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	 Brain–computer interface (BCI) technology based on motor imagery (MI) can establish the 
connection between the brain and the outside world; this has gradually become an important 
application of human–machine hybrid intelligence enhancement, especially for medical 
rehabilitation treatment. Because of the nonlinear, nonstationary, and low signal-to-noise ratio 
(SNR) characteristics of electroencephalogram (EEG) signals, it is a great challenge to accurately 
classify MI-EEG signals. Toward this end, in this study, both variational mode decomposition 
(VMD) and a deep belief network (DBN) were applied to MI classification based on the dataset 
of a previous BCI competition. Firstly, the EEG signal was decomposed by VMD to obtain the 
narrow-band component. Then the marginal spectrum, the instantaneous energy spectrum under 
the characteristic frequency band, and time-frequency joint features were extracted by Hilbert 
transform to achieve feature fusion. Finally, the DBN was used to reduce the dimensions of 
high-dimensional features and recognize MI patterns. The experimental results show that the 
joint VMD feature extraction and DBN feature classification method avoids information 
omission caused by the manual optimization of the period and the frequency band of artificial 
determination imagery. On the other hand, the method of using VMD and DBN to automatically 
extract the characteristics of the optimal period and optimal frequency band can effectively 
improve the recognition rate of MI.

1.	 Introduction

	 A brain–computer interface (BCI) system operates an output device by analyzing the input 
electrophysiological signals and decoding the user’s intention into control instructions.(1) In 
accordance with the different forms of signals, an electroencephalogram (EEG) can be divided 
into electroencephalograph, magnetoencephalogram (MEG), and functional magnetic resonance 
imaging (FMRI) signals, where EEG signals are widely used in BCI systems due to their 
noninvasiveness and low cost.(2,3)
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	 The principle of motor imagery (MI) is to generate event-related desynchronization/
synchronization phenomena for EEG signals on both sides of the brain during imagination-
induced movement, which has become a research direction in the field of EEG signals.(4) EEG 
signals are, for example, weak, nonlinear, nonstationary, and sensitive in time; thus, time-
frequency domain analysis and spatial filtering are widely used in feature extraction.(5) Time-
frequency domain analysis mainly includes the short-term Fourier transform (STFT),(6) wavelet 
transform (WT),(7) wavelet package transform (WPT),(8) and common spatial pattern (CSP) 
method.(9) However, the time-frequency domain analysis methods based on STFT, WT, and 
WPT cannot achieve high resolution in the time and frequency domains. However, with a change 
in brain state, the characteristics of an EEG signal in the time-frequency domain will fluctuate. 
Chen et al. combined Shannon entropy, wavelet entropy, and sample entropy for feature 
extraction.(10) Tan et al. proposed a multifeature extraction method based on ensemble empirical 
mode decomposition (EMD) and approximate entropy.(11)

	 In summary, the above methods show good adaptability and high recognition accuracy, 
consider the fusion of features from a single angle, and cannot obtain a more complete 
description of the signal from multiple angles. However, variational mode decomposition (VMD) 
can decompose an EEG signal into several narrow-band components, which contain the 
characteristics of the signal at different time and frequency scales. Dragomiretskiy et al. applied 
this phenomenon to solve the problem of mode mixing.(12) A deep belief network (DBN) can 
automatically learn valid features to reduce the dimensions of features.(13) Movahedi et al. 
applied some of these features to EEG signal processing, such as sleep stage and emotion 
recognition, and epilepsy diagnosis.(14) A DBN can reduce the dimensions of high-dimensional 
features to obtain the optimal features of MI and avoid reducing the recognition rate. With this 
background, we propose in this paper a method comprising a combination of VMD, Hilbert 
transform, and a DBN for the recognition of MI-EEG patterns while avoiding the reduction of 
the recognition rate caused by manually determining the optimal period and optimal frequency 
band.

