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	 The damage caused by landslides is increasing worldwide due to climate change. In Korea, 
damage from landslides occurs frequently, making it necessary to develop effective response 
strategies. Presently, the consideration of cultural heritage sites in these strategies is insufficient. 
The purpose of this study is to analyze the spatial relationship between cultural heritage sites in 
the Chungcheong region of Korea and some areas susceptible to landslides. The Chungcheong 
region has many historically important cultural heritage sites. There are various relics in 
landslide susceptibility areas (LSAs), with sites associated with religion (171), history (148), 
traditional architecture (138), tombs (92), educational institutions (47), landscapes (20), and 
irrigation facilities (2). Additionally, the percentages of LSAs with different types of cultural 
heritage sites were investigated and found to be as follows: landscapes (37.03%), tombs (27.72%), 
religion (26.06%), history (25.32%), education (25.26%), traditional buildings (24.74%), and 
irrigation facilities (18.75%). According to the judgment process of prioritizing prevention 
measures, sites associated with history should be given the highest priority to prevent landslide 
damage, followed by those associated with religion. The approach and results of this study are 
expected to help prevent landslide damage in cultural heritage sites by aiding the development of 
decision-making strategies.

1.	 Introduction

	 The intensity and frequency of torrential rain and typhoons are increasing worldwide due to 
climate change, and the damage from landslides is increasing.(1) South Korea suffers from 
frequent landslides and spends hundreds of billions of won each year on preventing them and 
restoring damaged areas.(2) Landslides cause casualties and property damage as well as direct 
and indirect damage to roads and major facilities. Thus, assessing the degree of landslide 
damage should be considered as a serious and important management issue.(3)
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	 In South Korea, where mountainous areas account for most of the country, cultural heritage 
sites are often located in mountainous areas, especially those made of stone, which are damaged 
by natural disasters such as landslides and earthquakes and often have no special protection 
facilities.(4,5) A total of 432 cultural heritage sites were damaged by natural disasters such as 
torrential rain and storms from 2008 to 2017, and the budget for the restoration of the damage 
was 34.2 billion won.(6) The Cultural Heritage Administration spends more than 600 billion won 
annually on preserving cultural heritage sites and establishing disaster prevention systems, but 
the extent of damage to cultural heritage sites in 2020 was four times that in 2017.(7) If the 
incidence of torrential rain and typhoons increases due to climate change, the damage and 
destruction of cultural heritage sites caused by landslides are expected to increase. Cultural 
heritage sites are an important asset, serving as a compendium of human history and cultural 
activities, making it necessary to prevent them from damage caused by landslides.
	 To prevent landslide damage and casualties, research studies to analyze landslide 
susceptibility areas (LSAs) and landslide occurrence and establish response strategies are in 
progress.(8) Identifying and managing LSAs before landslides occur help to minimize the 
damage caused by landslides. Studies are presently being conducted to develop a new landslide 
susceptibility (LS) analysis methodology by combining logistic regression analysis, an artificial 
neural network, and a random forest.(9) Furthermore, studies to evaluate LS using the maximum 
entropy model,(10–12) GIS-based machine studies to evaluate LS using learning techniques,(1,13) 
and studies to evaluate landslide risks using machine learning and synthetic aperture radar 
(SAR) techniques(14) are also being conducted.
	 Existing research on LSAs has focused on internal damage to forests, or on areas adjacent to 
forests where landslides cause damage to human lives and infrastructure.(15) Cultural heritage 
sites are characterized by deterioration of their condition over time, continuous exposure to 
damage from disasters, and an inability to restore them to their original form after damage.(16) 
However, there has been insufficient research on the possibility of landslide damage to cultural 
heritage sites, a valuable asset of humanity.(17,18) In particular, considering that the number of 
natural disasters has been increasing recently and many domestic cultural heritage sites are 
located in forests, an urgent task is to evaluate their LS. Therefore, in this study, we investigate 
the relationship between cultural heritage sites and LSAs in the Chungcheong region, which has 
a rich cultural history and has been suffering from landslides.
	 Additionally, most studies have only considered information about landslide sites at a specific 
time in the process of analyzing LSAs.(19) This is because cases of landslides repeatedly 
occurring in the same area over many years are rare, and many studies have been conducted 
only at specific times when weather changes have occurred. However, if the information on 
landslides at a particular time alone is used to analyze LSAs, the specificity of the results will 
increase.(20) This limitation can be improved by considering the information of landslide 
occurrence in multiple years; in this study, we attempt to improve the information on landslide 
occurrence in four target years in the target region.
	 The purpose of this study was to analyze LSAs and their spatial relationship with cultural 
heritage sites in the Chungcheong region to prevent and reduce damage to cultural heritage sites 
caused by landslides. In particular, the government intends to identify the priority level of sites 
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when preventing landslides by classifying, various cultural heritage sites in the Chungcheong 
region and confirming that many LSAs have different types of cultural heritage sites. The results 
of this study are expected to help prevent landslide damage to cultural heritage sites by providing 
decision makers with information on the types and locations of sites that are urgently in need of 
landslide prevention measures.

