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	 Shadow detection based on vision sensors is widely used in image processing. Because of the 
variability of illumination and projection surface color, shadow detection based on a color image 
is a challenging problem. Aiming at solving the conflict between the complexity and robustness 
of current shadow detection algorithms, we established a new shadow detection network by 
combining the global thresholding method with a neural network, which realized the decoupling 
of the global threshold and binary fusion. Three public shadow detection datasets, large-scale 
shadow dataset of Stony Brook University (SBU), large-scale dataset with image shadow triplets 
(ISTD), and shadow detection for mobile robots features evaluation and datasets (SDMR), were 
utilized for its verification. Experimental results show that the performance of the proposed 
network approaches that of previous deep learning methods, both visually and in terms of 
objective indicators, but the proposed network has the advantages of a simple structure and good 
robustness.

1.	 Introduction

	 Vision sensors can provide high-resolution color information, which can accurately reflect 
the details of complex changes in light; therefore, shadow detection based on vision sensors is 
necessary in some image-processing-based applications, such as medical imaging diagnosis, 
remote sensing monitors, video surveillance, automatic driving, and other fields in which 
shadow detection is applied to identify targets or eliminate disturbances. However, owing to the 
diversity of lighting and projection surface colors, shadow detection is a difficult problem. Many 
methods have been proposed to improve the robustness of shadow detection algorithms.(1–3) In 
this paper, existing methods are categorized into two major groups: methods based on empirical 
models and data-driven methods.
	 The methods based on empirical models can be summarized into two types: those based on 
experience and those based on a model. In the methods based on empirical models, differences 
in chromaticity or intensity between shadow and non-shadow in an image are enhanced to 
highlight the shadow. For instance, Tsai’s research showed that pixels slightly change in hue but 
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greatly in intensity when shadow is generated; a ratio map that showed the ratio of intensity-
equivalent components and hue-equivalent components was obtained, and the threshold of the 
ratio map was determined through the Otsu method to detect shadows.(4) Murali and Govindan 
found that shadow pixels have lower intensity but more blue than non-shadow pixels. They used 
a double threshold method in the LAB color space for shadow detection, where the intensity 
threshold was calculated as the mean of the L channel and the hue threshold was calculated as 
the mean of the A and B channels.(5) On the basis of the characteristic that the intensity of 
shadow pixels is lower than that of non-shadow pixels, Wehrwein et al. proposed an adjacent 
ratio map that showed the ratios of adjacent pixels of a gray image and  used an empirical 
threshold for shadow detection.(6) Jung et al. obtained a higher-order residual map in a log 
domain and detected shadows using an empirical threshold.(7) Newey et al. found that texture 
features are invariant to illumination, and they adopted a local binary pattern feature and the 
Otsu method to detect shadows on the basis of image segmentation.(8) In the model-based 
methods employing Retinex theory, the independence between chromaticity and intensity in an 
image is used to obtain invariant images, which are used to detect the edges of shadows. For 
example, Finlayson et al. proposed an invariant image through projecting 2D log chromaticity 
pixels in the direction (obtained by entropy minimization) orthogonal to the vector of luminance 
based on the assumptions of Lambertian shading and Planckian lighting.(9) Nayar et al. obtained 
a light-independent image using a sequential labeling algorithm based on neighboring points on 
a smoothly curved surface with similar surface normal and illumination conditions.(10) Tian and 
coworkers proposed a tricolor attenuation model and obtained a shadow-invariant red-blue 
difference image based on Planck’s blackbody irradiance law.(11,12)

	 Methods based on a data-driven approach can be divided into traditional machine learning 
and deep learning methods. Traditional machine learning methods usually need to extract 
histogram features on the basis of segmentation images and adopt the framework of cascade 
classifiers. For example, Zhu et al. adopted boosted decision trees integrated with a binary 
conditional random field as a classifier.(13) Guo et al. proposed the detection framework of two 
cascaded support vector machines (SVMs).(14) Hosseinzadeh et al. obtained the detection 
framework of an SVM combining two convolutional neural networks (CNNs).(15) Deep learning 
methods with CNNs can be trained in an end-to-end way, which reduces the complexity of the 
staged training used in traditional machine learning methods. For instance, Dong et al. proposed 
a shadow detection network by combining the pre-trained deep network ResNeXt101 and an 
attention module(16) with two NVIDIA GTX1080Ti cards used for training. The training took 
about 3.5 h. One GTX1080Ti card was used for testing, and the detection speed was 12 frames/s. 
Deep learning methods have achieved good detection results, but they are also generally 
computationally expensive.(17–22)

	 It can be seen from the above discussion that empirical model methods have the advantages 
of simple calculation and high speed but low robustness. Traditional machine learning methods 
require hand-crafted features owing to the effects of various factors such as the object material, 
microsurface geometry, light field distribution, and sensor noise, making it very difficult to 
design shadow features with strong invariance. Deep learning methods use optimization 
algorithms to obtain shadow features from a dataset without manual feature design; however, 
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they require a large representative dataset, and the hyperparameter design is also a considerable 
challenge. With the purpose of finding a method with high detection accuracy and robustness 
similar to that of deep learning methods but with a simple structure and high speed, in this 
paper, a simple global threshold neural network (GTNN) for shadow detection based on a BP 
neural network is proposed. The key contributions of our work are outlined below:
(1)	A new network that combines the global threshold method with a neural network was 

proposed, without any assumptions about the lighting, surface, or camera.
(2)	Compared with other machine learning methods, this method has a simple structure and does 

not require hand-crafted features or a complex CNN.
(3)	The method has low dependence on training data and strong generalization capability, and is 

robust to different datasets once it is trained with a very small amount of training data from a 
single dataset.

