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	 This paper presents a new cognitive radio network (CRN) framework with radio frequency 
(RF) energy harvesting, namely, RF-powered cognitive radio networks (RF-CRNs), wherein 
multiple secondary users (SUs) harvest energy from the RF signals of primary users (PUs) all 
the time except when transmitting data in the allocated time, namely, the “harvesting–
transmission–harvesting” mode. In this way, the energy harvested by each SU can be maximized 
until the next data transmission. Also, the total energy consumed by the SUs must be less than or 
equal to the total harvested energy (the energy causality constraint), while the transmit power of 
SUs must be restricted to protect the PUs from interference (collision constraint). Finally, under 
the satisfaction of quality of service of SUs (throughput constraint), our goal is to determine the 
optimal transmitting time and power allocation that maximize the achievable throughput in the 
RF-CRNs. We achieved the optimal result by transforming the optimization problem into a 
convex optimization problem and then applying Lagrange multiplier methods. Extensive 
performance evaluations showed the efficiency of the proposed algorithm.  

1.	 Introduction

	 Nowadays, the problems of spectrum efficiency (SE) and energy efficiency (EE) in wireless 
networks must be solved urgently, especially in the 5G era. Cognitive radio networks (CRNs) 
with energy harvesting (EH) (EH-CRNs) have emerged as a promising way to address the 
problems of SE and EE while responding to the call for green communication at the same 
time.(1–6) Through opportunistic spectrum access, a secondary CRN can opportunistically 
access the spectrum licensed to a primary network.
	 The performance of wireless networks is greatly limited by the finite capacity of the battery. 
Powering wireless nodes with energy scavenged from ambient sources such as heat, light, waves, 
and wind enables wireless nodes to run permanently without the cost of external power cables 
and recharging or the need to replace the battery periodically. Radio frequency (RF) EH allows a 
wireless node to harvest and convert electromagnetic waves from ambient RF sources (e.g., TV 
and radio towers, and cellular base stations) into energy, which can provide energy for many 
emergency scenes or remote locations that cables cannot reach.(5) 
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	 Compared with ambient EH, RF EH is more flexible and sustainable as the RF signals 
radiated by ambient transmitters are consistently available.(5) RF energy sources can mainly be 
categorized into intended RF and non-intended RF. Intended RF can power nodes that require a 
predictable and large amount of energy due to on-demand supply and directional transmission. 
Non-intended RF signals include  most of the radiation from nearby RF sources such as cellular 
base stations, primary users (PUs), and other secondary sources. Such radiation is freely 
available and not dedicated, and is mainly used to power low-power networks such as sensor 
networks. By employing EH technology, RF signals radiated by PUs no longer need be regarded 
as interference for secondary users (SUs) but as a continuous energy source for EH. 

1.1	 Related work and motivation

	 In the present study, SUs in RF-CRNs mainly operate in three different modes: interweave, 
overlay, and underlay.(7–21) In interweave mode, SUs first harvest energy and then 
opportunistically access the licensed spectrum for data transmission when PUs are detected as 
inactive. The SUs work in harvesting–sensing–transmitting mode, where much time and energy 
are spent on spectrum sensing. Once the PUs retake the channel, the SUs have to interrupt the 
transmission and give up the channel.(7–12)

	 In overlay mode, given that the SUs have knowledge of the PUs’ transmit sequence and 
encoding scheme, the SUs harvest energy to serve both PUs and SUs. This requires excellent 
cooperation between PUs and SUs, which is difficult to achieve in practice.(18–21)