2.	 Methods

2.1	 Scope of study

	 The spatial scope of this study includes Chungcheongbuk-do, Chungcheongnam-do, Sejong, 
and Daejeon Metropolitan City (Fig. 1). The Chungcheong region is located in the center of 
South Korea and is an important historical and cultural area with 1255 cultural heritage sites. 
The years selected for this study are 2011, 2012, 2017, and 2018, in which landslides occurred 
frequently in the Chungcheong region.
	 The research protocol used in this study was as follows. First, to construct environmental 
variables, prior research on landslides was referenced, and the environmental variables selected 
were rainfall, topography, and land use, which are considered the main causes of landslides. The 
information on landslide sites was provided by the Korea Forestry Administration. Information 
on the location and area of cultural heritage sites designated by the government was established 
on the basis of the coordinates of cultural heritage sites provided by the Cultural Heritage 
Administration. The environmental variables were entered into the spatial distribution model 

Fig. 1.	 (Color online) Study area.
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with a resolution of 30 m × 30 m using Esri ArcGIS 10.8 software. The rainfall variables were 
selected in consideration of the information on the timing of landslides. No significant changes 
in the topographic variables were observed over time, and data from a specific period of time 
were used. 
	 It is necessary to evaluate the predictive ability of landslide control factors to obtain accurate 
LS modeling. The pre-existing strong correlations between environmental variables in the 
landslide model adversely affect model performance due to multicollinearity.(21,22) Therefore, in 
this study, environmental variables were selected using Spearman’s rank correlation coefficient, 
which is an efficient tool for representing the negative or positive correlations between factors. 
To evaluate LS, nine spatial distribution models were selected from the representative models 
used in previous studies. The nine spatial distribution models were driven using Biomod2, a 
statistical package in R script, and the nine models were synthesized by applying the ensemble 
technique. 
	 The LSAs inside the cultural heritage sites were analyzed using overlapping LS maps and the 
locations of cultural properties. To identify cultural heritage sites with high LS, cultural 
properties were classified into 57 types by referring to dictionary definitions then reclassified 
into seven types according to the classification criteria of the Cultural Heritage Administration. 
The ratio of LSAs with the seven types of cultural heritage was identified, and those that needed 
urgent measures to protect them against landslides were identified.

2.2	 Landslide occurrence points

	 The points of landslide occurrence in the target years are shown in Fig. 2. The total number of 
landslides that occurred in the four target years was 273, most of which were caused by torrential 
rain and typhoons between June and September. There were 65 landslides in 2011, 43 in 2012, 
108 in 2017, and 57 in 2018. 
	 Landslide occurrence point data were collected from Korea Forest Service. The landslide 
occurrence point data were constructed in two ways. First, data are collected through field 
investigations by local government officials, which are conducted immediately after a landslide 
occurs. However, as it is impossible to conduct field investigations in all landslide areas, 
investigations are primarily conducted in areas where damage to humans and property has 
occurred. Second, government agencies use satellite image data every year to estimate the 
locations of landslides and produce a database. A reliable database of landslide occurrences has 
been established through these two methods. In the data construction method, landslide sites are 
investigated as close as possible to the trigger point where the landslide started.(23)

2.3	 Environmental variables

	 The environmental variables used in this study were those identified to be closely related to 
landslides in previous studies (Table 1). We initially selected 19 environmental variables related 
to rainfall, topography, land use, and vegetation. Rainfall factors included annual average 
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Fig. 2.	 (Color online) Landslide points for the four target years. (a) 2011, (b) 2012, (c) 2017, and (d) 2018.