	 The rest of this paper is organized as follows. In Sect. 2, we introduce the design concepts of 
the GTNN and its framework and detection and training processes. In Sect. 3, we conduct a 
comparative analysis of the experimental results. Conclusions are given in Sect. 4.

2.	 Proposed Method

	 Global threshold binarization for image segmentation is a widely used method in shadow 
detection. For a shadow image, when the difference in hue between shadow and non-shadow is 
significant, the shadow detection result based on the global threshold of hue will be better than 
that based on the threshold of intensity or saturation. However, owing to the diversity of light 
and projection surface colors, it is difficult to obtain good detection results by using any of the 
above thresholds separately. Fortunately, when we slightly adjusted the above thresholds and 
then fused the binary images obtained separately, we found that the detection results had been 
effectively improved. For example, in Fig. 1, the first column is the input image, the second to 
fourth columns are the binary images obtained through the thresholds of hue, saturation, and 
intensity histograms, respectively (white represents shadows and numbers in brackets represent 
thresholds), the fifth column of the first row is the result of the logic AND of the results of hue 
and intensity after the threshold adjustment, and the fifth column of the second row is the result 

Fig. 1.	 (Color online) Detection results based on the global threshold.
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of the logic AND of the results of hue and saturation. It can be seen that the results after fusion 
are better than those before fusion. If the above detection process is abstracted as a function that 
takes the global thresholds as the input and the binary images as the output, it is hypothesized 
that there is a strong coupling relationship between the thresholds; if threshold decoupling and 
binary image fusion are carried out by appropriate methods, better detection methods will be 
realized. On this basis, a simple GTNN for shadow detection is proposed in this paper.

2.1	 Proposed shadow detection network

	 The overall architecture of the proposed GTNN for shadow detection is shown in Fig. 2. It 
mainly includes three parts: a front-end, a network part, and a back-end. The front-end is used to 
perform filtering on the feature maps to eliminate noise. Here, the feature map can be image 
data of different color spaces such as the image of each channel of the HSV color space, or it can 
be an image on the transform domain such as a ratio map, log ratio map, or segmentation image. 
The global threshold module is used to obtain the global threshold of different feature maps; the 
Otsu, Kittler, and entropy methods can be used in this module. The neutral network is used to 
decouple the global thresholds of different features; it is a fully connected neural network whose 
inputs are the global thresholds of the feature maps and whose outputs are the decoupled global 
thresholds. The BP neural network, RBF neural network, or another structure can be chosen as 
the neural network. The back-end is used to perform binarization through the decoupled global 
threshold, fuse the binary images, and perform morphological filtering for smoothing. Fusion 
methods can adopt various logical operations or their linear combinations.

2.2	 Composition and training

	 The main modules of the proposed GTNN are shown in Table 1. Among them, three channels 
in HSV color space are used as feature maps, which are the input of the filter module, and the 
filter module consists of a maximum filter and a Gaussian filter in series. The Otsu method is 
adopted in the global threshold module. The network is composed of a BP neural network with 
three hidden layers, whose structure is shown in Fig. 3. In the back-end, the aggregation method 
is the logic AND operation, and the morphological filter module consists of morphological 
closing and opening operators in series.

Fig. 2.	 (Color online) Architecture of GTNN.
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	 To train the BP neural network, 100 shadow images were selected from the SBU training 
dataset.(23) These 100 images were mainly of outdoor environments and included changes in 
projection surface color. The global thresholds were obtained from the 100 images through the 
Otsu method in HSV color space and recorded as the input training data of the BP neural 
network. The thresholds of the H, S, and V channels were manually adjusted and inputted to the 
back-end for calculation until a satisfactory result was obtained, then the thresholds were 
recorded as the target values of training. The training data are shown in Fig. 4. The test data 
included 1000 images selected from the SBU dataset, 300 images selected from the ISTD 
dataset, and 400 images selected from the SDMR dataset.(8,18) We adopted the mean squared 
error (MSE) as the loss function and the Levenberg–Marquardt algorithm as the training 
algorithm. The training data were split into training, validation, and test data at a ratio of 
0.4:0.3:0.3.
	 The experimental hardware platform was an Intel (R) Core (TM) i7-6700K CPU (4.0 GHz, 16 
GB RAM) and the experimental software platform was the Windows 7 operating system with 
MATLAB R2015a. The MSE curve used for the BP neural network training is shown in Fig. 5. 
The training time was about 5.58 s and the detection time of an image (480 × 640 pixels) was 
about 0.167 s.

