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	 Ankle exoskeletons have recently aroused increasing research interest owing to their potential 
in enhancing human locomotion. Nevertheless, inter-subject variability makes the control of 
human–exoskeleton interaction complicated. To handle this problem, we designed a human-in-
the-loop (HIL) approach to optimization control for an ankle exoskeleton during walking based 
on an improved self-adaptive particle swarm optimization (ISAPSO) algorithm and the iterative 
learning control (ILC) algorithm. As part of the development, a self-adaptive updating strategy 
was first proposed to tune the three key parameters of each particle to obtain a better trade-off 
between the global and local search abilities of ISAPSO. Moreover, since the performance of the 
proposed ISAPSO heavily relies on its convergence property, we provided a convergence-
guaranteed parameter setting rule for the proposed optimizer after analytically investigating its 
convergence. Finally, the developed HIL optimization approach was verified via experimental 
tests on eight subjects. The experimental results revealed that the proposed method reduced the 
soleus muscle activities of the eight subjects by 23.46 ± 10.21, 47.04 ± 13.54, 28.52 ± 8.14, and 
8.58 ± 3.82% compared with those for the static assistance condition, zero-torque model, normal 
walking condition, and the case optimized by standard particle swarm optimization, respectively. 
Thus, the proposed method can be regarded as an alternative in the field of exoskeleton HIL 
optimization control.

1.	 Introduction

	 Owing to their great potential in improving human mobility, ankle exoskeletons have aroused 
increasing research interest over the last few decades.(1–4) To achieve this potential, it is 
paramount to set suitable control parameters for an ankle exoskeleton since they have a profound 
impact on its performance.(5–7) Traditionally, the control parameters have either been hand-tuned 
or set on the basis of average measured biomechanical properties of a given population group.(8,9) 
However, these two methods are time-consuming and tedious owing to inter-subject 
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differences.(10,11) The drawbacks of these two methods may limit the applications of an 
exoskeleton for different users. Thus, to increase the suitability of the exoskeleton for different 
users, it is necessary to develop methods for automatically determining its control parameters.(12) 
However, the complexities and uncertainties of both humans and the human–exoskeleton 
interaction impose great challenges regarding this issue.(13)

	 Despite major efforts to resolve this issue, few of them achieved successes until recent 
breakthroughs in human-in-the-loop (HIL) optimization for wearable robotic devices.(14–16) The 
HIL optimization method can automatically optimize the control parameters of a device based 
on the measured physiological signals of each user.(17–19) Therefore, this method can not only 
surmount the flaws of the two aforementioned parameter setting approaches, but also broaden 
the application of a given exoskeleton for different users.(20)

	 Two key issues need to be addressed in exoskeleton HIL optimization. The first is the 
establishment of the objective function. Currently, building the objective function via the 
metabolic cost of each subject is one of the most commonly used approaches. As an alternative 
approach, the application of electromyography signals (EMGs) of the lower-limb muscles of each 
subject to build the objective function has been proposed due to the easy measurement and 
implementation of EMGs. For example, in addition to the metabolic cost, Zhang et al. have also 
tested and verified the feasibility of using the soleus muscle activity of each subject to establish 
the objective function for human walking.(11) Some similar works using one- or two-legged 
EMGs to indicate the optimization metric in exoskeleton HIL optimization can be found in Refs. 
21 and 22.
	 The selection of the optimizer is the second key issue in exoskeleton HIL optimization.(23) 
Direct methods, such as the response surface method(24) and gradient descent method, were the 
first approaches used in this field. However, this type of method may be sensitive to noise, which 
would reduce its optimization performance for a low signal-to-noise ratio.(25) By virtue of their 
swarm-based nature, evolutionary algorithms (EAs) have shown excellent optimization 
performance in problems with a low signal-to-noise ratio. As a result, EAs such as covariance 
matrix adaptation (CMA-ES)(11,26) and the genetic algorithm (GA)(27) have been recently 
employed in exoskeleton HIL optimization.
	 As one of the most popular EAs, the particle swarm optimization (PSO) algorithm has been 
applied to optimize exoskeleton control parameters in recent years due to its simplicity and high 
convergence speed.(28,29) Nevertheless, standard PSO has been proven to be a divergent 
algorithm and suffer from difficulties in adjusting its global and local search abilities.(30–33) 
These deficiencies would greatly constrain the performance of standard PSO in exoskeleton HIL 
optimization.
	 To enhance human walking mobility by employing PSO and the iterative learning control 
(ILC) algorithm,(34,35) a two-level HIL optimization control framework was developed in this 
study to identify the assistive strategies that the ankle exoskeleton provides to humans. The high 
level implements PSO to optimize the four torque pattern control parameters, i.e., the peak 
torque, peak time, rise time, and fall time of the ankle exoskeleton, while minimizing the soleus 
muscle activity of each subject. The low level implements ILC to govern the movements of the 
ankle exoskeleton, so that it can provide walking assistance to each subject by following the 
desired torque trajectory generated by the high-level optimizer. 
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	 To enhance the optimization efficiency, we propose an improved PSO algorithm, which we 
called self-adaptive PSO (ISAPSO), in the high-level optimizer in the developed HIL framework. 
To achieve this goal, a self-adaptive updating strategy is first developed to adjust the three key 
coefficients (inertia weight and cognitive and social acceleration parameters) of each particle in 
ISAPSO. Subsequently, after analytically investigating the convergence of ISAPSO, a 
convergence-guaranteed parameter setting rule is provided for this optimizer so as to sufficiently 
guarantee the convergence of the proposed PSO.
	 It is important to note that the idea of using the HIL framework to optimize the assistive 
strategies of an ankle exoskeleton is not original. In this study, we simply referred to the 
framework developed in previous studies.(11,14,15,17) The main contributions of this study involve 
the development of the optimization algorithm in the high level of the HIL framework and are 
summarized as follows:
(1)	An improved self-adaptive PSO algorithm, named ISAPSO, is proposed for the high level of 