2.	 Related Work

	 Most of the existing methods are based on the use of the spatial and time-frequency 
characteristics of EEG signals to classify MI. The methods based on spatial features are mainly 
the CSP method and its modifications. The CSP method is based on matrix diagonalization to 
construct the optimal spatial filter for projection and then obtain the feature vectors with high 
discrimination. Zhang et al. proposed a multicore extreme learning machine based on the CSP 
method, in which the CSP method is used to extract spatial features for MI tasks.(15) 
Zayyanu et al. proposed the filter bank common spatial pattern (FBCSP) to solve the problem 
that the effectiveness of the CSP method depends on the selection of an appropriate frequency 
band.(16) Lu et al. proposed a deep learning model based on a restricted Boltzmann machine 
(RBM) that uses the fast Fourier transform to extract time-frequency features in EEG signals.(17) 
In addition, Sun et al. proposed extraction methods based on bispectral features.(18) However, it 
is necessary to acquire considerable prior knowledge to extract EEG signal characteristics. The 
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end-to-end deep learning framework combines multiple processing stages, such as data 
processing and feature extraction, into a single model, and establishes a direct projection from 
the input to the output. For this reason, the emergence of deep learning has provided ideas for the 
establishment of end-to-end models; Dai et al. attempted to construct end-to-end deep learning 
models for MI classification.(19)

	 However, EEG signals have the characteristics such as nonlinearity, nonstationarity, and low 
signal-to-noise ratio (SNR). These characteristics give rise to several major problems in the 
construction of an end-to-end model based on EEG signals. Schirrmeister et al. used the end-to-
end learning advantages of ConvNets to build ConvNets models with three different 
architectures: the Deep-ConvNets model, Shallow-ConvNets model, and Hybrid-ConvNets 
model.(20) Zhao et al. proposed the WaSF ConvNet model as an improved ConvNets model to 
solve the problems of the traditional model, such as the difficulty in interpretation and the large 
number of parameters, to realize feature learning of space–time union.(21) However, the above 
models generally use single-scale convolution, and the features extracted using this structure are 
limited. Although there are a few multiscale models for MI classification, Tang et al. proposed a 
single-scale convolution model that relies on the preprocessing of EEG signals. However, the 
multiscale span of these models is too small to fully extract EEG features.(22) In addition, the 
classification results of most existing models depend, to some extent, on the richness of spatial 
information in EEG signals. Data acquisition with fewer channels is more convenient, so when 
spatial information is insufficient, how EEG signals are extracted and classified is an important 
problem. Therefore, we use VMD to decompose EEG signals. The marginal spectrum (MS), 
instantaneous energy spectrum (IES), and joint time–frequency features (JT–Fs) are extracted 
by Hilbert transform to cover the time–frequency domain features under the complete MI time 
history, and the three features are integrated. A DBN is introduced to reduce the dimensions of 
the high-dimensional features after fusion to obtain the optimal features of MI and recognize the 
MI-EEG pattern, which prevents the reduction of the recognition rate that occurs upon manual 
determination of the optimal period and optimal frequency band.

3.	 High-dimensional JT–F Extraction Based on VMD

	 The framework of feature extraction and recognition based on VMD and DBN is shown in 
Fig. 1. When the MI-EEG signal is collected, several electrodes fixed on the head are used to 

Fig. 1.	 (Color online) Framework of feature extraction and recognition based on DBN.
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obtain multichannel signals, and all the electrodes record the signals generated by the brain at 
the same sampling frequency. The MI-EEG signal used by the participants of this study was 
typically collected between the time of the MI reminder and the end of the activity. The MI-EEG 
signal is defined as ( )1 2, ,..., n T C

nX x x x × ×= ∈ℜ , where n is the number of samples of the MI-EEG 
signal, T = t × f is the number of time points of each EEG signal (t is the duration of the MI 
segment and f is the sampling frequency in Hz), and C is the number of channels of the EEG 
signal. The MI-EEG signal classification problem can be defined as

	 Ypre = F(X),	 (1)

where F is the mapping function, X represents the input EEG data, and Ypre is the prediction 
result of the model output.
	 Since the WPT has the advantages of no redundancy and no omission, it can realize the local 
time–frequency analysis of the signal and meet the analysis requirements of an EEG signal 
containing many details. Therefore, after comparing various preprocessing algorithms, we 
decided to use the WPT to extract the characteristic frequency band. The wavelet packet 
function is expressed as(23)
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where un(t) is the expression of the signal at time t at decomposed node n, l is the displacement, 
and H0 and H1 are a pair of conjugate orthogonal wavelet packet filters satisfying 
H1(k) = (−1)kH0(1 − k). When n = 0, the scale function u0(t) = φ(t) and the wavelet basis function 
u1(t) = Φ(t) can be obtained. The WPT has a similar structure to a binary tree. If the nodes in the 
wavelet packet decomposition are denoted as ( j, p) (where j is the depth or the number of layers 
of wavelet packet decomposition and p is the frequency band order of the nodes), then after the 
wavelet packet decomposition of layer j, the frequency band range corresponding to node j is 