	 In contrast to the high energy consumption and discontinuous data transmission in interweave 
mode and the necessary collaboration of PU and SU in overlay mode, in underlay mode, an SU 
can transmit along with a PU as long as the secondary interference at the primary receiver 
remains below an acceptable threshold. Zheng’s group presented a novel structure for underlay 
RF-CRNs.(13) This structure had only one SU transmitter–receiver pair in the RF-CRNs, where 
the SU receiver had a fixed power supply, while the SU transmitter was powered by an energy 
harvester that harvested green energy from the signals of the PU transmitter. The same group 
extended the RF-CRNs to incorporate SUs, wherein all SUs first harvested energy for a fixed 
duration and then transmitted data using the harvested energy to one access point for the 
remainder of the period using the code-division multiple access (CDMA) method.(14)  Recently, a 
wireless-powered underlay CRN has been developed, where SUs first harvested energy in the 
downlink wireless power transfer phase and then used the energy for data transmission in the 
uplink wireless information transmission phase, adopting time-division multiple access 
(TDMA). To expand network coverage and reduce the transmission power of SUs in underlay 
mode, a new wireless EH protocol designed for an underlay cognitive relay network with 
multiple PU transceivers was proposed in Ref. 16. A green coexistence paradigm for underlay 
multi-hop EH-CRNs has been formulated in which all the secondary nodes capture energy from 
the PUs.(17) The authors in Ref. 17 solved the end-to-end throughput maximization problem 
subject to the energy causality and interference power constraints. With the recent increase in 
the number of hops, the time delay and outage probability will increase accordingly.(21–31)
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	 In underlay RF-CRNs, SUs harvest energy and transmit data without interruption by 
coexisting with the PUs under an interference constraint. SUs take PUs as a stable energy source 
for sustainable EH through working in the harvesting–transmitting–inactive mode, in which 
SUs are always inactive and do nothing after transmitting data at the allocated time.(13–17) Since 
the transmitted power attenuates as the reciprocal of the distance, when the distances from the 
nodes to PUs are different, this mode leads to an imbalance in the harvested energy of nodes. 
Moreover, because the time slot is not fully utilized, the EH efficiency is low. 
	 Motivated by the above analysis, in contrast to conventional underlay RF-CRNs, wherein 
SUs work in the harvesting–transmitting–inactive mode, in this paper, we propose a new energy 
and transmission mode for RF-CRNs with multiple SUs. In our mode, each SU harvests energy 
from the RF signals of each PU all the time except when transmitting data in the allocated time 
concurrently with the PU, namely, the “harvesting–transmission–harvesting” mode. In this way, 
the energy harvested by each SU can be maximized until the next data transmission. In addition, 
the total energy consumed by the SUs must be less than or equal to the total harvested energy, 
while the transmit power of SUs must be restricted to protect the PUs from interference.
	 Finally, quality of service (QoS) for multiple SUs is essential in many scenarios such as a 
wireless sensor network gathering data, monitoring events, and performing applications. To 
satisfy the QoS of SUs, we impose a minimum required throughput constraint on the 
transmitting process for each SU. In other words, our goal is to determine an optimal 
transmitting time and power allocation for SUs to maximize the achievable throughput of the 
RF-CRNs under interference, energy, and throughput constraints.

1.2	 Contributions

	 The main contributions of this paper are summarized as follows:
•	 First, unlike the conventional harvesting–transmission–inactive mode, we design a new 

harvesting–transmission–harvesting mode that enables SUs to harvest sufficient energy for 
the subsequent data transmission. 

•	 Second, we pay attention to guaranteeing the QoS of SUs in RF-CRNs. Given a prescribed 
minimum throughput threshold for each SU, we determine the optimal transmitting time and 
power allocation that maximize the expected throughput of RF-CRNs. 

•	 Third, we achieve the optimal result by transforming the optimization problem into a convex 
optimization problem and then applying Lagrange multiplier methods.

•	 To verify the generality of the model, we investigate the impacts of typical parameters such 
as the transmitting power of the primary transmitter (PT), the maximum interference power 
of the primary receiver (PR), and the minimum throughput constraint for SUs on 
performance. 

	 The rest of this paper is organized as follows. The system model for the EH-CRN is described 
in Sect. 2. The throughput analysis and throughput maximization solution are introduced in 
Sect. 3 and the simulated results are presented in Sect. 4. Finally, a conclusion is given in Sect. 5.