the HIL framework.
(2)	To ensure a good balance between the global and local search powers of ISAPSO, a novel 

self-adaptive updating strategy is developed to tune the three key coefficients of each particle 
in this algorithm.

(3)	A convergence-guaranteed parameter setting rule is developed to sufficiently ensure the 
convergence of ISAPSO, which is followed by an investigation of the convergence of this 
PSO.

	 To evaluate the proposed method, we conducted five different experimental tests on eight 
subjects. The experimental results showed that the proposed method reduced the soleus muscle 
activity of the eight subjects by 23.46 ± 10.21, 47.04 ± 13.54, 28.52 ± 8.14, and 8.58 ± 3.82% 
(mean ± standard deviation), compared with those for the static assistance condition,(11) zero-
torque model,(11) normal walking condition,(11) and the case optimized by standard PSO, 
respectively. Thus, our proposed method can be considered as an alternative in the field of 
exoskeleton HIL optimization. 
	 The rest of this paper is organized as follows. The research problem is described and 
formulated in Sect. 2. Section 3 mainly discusses the proposed ISAPSO and the convergence-
guaranteed parameter setting rule for this algorithm. The ISAPSO-based HIL framework is 
depicted in Sect. 4. The experiments, results, and analysis are reported in Sect. 5. Section 6 
completes this paper by drawing conclusions and suggesting several future directions of study. 
Finally, the analytical investigation of the convergence of ISAPSO is given in the Appendix.

2.	 Problem Statement and Formulation

	 As shown in Fig. 1, a human–exoskeleton interaction system is considered in this paper. In 
such a system, an ankle exoskeleton is unilaterally worn on a human ankle to assist walking. The 
dynamics of this system can be mathematically represented as follows:

	 ( ) ( , )a h M q q H q qτ τ+ = +  ,	 (1)
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where τa is the assistive torque provided by the exoskeleton. τh is the actual torque exerted by the 
human ankle, M(q) and ( , )H q q  are the inertia moment and Coriolis dynamics of the device, and 
q, q, and q represent the exoskeleton’s position, velocity, and acceleration, respectively.
	 Constrained by the complexities of both humans and the exoskeleton dynamics, M(q) and 

( , )H q q  cannot be directly obtained in the above system. This leads to major challenges in 
designing the controller of the exoskeleton. Moreover, the inter-subject variations could lead to 
different responses of different subjects to a given control strategy. This also significantly 
increases the difficulty of the exoskeleton controller design, particularly in terms of 
individualized designs for different users.
	 To address these challenges, as shown in Figs. 2 and 3, we have designed a two-level HIL 
optimization control framework by integrating ISAPSO and ILC. The high-level optimizer uses 
ISAPSO to optimize the peak torque, peak time, rise time, and fall time of the device in each 
stride of the subject while optimizing the subject’s soleus muscle activity. The four optimized 
torque pattern control parameters are then used to determine the desired ankle torque, which is 
regarded as the input of the low-level controller. The low-level controller subsequently tracks the 
desired ankle torque on the basis of ILC, so that the device can yield assistive torque to the 
ankle.
	 Since the desired ankle torque is optimized individually in the high-level optimizer on the 
basis of the subject’s soleus muscle activity, the HIL framework can not only reduce the 
difficulty of designing the low-level controller, but also broaden the application of the 
exoskeleton to different users. The proposed ISAPSO and the design of the HIL framework are 
described in the following sections.