1 1 1(2 1) 2 ,2 2j j j jf + + + − , where fs is the sampling frequency. When the WPT is performed 
on an EEG signal, it is necessary to first select the appropriate wavelet basis function in 
accordance with the characteristics of the EEG signal and then to determine the characteristic 
frequency band of the EEG signal to determine the numbers of layers and reconstruction nodes 
of wavelet packet decomposition. In the VMD algorithm, the intrinsic mode function (IMF) is 
defined as the amplitude–frequency modulation signal, which is expressed as

	 ( ) ( )cos( ( ))k k ku t A t tϕ= ,	 (3)

where Ak(t) (Ak(t) ≥ 0) defines the instantaneous amplitude, and φk(t) is the phase. The frequency 
of IMF is defined as ωk(t) = φk(t). A variational problem is first constructed. Assuming that the 
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original signal f(t) is decomposed into K components, i.e., 1 ( ) ( )K
kk u t f t

=
=∑ , the decomposition 

sequence is guaranteed to be a modal component with finite bandwidth with a central frequency, 
and the sum of the estimated bandwidth of each mode is minimum. The constraint condition is 
that the sum of all modes is equal to the original signal; then the corresponding expression for 
the constrained variational problem is
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where K is the number of modes to be decomposed, uk and ωk are the kth modal component and 
the center frequency after decomposition, respectively, δ(t) is the Dirac function, and ⁎ is the 
convolution operator. To solve Eq. (4), we introduce the Lagrange multiplication operator λ, 
transform the constrained variational problem into an unconstrained variational problem, and 
obtain the augmented Lagrange expression as
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where α is a quadratic penalty factor. The alternating-direction multiplier method is used to 
update 1n

ku + , 1n
kω
+ , and 1n

kλ
+  alternately and solve the saddle point of Eq. (5). Then, the expression 

for 1n
ku +  is
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where X is the signal to be decomposed, ωk = ωk+1, and 1( ) ( )n
i i

i i k
u t u t +

≠
=∑ ∑ . The Parseval/

Plancherel Fourier isometrical transform is applied to Eq. (6) to transform it into the frequency 
domain, and each modal component and center frequency are optimized:
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	 In this study, the MI-EEG signal was first filtered using an 8–30 Hz bandpass filter, and then 
K IMF components were obtained by VMD of the filtered EEG signal. To extract the time-
frequency characteristics of the MI-EEG signal, the IMF components were decomposed by 
Hilbert transform as follows:

	 0
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where ℜ is the Cauchy principal value, t0 is time in the time domain, ak(t) is the instantaneous 
amplitude, and θk(t) is the instantaneous phase. Therefore, the instantaneous frequency is 
defined as
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	 The original EEG signal can be expressed as the sum of each IMF component.
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	 In addition, the Hilbert spectrum is defined as
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	 The Hilbert MS, IES, and JT–F under the characteristic frequency band are calculated as 
follows.
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	 For Eq. (15), to avoid the omission of time–frequency domain information caused by manual 
selection, T is set as the end moment of MI. Because channels C3 and C4 are distributed on the 
left and right sides of the brain, respectively, whereas channel CZ is at the center of the brain, in 
the left-handed and right-handed MI experiments on the subjects, only the EEG signals of 
channels C3 and C4 can reflect the event-related desynchronization/event-related synchronization 
(ERS/ERD) phenomenon. Therefore, in feature extraction, we do not process the channel CZ 
EEG signal, and the MS feature FMS of channels C3 and C4 can be obtained under the complete 
MI time course,

	 { }3 4
,MS C CF MS MS= .	 (18)

	 In Eq. (16), ω1 and ω2 respectively correspond to the µ and β characteristic frequency bands 
of MI, and the corresponding values of the two groups are taken. When 1

µω  and 2
µω  in the Mu 

frequency band are 8 and 13 Hz and 1
βω  and 2

βω  in the Beta frequency band are 16 and 28 Hz, 
respectively, the instantaneous energy characteristics IESµ and IESβ in the two characteristic 
frequency bands are obtained. Thus, the instantaneous energy characteristics FIES and FJT−F of 
channels C3 and C4 in the characteristic frequency band are obtained.