(a) (b)

(c) (d)

rainfall (TR), days with rainfall of more than 150 mm (OV150), days with rainfall of more than 
80 mm (OV80), daily maximum (DM) rainfall, and hourly maximum (HM) rainfall. 
	 Topographic factors included elevation, slope, curvature, profile curvature, plane curvature, 
aspect, stream power index (SPI), topographic wetness index (TWI), and soil depth. The 
normalized difference vegetation index (NDVI) was selected as the vegetation factor. Land use 
factors included distance to the nearest road (Road), distance to the nearest river (River), 
bedrock type (Bedrock), and land use type.(24–27) 
	 Among the topographic factors, slope, elevation, profile curvature, plane curvature, aspect, 
SPI, and TWI were derived from digital elevation model (DEM) data with 30 m × 30 m 
resolution provided by the National Geographic Information Service. Soil depth was obtained 
from the GIS database provided by the National Water Resources Management Comprehensive 
System. The rainfall factors were subjected to GIS interpolation to create data for the Automatic 
Synaptic Observation System (ASOS) and Automatic Weather System (AWS) through the 
Meteorological Administration. The nearest AWS station was used to collect accurate rainfall 
data (Fig. 1). NDVI was obtained using data from the United States Geological Survey. The 
distance to the nearest road and the distance to the nearest river were identified using data from 
the National Geographic Information Service, and the bedrock type was obtained using data 
provided by the Ministry of Environment.
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	 The rainfall factors are major factors causing landslides because they can affect the shear 
strength of a slope. Elevation directly affects various environmental conditions, that is, the 
structure of the vegetation and the climate. Slope affects hydrological conditions, so it indirectly 
affects landslides. Aspect determines the degree of solar radiation, which can affect soil moisture 
and slope stability. Plane curvature affects the convergence and dispersion of flows. SPI 
measures surface runoff erosion capacity and TWI predicts areas sensitive to saturated soil 
surfaces. The load may depend on the soil depth, which may affect the occurrence of landslides. 
	 The NDVI indicates vegetation conditions and groundwater content, which can affect 
landslide occurrence. The shorter the distance from the nearest river, the more likely a slope will 
be damaged by a landslide because the river flow can erode the material and move away from its 
original position. In areas adjacent to roads, road construction reduces ground stability. There 
are various types of bedrock in the region, and each type has different characteristics. Some 
bedrock types are more susceptible to landslides. We reflected information on bedrock through 
geological maps.

Table 1
List of environmental variables. The 19 environmental variables initially used for LSA analysis were collected in 
consideration of the characteristics of the locations of cultural heritage sites. 
Class Variable Abbreviation Type References Data references

Rainfall

Annual average rainfall TR Continuous 13,28,29

Korea 
Meteorological 
Administration 

(2011, 2012, 2017, 
2018)

Days with more than 
150 mm rainfall OV150 Continuous 30–32

Days with more than 
80 mm rainfall OV80 Continuous 30,31

Daily maximum rainfall DM Continuous 30,31
Hourly maximum 

rainfall HM Continuous 33,34

Topography

Elevation Elevation Continuous 13,24,26,28,35–38

National
Geographic 
Information 

Institute (2012)

Slope (˚) Slope Continuous 2,13,24,26,28,29,35–39
Curvature Curvature Continuous 13,28,35,37

Profile curvature Profile 
curvature Continuous 13,28,35–38

Plane curvature Plane curvature Continuous 8,13,28,29,35,36,38
Aspect Aspect Continuous 2,13,24,26,28,29,35–39