3678	 Sensors and Materials, Vol. 33, No. 10 (2021)

2.	 System Model

	 We present a new model for RF-CRNs with multiple SUs as shown in Fig. 1. The secondary 
network consists of one access point (AP), N secondary users depicted as SUk (k = 1, 2, ..., N) , 
which coexist with one PT and one PR. The AP has a fixed power supply, whereas each SU is 
powered by an energy harvester, which harvests green energy from RF signals of the PT. 
Assuming that the PT is always actively communicating with the PR, the SUs share the licensed 
spectrum with the PU under the interference constraint. There are EH links, data transmission 
links, and interference links in the model. The links between the PT and each SU are referred to 
as EH links with channel power coefficients gE,k (k = 1, 2, ..., N). The links between the AP and 
each SUk (k = 1, 2, ..., N) are data links with channel power gain coefficients gD,k (k = 1, 2, ..., N), 
and the links between the SUs and the PR are referred to as interference links with channel 
power gain coefficients gI,k (k = 1, 2, ..., N). All SUs are equipped with a single half-duplex 
omnidirectional antenna and a battery with finite capacity E to store energy. 
	 Meanwhile, as shown in Fig. 2, each frame with duration T is allocated to SUk (k = 1, 2, ..., N) 
for harvesting and transmission by TDMA. Unlike the conventional harvesting–transmission–
inactive mode, we design a new harvesting–transmission–harvesting mode that can make SUk 
harvest energy after transmission rather than remain inactive. Specifically, SUk continues to 
harvest energy from the RF signals of the PT all the time except during the transmission sub-
slot. The transmission sub-slot allocated to SUk is denoted as τk and the EH time for SUk 
(k = 1, 2, ..., N) is calculated as (T − τk). Hence, the total energy harvested by SUk in frame f is 
calculated as

	 ( )
,, ( )i

k E k T kH kE g P Tη τ= − , i = 1, 2, ..., f; k = 1, 2, …, N, 	 (1)

where ηk is the EH efficiency and PT is the transmission power of the PT. Note that the SUs share 
the spectrum with the PU in an underlay paradigm, which means that the SUs can perform 
concurrent transmission as long as the interference at the PR does not exceed a peak permissible 
threshold PI given as 

Fig. 2.	 (Color online) Frame structure.Fig. 1.	 (Color online) System model.
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	 PkgI,k ≤ PI, k = 1, 2, ..., N. 	 (2)

	 Since there is no sensing in an underlay paradigm, the energy required to receive and process 
information is negligible compared with the energy required for information transmission for 
convenience, and thus the SUs consume energy only for data transmission. Hence, the total 
energy consumption of an SU in frame f is given by 

	 ( )
,

i
k kC kE P τ= , i = 1, 2, …, f; k = 1, 2, …, N.	 (3)

	 The residual energy at the end of the previous frame f − 1 can also be accumulated at the 
beginning of frame f as the initial energy. Hence, by considering the harvested energy and 
consumed energy, the residual energy at the end of frame f can be updated as

	 ( ) ( 1) ( ) ( )
, , , ,
f f f f

R k R k H k C kE E E E−= + − , 	 (4)

where ( 1)
,
f

R kE −  is the former residual energy in frame f − 1. Furthermore, supposing that the initial 
energy stored in the battery before communicating is E0, ( )

,
f

R kE  is deduced to be

	 ( ) ( ) ( )
0, , ,

1
( )

f
f i i

R k H k C k
i

E E E E
=

= + −∑ . 	 (5)

	 By substituting Eqs. (1) and (3) into Eq. (5), we obtain

	 ( )
0 ,,

1
( ( ) )

f
f

k E k T k k kR k
i

E E g P T Pη τ τ
=

= + − −∑ . 	 (6)

	 To guarantee the continuous communication of each SU, ( )
, 0f

R kE ≥  must be satisfied. 
Supposing that the maximum capacity of the battery is E and surplus energy is discarded if 

( )
,
f

R kE  > E, then ( )
,
f

R kE E≤  and we have

	 0 ,
1

0 ( ( ) )
f

k E k T k k k
i

E g P T P Eη τ τ
=

≤ + − − ≤∑ .	 (7)

3.	 Throughput Analysis and Solution Method

3.1	 Optimal problem formulation 

	 Given transmission power Pk and the allocated time τk, the achievable throughput of SUk for 
the transmission from SUk to the AP in one frame is 
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	 ,
2 2

0
( , ) log (1 )k D k

k k k k
T

P g
R P

P g
τ τ

σ
= +

+
，, k = 1, 2, …, N,	 (8)

where ,
2

0

k D k

T

P g

P g σ+
 is the signal-to-noise ratio of the AP. We obtain the average achievable 

throughput of the RF-CRN as follows:

	
1

1( , ) ( , )
N

k k
k

R R P
T

τ
=

= ∑Pτ , 	 (9)

where τ = [τ1, τ2, ..., τN] and P = [P1, P2, ..., PN] are the vectors of time allocation and power 
allocation, respectively. We set a minimum required rate Rout > 0 for SUk, namely, the throughput 
constraint, ( , ) ,k k k outR P R kτ ≥ ∀ , to satisfy the QoS of SUs. Finally, we formulate the following 
maximum average throughput optimization problem.