	
3 4 3 4

{ , , , }mu mu beta beta
IES C C C CF IES IES IES IES= 	 (19)

	 In addition, the JT–F can be expressed as

	 J = {JT–F1,1, JT–F1,2, …, JT–F1,11, JT–F2,1, JT–F2,2, …, JT–F2,11, …}.	 (20)

	 Thus, the time-frequency joint feature FJT–F of channels C3 and C4 is

	
3 4

{ , }JT F C CF J J− = .	 (21)

4.	 High-dimensional Feature Classification Based on DBN

	 A DBN consists of several RBMs in the bottom layer and a classifier in the top layer. The two 
adjacent layers make up one RBM, and each layer is independent of the other. However, data can 
be transformed among layers in accordance with the learning rules of the RBM through specific 
activation functions. Figure 2 shows the structure of the five-layer DBN. In Fig. 2, each RBM is 
composed of a visible layer (v) and a hidden layer (h). The layers are interconnected with each 
other through weight w, but there is no connection within the layers. It is assumed that layer v 
includes n visible units and layer h includes m hidden units.
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	 As shown in Fig. 2, the energy of one group of RBM systems in a certain state is
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where vi defines the state of the ith visible unit and hj is the jth hidden unitary state. 
,i j∀ , vi∈{0, 1}, hj∈{0, 1}, and θ = {ai, bj, wij} are the parameters of the RBM model, wij is the 

connection weight between visible element i and hidden element j, and ai and bj are the offsets of 
visible element i and hidden element j, respectively. The joint probability density of the visible 
layer and hidden layer is defined as
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	 From Eq. (23), the conditional probabilities of the hidden layer and visible layer are derived as 
follows.
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	 According to Eq. (24), σ is the activation function, and the probabilities of the hidden node 
and visible node being activated are

Fig. 2.	 (Color online) Structure of DBN.
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	 To make the RBM fit the training samples well, the training objective is set as the maximum 
likelihood function,

	 ( ) ( | ) ( )
v v

L L v P vθ θ= =∏ ∏ .	 (26)

	 Contrastive divergence is used to obtain a better estimate of the visible layer with only a few 
state transitions. More specially, the algorithm first calculates the conditional probabilities of all 
the hidden layer elements, then uses Gibbs sampling to determine the states of the hidden 
elements. Following this, it calculates the state of the visual layer to complete the reconstruction 
of the visual layer and finally solves Eq. (26). Therefore, the updating process of weight and bias 
can be defined as
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where orig⋅  denotes the expectation of the original data, recon⋅  denotes the expectation of the 
reconstructed data, and ε is the learning rate. For the parameter ε, Liu et al. proposed the use of 
the parameter Momentum of the momentum term to make the convergence more accurate.(24) 
Momentum is defined as
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where ρ is the learning rate of Momentum. Then the update rule of the weight bias becomes
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5.	 Results and Discussion

5.1	 Datasets and processes

	 To verify the universality and effectiveness of the proposed method, BCI 2003 Competition 
Dataset III (S1), BCI 2005 Competition Dataset III b (S2–S4), and BCI 2008 Competition 
Dataset II b (S5–S7) were used in the experiment. The information of each dataset is shown in 
Table 1.
	 During the signal collection process, for a reason related to the acquisition equipment, some 
of the time block signals were not successfully collected, and these data points were represented 
as nonnumeric points in the signals. To improve the SNR, the experimental data were 
preprocessed and nonnumeric points in the data were set to zero. To reduce the workload of data 
processing, a downsampling process was performed on the response data of subjects S5–S7, and 
the sampling frequency was reduced to 125 Hz. Since the ERD/ERS phenomenon of MI mainly 
occurred in the Mu rhythm (8–13 Hz) and Beta rhythm (16–28 Hz), the original signal was 
passed through a bandpass filter of 8–30 Hz, which is a Butterworth filter of order six, and the 
stopband cutoff frequency of the Butterworth filter was set to 6 and 32 Hz, respectively. The 
learning rate, number of pretrainings, and number of fine-tunings of each subject are shown in 
Table 2.