Stream power index SPI Continuous 13,26,29,39
Topographic 

wetness index TWI Continuous 13,26,28,29,35,36,38,39

Soil depth Soil depth Continuous 0–43 WAMIS (2008)

Vegetation Normalized difference 
vegetation index NDVI Continuous 13,29,44

United States 
Geological 

Survey (2018)

Land use

Distance to 
nearest road (m) Road Continuous 13,28,29,35,36,39 National 

Geographic 
Information 

Institute (2017)
Distance to 

nearest river (m) River Continuous 13,28,29,35,36,39

Bedrock type 
(three types) Bedrock Categorical 13,24,28,29,35,36,39 Ministry of 

Environment 
(2010)Land use Land use Categorical 13,24,28,29,35,37
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2.4	 Spatial distribution models

	 In this study, representative spatial distribution models used in landslide analysis were run 
and synthesized into ensemble models to analyze the LSAs. The types of spatial distribution 
models available are statistical and machine-learning-based; although their reliability depends 
on the input variables, the machine-learning-based models have been found to have slightly 
higher reliability.(30) Accordingly, nine spatial distribution models often used in the study of 
landslides were used in this study (Table 2). The reliability of each model was evaluated by 
receiver operating characteristic (ROC) analysis of its results and the area under the curve 
(AUC) value. Additionally, the contributions of each variable applied to the models were 
calculated, and the relationship between each variable and the landslide site was determined by 
this calculation. The final LS map was produced by the weighted mean of probabilities (PMW) 
method as the ensemble method, which had the highest AUC value among the five ensemble 
models considered in this study (Table 3).(13)

Table 2
Spatial distribution models utilized in this study. Nine statistical or machine-learning-based models were used, and 
the model results were synthesized through the ensemble methods.
Abbreviation Model Category
GLM Generalized linear model Statistical model
GAM Generalized additive model Statistical model
GBM Generalized boosting model 

(usually called boosted regression trees) Machine-learning-based model

ANN Artificial neural network Machine-learning-based model
SRE Surface range envelope 

(usually called BIOCLIM flexible discriminant analysis) Machine-learning-based model

FDA Flexible discriminant analysis Machine-learning-based model
MDA Mixture discriminant analysis Machine-learning-based model
RF Random forest Machine-learning-based model
MAXENT Maximum entropy Machine-learning-based model

Table 3
Ensemble methods used to integrate the results of spatial distribution models. In this study, the results of the 
ensemble model with the highest reliability were utilized.
Abbreviation Description
PM Mean of probabilities. This model calculates the mean of probabilities for the selected models.
PCI Confidence interval. This model is the confidence interval for the probability of the mean and is a 

good complement to the PM model. 
PME Median of probabilities. This model is the same as the probability of the median for the selected 

models. The median is better than the mean for avoiding the impacts of outliers.
CA Model committee averaging. This model first transforms the probabilities of selected models into 

binary values by using the cutoff value of each model. After transformation, the model calculates 
the average of the binary values.

PMW Weighted mean of probabilities. This model calculates the relative importance of the weights 
by using the proportion of evaluation scores. Therefore, the results of ‘‘good’’ models are 