	

1 1

,

0 0
,

1

max

1max ( , ) ( , )

s.t. C1: , 1, 2, ...,

C2 : ( ) , 1, 2, ...,

C3:

C4 : 0 , 0 , 1, 2, ...,
C5 : ( , ) ,

N

k k k
k N k

k I k I

k E k T k k k

N

k
k

k k

k k k out

R R P
T

P g P k N

E E Eg P T P k N
f f

T

T P P k N
R P R k

τ

η τ τ

τ

τ
τ

≤ ≤ =

=

=

≤ =

−
− ≤ − − ≤ =

≤

< < < < =

≥ ∀

∑

∑

Pτ

	 (10)

	 C1 indicates that the transmission power of SUk cannot exceed the tolerable inference power 
threshold PI at the PR, through which the PR is protected from interference, namely, the collision 
constraint. C2 indicates that for the allocated time τk and transmission power Pk, the energy 
consumed for data transmission cannot exceed the energy in the battery, namely, the energy 
causality constraint. C3 indicates that the total time consumed by SUk must be less than or equal 
to the frame duration T. C4 is the consumed time constraint for each SUk and C4 is the 
throughput constraint.
	 Obviously, Eq. (10) is a non-convex problem because of the product of the optimal variable Pk 
and τk in C2. From Eq. (3), we can derive 

	
( )

,
i

C k
k

k

E
P

τ
= . 	 (11)   
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	 For convenience, we replace ( )
,

i
C kE  with ek, and then we transform Eq. (8) into the following 

form:

	 2( , ) log (1 )k
k k k k k

k

eR eτ τ γ
τ

= + , k = 1, 2, …, N,	 (12)

where ,
2

0
= D k

k
T

g

P g
γ

σ+
 is defined for convenience. Finally, we transform the optimization 

problem in Eq. (10) into the following problem with respect to τ and e, where e = [e1, e2, ..., eN] is 
the energy consumed for SUk.

	

1 1

,

0
,

0
,

1

1max ( , ) ( , )

s.t. C1 , 1, 2, ...,

C2a : ( ) , 1, 2, ...,

C2b : ( ) , 1, 2, ...,

C3 :

C4 : 0 , 1, 2, ...,
C5 : ( , ) ,

N

k k
k N k

k I k k I

k E k T k k

k E k T k k

N

k
k

k

k k out

R R e
T

e g P k N

E g P T e k N
f

E Eg P T e k N
f

T

T k N
R e R k

τ

τ

η τ

η τ

τ

τ
τ

≤ ≤ =

=

=

′ ≤ =

′ − ≤ − − =

−′ − − ≤ =

′ ≤

′ < < =
′ ≥ ∀

∑

∑

e

:

τ

 	 (13)

Here, C3′ and C4′ are equivalent to C3 and C4 in Eq. (10), respectively, and C2a′ and C2b′ are 
equivalent to C2.
Theorem 1: The achievable throughput R(τ, e) of the RF-CRN in Eq. (13) is a joint concave 
function of τ and e.
Proof: Please refer to Appendix A.
	 By applying Theorem 1, the objective function R(τ, P) in Eq. (10) is converted into a concave 
function of R(τ, e). After introducing e, the energy causality constraint C2 is converted into 
affine functions as C2a′ and C2b′. Thus, Eq. (13) is a convex optimization problem that can be 
solved by convex optimization techniques. 