5.2	 Results and analysis

	 To compare the effect of different feature extraction methods on the recognition rate, three 
reference groups, i.e., FMS, FIES, and FJT–F, were designed and compared with the proposed 
method. Figure 3 shows the maximum recognition rate of each subject for the three reference 
groups and the proposed method. As shown in Fig. 3, the average maximum recognition rates 
obtained using MS features, IES features, time-frequency joint features, and fusion features are 
60.5, 73.1, 77.5, and 78.5%, respectively. The classification effect of MS features is relatively 

Table 1 
Information of datasets.

Dataset Subjects Sampling channel Number of 
training sets

Number of 
testing sets

Sampling 
frequency

BCI 2003 Competition Dataset Ⅲ S1 C3, C4, CZ 140 140 135

BCI 2005 Competition Dataset Ⅲ b S2 C3, C4, CZ 160 160 128
S3, S4 C3, C4, CZ 540 540 128

BCI 2008 Competition Dataset II b S5, S7 C3, C4, CZ 400 320 250
S6 C3, C4, CZ 400 300 250

Table 2 
Parameter settings of the seven subjects.
Parameter S1 S2 S3 S4 S5 S6 S7
Learning rate 0.01 0.008 0.001 0.1 0.001 0.001 0.001
Number of pretrainings 540 500 1000 500 1000 1100 1000
Number of fine-tunings 33 30 360 300 71 335 310
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poor because the experimental settings cause the strength of the MI signal to change with time. 
The time-domain resolution of MS features under the complete time history of MI is low; thus, 
the MS features cannot accurately characterize MI. 
	 The preprocessed EEG signal was decomposed by VMD in the experiment. The results of 
VMD of the channel C3 EEG signal of the first subject and its component spectrum are shown in 
Fig. 4. In the experiment, the EEG signal was decomposed by EMD, which served as the 
benchmark algorithm of VMD. The EMD results and component spectrum of the channel C3 
EEG signal of the first subject are shown in Fig. 5. The frequencies of the IMF1 and IMF7 
components of the adaptive decomposition are concentrated in the range of 8–30 Hz as a result 
of prefiltering of the EEG signal. In addition, the frequency band aliasing of components 
obtained by EMD is serious, while the results of VMD are all narrow-band components, so the 
same component information does not appear in different components. In the experiment, it was 
found that the characteristic frequency band is mainly distributed in the first three order 
components.

Fig. 4.	 (Color online) (a) Results of VMD and (b) spectral diagram of components.

Fig. 3.	 (Color online) Maximum recognition rates of different feature extraction methods.

(a) (b)
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	 The first three order components of EMD were selected to extract the same high-dimensional 
features, and the DBN was used to reduce the feature dimensions and classify the features 
obtained by the two methods. The recognition rates obtained by the two decomposition methods 
were compared, and the recognition results are shown in Fig. 6. Because of the better 
decomposition effect, the features extracted by VMD have a better recognition rate than those 
extracted by EMD.

6.	 Conclusions

	 BCIs, as an important application of human–computer hybrid intelligence enhancement, can 
control external devices through brain activities and thus establish the connection between the 
brain and the outside world. In early studies, BCIs were mainly used for the rehabilitation of 
stroke patients, and later, they began to be used in a wide range of fields, such as wheelchair 

 Fig. 6.	 (Color online) Recognition rates of EMD and VMD.

Fig. 5.	 (Color online) (a) Results of EMD and (b) spectral diagram of components.

(a) (b)
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control, spelling machines, and emotion recognition. BCIs can make full use of brain activities 
such as electrophysiological and hemodynamic activities to enable interaction between the brain 
and the outside world. In this study, the VMD method was applied to decompose the EEG signal 
using the Hilbert transform to extract the MI of MS, IES, and JT–F. In addition, the four-layer 
DBN network was introduced to achieve dimensionality reduction of the integrated high-
dimensional feature and to obtain the optimal feature and classification. The recognition rate of 
the MI-EEG signal was improved. The proposed method was used to conduct classification 
experiments with BCI competition datasets, and the average accuracy was 79%. The proposed 
method effectively improves the recognition rate of MI-EEG signals and lays a foundation for 
the application of MI BCIs.
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