discriminated from those of ‘‘bad’’ models.
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	 Among the nine spatial distribution models, the generalized linear model (GLM) is a 
generalization of multiple regression models, which employs response variables with a normal 
distribution using a connection function, that is, response distributions. The generalized additive 
model (GAM) is a powerful methodology for detecting and explaining nonlinear response 
functions. The results obtained with the GAM can be used to build a parametric model. The 
generalized boosting model (GBM) does not apply the same probability to environmental 
variables, but is similar to a weighted variable that applies a higher selection probability for more 
important variables. An artificial neural network (ANN) is a two-step classification or regression 
model. The hidden layer of an ANN consists of features that are a linear combination of input 
variables. The output variable is a weighted combination of the hidden layers. The surface range 
envelope (SRE) is a boxcar or parallel pipe classifier using bioclimatic variables (BIOCLIM). 
The SRE evaluates the potential distribution of dependent variables using multidimensional 
environmental spaces limited by the values of all dependent variables. Flexible discriminant 
analysis (FDA) first aligns variables with the multivariate adaptive regression splines (MARS) 
model and then performs dimension reduction before attempting classification. Mixture 
discriminant analysis (MDA) is a type of linear analysis that models the multivariate density of 
variables by mixing multivariate normal distributions. Random forest (RF) is a bootstrap 
aggregation method that creates relevant trees and averages them, where many trees consist of 
subsets of input data. In addition, each division of the tree model consists of an arbitrary subset 
of input variables. Maximum entropy (MAXENT) is based on statistical mechanics and 
information theory, and the best approximation to an unknown distribution can be analyzed 
using this method (Table 2).

3.	 Results

3.1	 Model evaluation

	 Of the 19 initially selected environmental variables, 14 variables were reflected in the final 
LS model. In consideration of multicollinearity, variables having a high correlation (0.6) with 
other environmental variables were excluded from the final LS model.(22,24,45) As a result of 
Spearman correlation analysis on the 19 environmental variables, five variables (OV80, DM, 
HM, curvature, and land use) with high correlations were excluded. 
	 The model reliability and the contribution of each variable in each target year were derived 
from modeling. As the result of the reliability evaluation of the ensemble model, the reliability 
values decreased in the order 2012 > 2017 > 2018 > 2011, although all four models had high 
reliability. The 2011 model showed an AUC value of 0.973 and the contributions of OV150 and 
TR were high. The 2012 model showed an AUC value of 0.996 with high contributions of TR, 
elevation, and bedrock. The 2017 model showed an AUC value of 0.993 and the contributions of 
TR, elevation, and OV150 were high. The 2018 model showed an AUC value of 0.987 with high 
contributions of OV150 and elevation (Table 4).
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Table 4
Model reliability and variable contribution by target year. The ranking of the contribution of variables differed with 
the year.
Target year 2011 2012 2017 2018
AUC value 0.973 0.996 0.993 0.987

Variables 
and 
contribution

Variable
Percent 

contribution
(%)

Variable
Percent 

contribution
(%)

Variable
Percent 

contribution
(%)

Variable
Percent 

contribution
(%)

OV150 39.0 TR 36.5 TR 60.7 OV150 46.6
TR 32.6 Elevation 26.2 Elevation 17.8 Elevation 18.1

Elevation 14.0 Bedrock 22.7 OV150 13.8 Bedrock 12.0
Road 12.7 River 17.4 River 7.4 TR 10.7

Bedrock 8.9 Road 11.4 Bedrock 6.8 Slope 9.4
River 6.3 Slope 9.0 SPI 6.2 Road 7.8

Aspect 5.7 Profile 
curvature 8.5 Aspect 5.5 River 7.8

SPI 5.1 NDVI 7.0 Road 5.3 SPI 7.0
Soil depth 4.9 Aspect 6.8 Slope 4.8 Aspect 6.2

NDVI 4.6 OV150 6.7 Plane 
curvature 2.0 Profile 

curvature 5.5

Slope 4.3 Plane 
curvature 6.3 Soil depth 1.3 Soil depth 4.5

TWI 3.6 TWI 5.4 NDVI 1.3 TWI 4.1
Plane 

curvature 3.3 Soil depth 5.3 TWI 1.2 Plane 
curvature 2.5

Profile 
curvature 2.7 SPI 4.4 Profile 

curvature 0.9 NDVI 2.2

3.2	 LSA

	 A map was derived to identify the risk of landslides in cultural heritage sites in the 
Chungcheong region through the analysis of the LSAs (Fig. 3). The distribution of landslide 
hazard areas depends on the rainfall pattern, which differed with the year. Since the north of the 
Chungcheong region is considered to have high LS, it is necessary to manage this risk. In 2011, 
the LSAs were mainly distributed in the southern part of the study area. In 2017, the LSAs were 
distributed over a smaller area than in the other years. In 2018, the LSAs were concentrated in 
the southern and southwestern parts, with some LSAs also distributed in the central and northern 
parts.