3.2	 Optimal resource allocation algorithm

	 Equation (13) is a convex optimization problem and satisfies Slater’s condition, so we can 
solve its dual problem instead. We first introduce the partial Lagrangian function of Eq. (13) 
with respect to C2a′, C2b′, C3′, and C5′:
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1 1

0
,

1

0
,

1

1 1

1( , , , , , ) ( ) ( , )

( ( ) )

( ( ) )

( ) ,

N N

k k k k
k k

N

k k E k T k k
k

N

k k E k T k k
i

N N

k k out
k k

L e u v w w R e
T

E g P T e
f

E Eu g P T e
f

v T w R

τ λ τ

λ η τ

η τ

τ

= =

=

=

= =

= +

− − − − +

−
− − − −

− − −

∑ ∑

∑

∑

∑ ∑

	 (14)

where λ = [λ1, λ2, ..., λN], µ = [µ1, µ2, ..., µN], w = [w1, w2, ..., wN]; λN, µN, and wN are the 
nonnegative dual variables associated with C2a′, C2b′, and C5′, respectively; and v is the 
nonnegative dual variable associated with C3′.
	 Then the Lagrangian dual function is given as

	
,

( , , , ) max ( , , , , , )
e D

G u v w L e u v w
τ

λ τ λ
∈

= , 	 (15)

where D is the set of τ, e associated with C1′. Finally, the dual problem of Eq. (13) is given by

	
, , , 0

( , , , ) min ( , , , )
u v w

D u v w G u v w
λ

λ λ
≥

= . 	 (16)

Theorem 2: For given 0, 0, and 0u vλ ≥ ≥ ≥ , the optimal time and energy allocations are given 
by 

	
*

* ( ) ,
( ) 1

k k k
k

k

e W
W
γ ψ

τ
ψ

= −
+

 k = 1, 2, ..., N,	 (17)

	
*

*
*

,

1(ln 2( ) ( ))
min ,

ln 2 ( )

k k k k k
k I

k
k k k I k

u w PTe
u g

τ λ γ τ
γ λ

+   − − +  =   −    

 ,	 (18)

where W(∙) denotes the Lambert W function, ,ln 2(( ) )
exp( 1)

1 /
k k k E k T

k
k

u g P v
w T

λ η
ψ

− +
= − − −

+
, and 

( ) max(0, )x x+
 .

Proof: Please refer to Appendix B.
	 Next, we compute the dual variables λ, u, v, and w that minimize D(λ, u, v) by using the sub-
gradient method. The sub-gradients of D(λ, u, v) at λk, uk, v, and wk are calculated as

	 0
,= ( )k E k T k k

k

ED g P T e
f

η τ
λ
∂

+ − −
∂

,	 (19)



Sensors and Materials, Vol. 33, No. 10 (2021)	 3683

	 0
, ( )k E k T k k

k

E ED g P T e
u f

η τ
−∂

= − − + +
∂

,	 (20)

	
1

( )
N

k
k

D T
v

τ
=

∂
= − −

∂ ∑ ,	 (21)

	 ( , )k k k out
k

D R e R
w

τ∂
= −

∂
.	 (22)

	 In the nth iteration, we update λk, uk, v, and wk as follows:  

	
( 1)

( ) ( 1) ( 1)max 0, +
n

n n n
k k

k

D
λ λ α

λ

−
− −

 ∂  =   ∂   
,	 (23)

	
( 1)

( ) ( 1) ( 1)max 0, +
n

n n n
k k

k

Du u
u

α
−

− −
 ∂  =   

   
,	 (24)

	
( 1)

( 1) ( 1)max 0, +
n

n n Dv v
v

α
−

− − ∂  =   
   

,	 (25)

	
( 1)

( ) ( 1) ( 1)max 0, +
n

n n n
k k

k

D
w w

w
α

−
− −

 ∂  =   
   

, 	 (26)

where α(n−1) denotes the step size in the nth iteration. The solution method is summarized as 
Algorithm 1.

Algorithm 1: Joint optimal time and power allocation algorithm

1:	 Initialize parameters.
2:	 Repeat.
3:	 Calculate (τ*, e*) using Eqs. (17) and (18).

4:	 Calculate the sub-gradients 
k

D
λ
∂
∂

, 
k

D
u
∂
∂

, 
D
v

∂
∂

, and 
k

D
w
∂
∂

 using Eqs. (19)–(22), respectively.

5:	 Update λk, uk, v, and wk using Eqs. (23)–(26), respectively.
6:	 Until ( ) ( ) ( ) ( ) ( 1) ( 1) ( 1) ( 1)( , , , ) ( , , , )n n n n n n n nD u v w D u v wλ λ ε− − − −− ≤ . 