3.	 Results and Discussion

3.1	 Evaluation metrics

	 To evaluate the proposed method in terms of detection accuracy, we used two evaluation 
metrics as follows:

Table 1
GTNN composition.
Part Functional unit

Filter
Max filter: size = 3 × 3

Gauss filter: size = 3 × 3
Standard deviation = 1

Global threshold Otsu method

Network
BP neural network

Number of nodes of hidden layers: 100, 40, 30
Activation function of every hidden layer: linear

Aggregation Logic AND operation

Morphological filter Opening operator: threshold = 400, 8-connected neighborhood 
Closing operator: structuring element = [1 0 1; 0 1 0; 1 0 1]

Fig. 3.	 (Color online) BP neural network structure.
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Here, TP, TN, Np, and Nn are the number of correctly detected shadow pixels, the number of 
correctly detected non-shadow pixels, the total number of shadow pixels, and the total number of 
non-shadow pixels, respectively.

3.2	 Performance comparisons and analysis

	 We compared our method with four deep-learning-based methods, patched-CNN,(15) 
Attention Res-Unet,(16) scGAN,(17) and stacked-CNN,(18) as shown in Fig. 6. Our method 
achieves similar performance to Attention Res-Unet. Compared with scGAN, patched-GAN, 
and stacked-CNN, our method is more precise in detecting shadows cast on color areas such as 
the line mark. We provide further visual results tested on the SBU, ISTD, and SDMR datasets in 
Fig. 7, which show various challenging cases, such as changes in surface color and texture in the 
scene. The proposed method can accurately locate shadow areas, indicating that it has high 
robustness. Table 2 shows a comparison of quantitative results and Table 3 shows quantitative 
results of the test on the ISTD and SDMR datasets. As can be seen from Tables 2 and 3, although 
our shadow detection network is trained on 100 images from the SBU training set, it still 
obtained an accuracy close to that of the deep learning methods and also obtained higher 
accuracy on the ISTD and SDMR datasets, which demonstrates the generalization capability of 
our method.
	 The results show that the above-mentioned hypothesis of threshold coupling and binary 
fusion is reasonable, and the decoupling of the threshold by the BP neural network was 
successful. However, we can also see that the BER of our method is significantly higher than 
those of the other methods. Through the analysis of results, we found that there are three cases 

Fig. 4.	 (Color online) Global threshold data curve 
used for training.

Fig. 5.	 (Color online) MSE curve of training.
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Table 2
Comparison of quantitative results.

Methods SBU
Acc BER

GTNN (ours) 0.899 27.12
Attention Res-Unet — 4.88
scGAN 0.90 9.10
patched-CNN 0.88 11.56
stacked-CNN 0.88 11.00

Table 3
Quantitative shadow detection results.
GTNN (ours) Acc BER
ISTD 0.925 16.13
SDMR 0.955 10.50

Fig. 6.	 (Color online) Visual comparison of test results obtained by our method and other methods.

Fig. 7.	 (Color online) Qualitative results of our method tested on SBU, ISTD, and SDMR datasets.
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where the detection is poor. The first case is shown in the first row of Fig. 8. In this case, the 
image environment is not complicated, but the shadow is relatively light; for this case, the 
shadow is incorrectly detected by our method. The second case is shown in the second row of 
Fig. 8. In this case, the image environment is dominated by lawns and woods. The third case is 
shown in the third row of Fig. 8. In this case, dark colors make up a large proportion of the 
images. For the latter two cases, false detection occurs with our method.
	 The result of these failures leads to an increase in BER. We believe that there are three main 
reasons for this result:
(1)	Small numbers and few types of training samples. In the 100 training images we selected 

from the SBU dataset, we mainly focused on images with obvious color changes on the 
projection surface, which were lacking in the above situations.

(2)	Lack of feature map types and the existence of threshold adjustment errors. We only used 
three feature maps as the input of the GTNN. In addition, the target training data for the BP 
network was obtained by manual adjustment, so the error of the target training data was 
relatively large.

(3)	The fusion rule is relatively simple. We only chose the logic AND operation to perform 
binary fusion, and the priority of fusion was not considered when the binary image fusion of 
any two of hue, saturation, and intensity can obtain a similar detection result.

4.	 Conclusions

	 In this paper, we proposed a new GTNN for shadow detection that combines the global 
threshold method with the BP neural network. Through this method, different global features 
with strong illumination and texture invariance are effectively utilized. Through the neural 
network framework proposed in this paper, threshold decoupling and binary fusion are realized. 
Compared with the mainstream CNN method, the network has a simple structure, fast 
calculation, and high robustness. The main problem at present is that the detected BER is high. 
By increasing the numbers of types of feature map and training sample and improving the 
priority of fusion, there is still plenty of scope to improve the performance. In contrast with the 
end-to-end CNN method, our proposed method requires the manual acquisition of thresholds to 
train the BP neural network, which increases the artificial errors and workload. In future 
research, to achieve end-to-end training, the error of the BP mechanism in the fusion layer will 
be further studied.

Fig. 8.	 (Color online) Three types of environment with failed detection.
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