3.3	 LS of cultural heritage sites

	 By analyzing the number of cultural heritage sites in LSAs by overlapping the locations of LS 
maps and state-designated cultural heritage sites, it was found that 200 sites were located in 
LSAs in 2011, 268 in 2012, 48 in 2017, and 102 in 2018 (Table 5). These cultural heritage sites are 
likely to experience large-scale damage due to landslides, especially if the entire area of the site 
belongs to the LSA. There were at least 48 cultural heritage sites in LSAs in the four years, and 
the number tended to vary greatly with the size of the LSAs. 
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	 The number of cultural heritage sites in LSAs increased significantly from 350 in 2011 to 496 
in 2012, decreased to 94 in 2017, and finally increased to 222 in 2018. Even if only part of a 
cultural heritage site belongs to an LSA, it is highly likely to be directly or indirectly damaged 
by landslides, making the actual number of cultural heritage sites exposed to landslide damage 
quite large. 
	 The number of cultural heritage sites belonging to LSAs changed with the target year. In 
contrast to 2011, when LSAs were concentrated in the southern part of the target region, LSAs 
were concentrated in the central and northern parts of the target region in 2017, and fewer 
cultural heritage sites were included in the LSAs (Fig. 3). Although the distribution of cultural 
heritage sites in the target region is not concentrated in a specific area, it has been confirmed 
that there are many cultural heritage sites located in areas susceptible to landslides.

Table 5
Number of cultural heritage sites completely or partly located in LSAs.

Year Number of cultural heritage sites
Completely lying in LSA Partially lying in LSA

2011 200 350
2012 268 496
2017 48 94
2018 102 222

Fig. 3.	 (Color online) LSAs of each target year. Areas marked in red have high LS and areas in yellow indicate the 
locations of cultural heritage sites. (a) 2011, (b) 2012, (c) 2017, and (d) 2018.

(a) (b)

(c) (d)
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4.	 Discussion

	 Regarding the types of heritage sites, the total number of different cultural heritage sites 
located in LSAs in the four target years is in the order religion > history > traditional buildings > 
tombs > education > landscapes > irrigation facilities (Fig. 4, Table 6). In addition, the number of 
cultural heritage sites by type located in LSAs as a percentage of the total number of each type 
of cultural heritage decreased in the order landscape > tombs > religion > history > education > 
traditional buildings > irrigation facilities (Fig. 5). The cultural heritage types in this study were 
classified by referring to the criteria of the Cultural Heritage Administration.
	 In the future, the possibility of landslides is expected to increase owing to the increase in the 
frequency of torrential rain caused by climate change. As a result, more landslide damage to 
cultural heritage sites is expected, and efforts should be made in advance to prevent this. As the 
current policy of the Cultural Heritage Administration, disaster response manuals for protecting 
cultural heritage are distributed, in which measures are provided to respond to earthquakes, 
fires, and forest fires. However, these manuals focus only on responses to disasters and recovery 
from the damage; there is no explanation on how to prevent specific types of disaster such as 
landslides. Therefore, it is necessary to present specific guidelines for preventing landslide 
damage to cultural heritage sites.

Table 6
Numbers and percentages of cultural heritage sites by type in LSAs by target year. 

