the forest area and construction sites in 
the used area. Label data were also inconsistent in areas that require a high level of security, such 
as airports and military bases. Therefore, the supplementation of the data and revisions will be 
needed to use the spatial data as label data. Furthermore, the spatial resolution of the Sentinel-2 
satellite is approximately 10 m. One pixel can thus contain different classes. In the case of pixels 
in which several categories are mixed, particularly those at class boundaries, the accuracy of 
pixels can be enhanced by improving the spatial resolution.
 
6. Conclusions

 We applied ensemble ML algorithms based on a decision tree to land cover classification. 
The dataset used for the ML algorithms was constructed by including topographic information 
and GLCM values, which were derived through PCA and texture analysis, as well as the spectral 
information of satellite images. In particular, we presented the process of optimizing HPs, 
including the range and search iteration of HPs, by applying three methods (grid search, random 
search, and Bayesian optimization) while tuning the HPs for the application of the ML 
algorithms. The results of this study are highly applicable to tree-based ML research and can be 
applied to object-based classification as well as pixel-based classification in the classification of 
land cover types. It is expected to be possible to classify land cover with high reliability if a deep 
learning algorithm in the field of CNN-based semantic segmentation is applied. We also 
constructed a large training dataset using previously established data. If a dataset is constructed 
by correcting and supplementing data in high-security areas and areas with a time series 
inconsistency using prepared data in the future, although the cost will increase, it is expected 
that reliable datasets and models can be built.
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