7:	 Obtain the sensing time τ* and power allocation 
*

*
*min{ , }max

eP P
τ

= .
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4.	 Simulation Results 

	 Numerical results are shown to validate the performance of the proposed framework. The 
SUs are randomly placed in a circle with a radius of 10 m with the AP located at the center. The 
RF-CRNs coexist with a primary network that is deployed over an area with a radius of 100 m. 
The harvested energy and the interference in the RF-CRNs depend on the location distribution 
of the SUs, so we assume that the channel power gain coefficients gD,k, gE,k, and gI,k are given by 
gx,k = 1/|dx,k|α, where x = {D, E, I}. dx,k and α are the distance and the path loss exponent, 
respectively.
	 The simulation parameters are set as N = 5, α = 2, f = 1000, T = 100 ms, σ2 = −140 dBm, 
ηk = 0.5, E0 = 0.5 J, E = 1 J, and Pmax = 7 W. Our model is similar to the one in Ref. 14 but with 
three important differences. First, the SUs work in the harvesting–transmitting mode through 
CDMA, as described in Ref. 14, whereas all SUs working in the harvesting–transmitting–
harvesting mode with TDMA can maximize the harvested energy. Second, the SUs save the 
energy in an infinite energy storage device, as shown in Ref. 14, whereas here, the SUs have a 
finite-capacity battery for storing energy, which is more realistic for practical application 
scenarios. Third, the RF-CRNs perform best-effort communication, and described in Ref. 14, 
whereas we make a minimum required throughput constraint on the transmitting process for 
each SU to ensure that the QoS of SUs is satisfied.
	 Figure 3 shows the throughput of the RF-CRNs under different values of PT, PI given a 
prescribed minimum throughput threshold for each SU. The throughput clearly increases with 
increasing PI, which is because increasing PI enlarges the feasible domain of Pk, further 
increasing R(τ, P). However, R(τ, P) decreases with increasing PT. A larger PT means more 
harvested energy for SUs but also more interference with the AP. Thus, when the interference is 
large enough or PI is too small, the SUs cannot satisfy the prescribed minimum throughput 
threshold, the throughput dramatically decreases to near zero, and the system is interrupted.
	 Figures 4(a) and 4(b) show the energy status with different PI. As shown in Fig. 3, Pk 
increases with increasing PI; thus, more energy is required for data transmission. Since the SUs 

Fig. 3.	 (Color online) Throughput versus PT.
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continuously harvest energy except during transmission, the harvested energy is abundant and 
the battery is full before each transmission of data. 
	 Figure 5 shows the relation between the throughput R(τ, P) and PI. As shown in Figs. 3 and 4, 
because Pk increases with PI, R(τ, P) and the consumed energy increase accordingly. However, 
when PI is sufficiently large, R(τ, P) cannot be further enhanced. In fact, Pk cannot be infinite 
due to the finite battery capacity and the maximum power transmission constraint Pmax. Figure 6 
depicts the maximum throughput for Rout in different scenarios. It can be seen that R(τ, P) and 
Rout increase with PI at the same PT. This is consistent with the fact that with increasing PI, 
Rk(τk, Pk) and R(τ, P) also increase as shown in Fig. 3. However, Rk(τk, Pk) finally tends to be 
stable due to the finite battery capacity and the existence of Pmax. Once the maximum limit Rout 
is exceeded, the throughput dramatically decreases to near zero and the system is interrupted 
due to the minimum throughput constraints.

Fig. 6.	 (Color online) Throughput versus Rout.Fig. 5.	 (Color online) Throughput versus PI.

Fig. 4.	 (Color online) Energy status for SUs. (a) PT = 12 W, PI = 4W. (b) PT = 12 W, PI = 2 W.