Year Class Religion Tombs History Traditional 
buildings

Irrigation 
facilities Education Landscapes

2011 Number 55 36 35 54 0 17 3
Percentage 19.5 24.5 15.3 18.4 0.0 17.7 5.6

2012 Number 79 26 70 56 2 22 13
Percentage 28.0 17.7 30.6 19.1 25.0 22.9 24.1

2017 Number 15 15 12 4 0 2 0
Percentage 5.3 10.2 5.2 1.4 0.0 2.1 0.0

2018 Number 22 15 31 24 0 6 4
Percentage 7.8 10.2 13.5 8.2 0.0 6.3 7.4

Fig. 4.	 (Color online) Total numbers of cultural heritage sites located in areas assessed as LSAs in the four years. 
Sites associated with religion, history, and traditional buildings were the most susceptible types. 
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	 The concept of the LSA derived from this study is helpful in understanding the priorities for 
preventing landslides in cultural heritage sites. From the information of cultural heritage sites 
located in LSAs, it is necessary to identify sites expected to be severely damaged by landslides 
and to prepare preventive measures. We are unable to evaluate the LS in more detail for 
individual cultural heritage sites in this study because there are too many cultural heritage sites 
to deal with. Thus, we propose a method of identifying the priorities for the seven types of 
cultural heritage site. There are three pieces of information that should be considered as a 
priority: first, whether the cultural heritage types are included in an LSA in all four target years, 
second, whether the cultural heritage type is often located in LSAs, and third, whether the 
proportion of cultural heritages sites belonging to LSAs is high while also considering the total 
number of cultural heritage sites in question.
	 The method of identifying priorities was applied to the results derived in this study. In the 
first phase, the irrigation facility and the landscape types were excluded, which had not been 
partly or completely excluded in LSAs in all four years. In the second stage, sites associated with 
religion, history, and traditional buildings were selected, a large number of which were in LSAs. 
In the third phase, sites associated with religion, which had the highest proportion among the 
categories, were selected. Therefore, cultural heritage sites associated with religion are 
considered to require the most urgent attention to prevent landslide damage. Compared with 
other types of cultural heritage sites, the religious and cultural heritage sites are more likely to be 
in mountainous areas, so they have a higher LS than other types of cultural heritage sites. The 
Cultural Heritage Administration should create a budget to establish preferential damage 
prevention measures for these types of cultural heritage sites.
	 LS is an important issue for existing cultural heritage sites, but it also needs to be considered 
for newly discovered cultural heritage sites on steep slopes. It is necessary to introduce 
procedures to prevent landslides in areas where they are expected through on-site surveys of 
newly excavated cultural heritage sites. For areas where LS is considered high, slope stability 
should be reviewed before excavation, and the possibility of landslides should be reduced by 
installing drainage and restoring slopes in such areas. The LS analysis results derived from this 

Fig. 5.	 (Color online) Numbers of cultural heritage sites located in areas assessed as LSAs in the four years by 
type as percentages of the total number of each type of cultural heritage site. 
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study can be used as useful objective evidence in these processes. To prevent casualties during 
excavation, it is necessary to set an investigation period when landslides do not occur frequently. 
The prevention of landslides through the restoration of slopes and the installation of erosion 
control dams must also be considered.
	 Future research is required due to some limitations of this study. First, since rainfall is a 
major cause of landslides, it should be possible to evaluate the LS according to changes in 
rainfall. However, it was difficult to analyze LSAs through the generalization of rainfall 
variables in this study because detailed precipitation patterns change significantly every year 
and the land cover changes over time. Second, it was impossible to perform detailed LS analysis 
on all cultural properties due to the limitations of topographical data. This limitation can be 
overcome by using remote sensing data in the future.

5.	 Conclusions

	 We analyzed LS for cultural heritage sites with historical and cultural value in the 
Chungcheong region. We derived LSAs for four years and analyzed LS for four years rather than 
for a specific year to reduce specificity. Furthermore, reliable LS analysis results were obtained 
using ensembles of nine spatial distribution models. The relationship between LSAs and cultural 
heritage sites by type was analyzed to determine the priority of the landslide response. Since 
there has been a lack of research on the relationship between cultural heritage sites and LSAs in 
terms of the possibility of landslide damage, research on the LS of sites should be carried out in 
various areas in the future. A detailed evaluation of the actual landslide damage prevention 
process will be required for the cultural heritage sites that were included in LSAs in all four 
target years. The approach and results of this study provide basic data and guidelines for disaster 
response plans to reduce and prevent landslides in the Chungcheong region. Considering future 
climate change scenarios, it is necessary to conduct research to evaluate LS in the future and to 
acquire basic data on countermeasures to prevent landslides from damaging cultural heritage in 
the medium to long term.
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