(a) (b)
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	 We compare our algorithm, namely, Algorithm 1, the joint optimal time and power allocation 
algorithm (JOPA), with the CDMA method in Ref. 14 for different levels of interference of the 
PR as shown in Fig. 7. It is obvious that JOPA achieves a larger throughput than CDMA as PI 
increases. This is mainly due to the harvested energies of the SUs being more sufficient in JOPA 
than in CDMA under the same PT. With increasing PI, the SUs can enhance their transmission 
powers adaptively as the harvested energies are sufficient, in contrast to in CDMA.
	 Figure 8 shows the throughput versus the number of SUs N under different Rout. Indeed, 
when N increases, the throughput will first increase and then gradually decrease until the system 
interrupts. This is because the achievable throughput R(τ, P) of the RF-CRN is the sum of the 
throughputs Rk(τk, Pk) of SUk (k = 1, 2, …, N), as shown in Eqs. (8) and (9). Therefore, the greater 
the N, the greater the throughput of the RF-CRN. However, when N continues to increase, the 
transmission time for each SU is reduced. Thereby, the achievable throughput Rk(τk, Pk) of SUk 
(k = 1, 2, …, N) decreases and the QoS cannot be guaranteed, with the system interrupting.

5.	 Conclusion

	 In this paper, we presented a new harvesting–transmission–harvesting model for RF-CRNs. 
All SUs harvest energy from the RF signals of PUs all the time except when transmitting data in 
the allocated time. In this way, the energy harvested by each SU is always sufficient and can be 
maximized until the next data transmission, especially when the value of the interference 
constraint is large. Through the throughput constraint, we ensured transmission QoS for all SUs, 
which is essential in many applications, especially in wireless sensor networks performing data 
gathering, event monitoring, and other industrial applications. We achieved the optimal result by 
transforming the optimization problem into a convex optimization problem and then applying 
Lagrange multiplier methods. Through the maximization of harvesting energy and the minimum 
throughput constraint, our model can be expanded easily and used in many important 
applications such as large-scale CRNs, cognitive relay networks, and multi-hop CRNs.

Fig. 8.	 (Color online) Throughput versus number of 
SUs N.

Fig. 7.	 (Color online) Throughput versus PI for 
different algorithms.
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Appendix A

Proof of Theorem 1
Proof: In Eq. (13), Rk(τk, ek) is the perspective transformation of the function 2( ) log (1 )k k kf e e γ+ . 
It is clear that f(ek) is a concave function of ek because the logarithmic function is concave. 
Because the perspective transformation preserves convexity, Rk(τk, ek) is a concave function with 
respect to τk and ek. Finally, because R(τ, e) is the sum of N concave functions, it is also a concave 
function. (31)
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Appendix B

Proof of Theorem 2
Proof: Because Eq. (13) is a convex optimization problem, there is strong duality between the   
primary and dual problems under Slater’s condition. According to the Karush–Kuhn–Tucker 
(KKT) condition, the optimal solution must satisfy
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τ τ
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e

τ λ
=
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=

∂
，, k = 1, 2, ..., N.	 (28)

	 First, the partial derivative of ( , , , , , )L e u v wτ λ  with respect to τk can be calculated as follows:
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	 In addition, we have 
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Then, we substitute Eqs. (29) and (30) into Eq. (27) to obtain 
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Subsequently, we make use of the Lambert W function, which is the inverse of f(x) = xexp(x), to 
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Let 1
k eψ −ϒ−− . Then 
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 and the finally obtained solution is given by Eq. (17). 

	 Similarly, the partial derivative of ( , , , , , )L e u v wτ λ  with respect to ek can be calculated as 
follows:

	

0
,

1 1 1

0
,

1 1 1

1 1 1 1

( , , , , , )

1( ) ( , ) ( ( ) )

( ( ) ) ( )
=

1( ) ( , )

=

k
N N N

k k k k k k E k T k k
k k k

N N N

k k E k T k k k k out
i k k

k
N N N N

k k k k k k k k
k k k i

L e u v w
e

Ew R e g P T e
T f

E Eu g P T e v T w R
f

e

w R e e u e
T

τ λ

τ λ η τ

η τ τ

τ λ

= = =

= = =

= = = =

∂
∂

 
+ − − − − + 

 ∂ 
− − − − − − − − 

 
∂

+ − +
∂

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

1 1

1( ) ( , )
= .

k
N N

k k k k
k k

k k
k

e

w R e
T

u
e

τ
λ= =

 
 
 
 
 

∂

  ∂ + 
   − +

∂

∑

∑ ∑

 	 (34)

	 We also have 
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	 Lastly, by substituting Eqs. (34) and (35) into Eq. (28), we obtain 
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	 Because ek is also subject to the interference power constraint C1′, we have the optimal ek 
given by Eq. (18), thus proving Theorem 2.