3.	 Proposed ISAPSO

3.1	 Review of standard PSO

	 Inspired by birds flocking and homing, standard PSO was first proposed by Kennedy and 
Eberhart in 1995. Each agent in the PSO file is regarded as a particle and represents a candidate 

Fig. 1.	 (Color online) Global scheme of the human–exoskeleton interaction system.
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solution to an optimization problem. During the search for solutions, each particle dynamically 
updates its search information based on its own experience and those of its companions as 
follows:(36)

	
1

1 1 2 2
1 1

( ) ( )k k k k k k
m m m m m m m m

k k k
m m m

V V c r pbest X c r gbest X

X X V

ω+

+ +

 = + − + −


= +
,	 (2)

where k
mV  and k

mX  are the velocity and position of particle m at iteration k, k
mpbest  and gbestk are 

the personal best position of particle m and the global best position of the swarm at iteration k, 
ωm is the inertia weight of each particle, c1m and c2m are two positive real parameters representing 
the cognitive and social acceleration coefficients of each particle, and r1 and r2 are two random 
numbers uniformly distributed in [0, 1], respectively.

Fig. 2.	 Control flow chart of the developed HIL framework.

Fig. 3.	 (Color online) Schematic diagram the developed HIL framework.
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	 Originally, standard PSO was proposed to solve some nonlinear optimization problems 
through social interactions among particles. As shown in Eq. (2), each particle regulates its 
velocity and position information through its own flight memory and those of other particles. 
Note that k

mV  and k
mX  are dimensionless and simply used to model social interactions among 

particles. Thus, they can be directly added in Eq. (2). For more details of standard PSO, please 
refer to Ref. 36. 

3.2	 Self-adaptive updating strategy proposed in ISAPSO

	 The global and local search abilities of PSO heavily rely on the particle’s inertia weight and 
the social and cognitive acceleration parameters.(33) The basic principles regarding how these 
three parameters affect the global and local search abilities of PSO can be summarized as 
follows: (1) a large inertia weight enhances the global search ability, whereas a small inertia 
weight enhances the local search ability; (2) a large cognitive acceleration parameter compared 
with the social acceleration parameter facilitates the global search; (3) a large social component 
compared with the cognitive component augments the local search power.(36,37) 
	 Normally, the global search ability of PSO needs to be intensified in the early stage of the 
evolution, so that particles can search through the entire solution space to reduce the likelihood 
of missing the area containing the global optimum.(33,37) On the other hand, the local search 
ability needs to be strengthened in the late stage of the evolution to encourage particles to search 
carefully in the area including the global optimum to increase the likelihood of finding the 
global optimum.(33,37)

	 Since the above three parameters in standard PSO are predefined constants and there is no 
difference between the social and cognitive acceleration parameters, this algorithm has been 
found to have difficulties in obtaining a good balance between its global and local search 
abilities.(37) This shortcoming can greatly reduce the optimization performance of standard PSO. 
To increase the performance, it is necessary to remedy this deficiency of standard PSO. 
	 The principle and analysis noted above provide a meaningful insight into how to effectively 
balance the global and local search abilities of PSO via changing the three key coefficients of 
each particle. Herein, to surmount the flaw of standard PSO, we propose a self-adaptive updating 
strategy to tune the three key coefficients of each particle in ISAPSO as follows: 

	 1( )expm max min min
kδ

ω ω ω ω
β

 −= − + 
 

,	 (3) 

	 2
1 1 1 1( )expm s f f

k
c c c c

δ
β

 −= − + 
 

,	 (4)

	 3
2 2 2 2( )expm s f f

k
c c c c

δ
β

 −= − + 
 

,	 (5)
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	 1
max min

maxk
ω ω

δ
−

= ,	 (6)

	 1 1
2

s f
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c c
k

δ
−

= ,	 (7)

	 2 2
3

s f

max

c c
k

δ
−

= ,	 (8)

	 = k k
mgbest pbestβ − ,	 (9)

where ωmax and ωmin are the maximum and minimum values of the inertia weight, c1s, c1f, c2s, 
and c2f are the initial and final values of the cognitive and social acceleration coefficients, β is 
the Euclidean distance between the particle’s personal best position and the swarm’s global best 
position, and kmax is a predefined constant representing the maximum iteration number of the 
swarm, respectively. Note that c1s > c1f and c2s < c2f in the above updating strategy. Also, the 
particles in ISAPSO still use Eq. (2) to update their velocity and position information. Moreover, 
since the exponential function is known for its rapid growth, the three key coefficients of each 
particle in ISAPSO are exponentially updated using the above strategy to increase the 
convergence speed of ISAPSO. 

3.3	 Parametric analysis of ISAPSO

	 To ensure a good balance between the global and local search abilities of ISAPSO, a self-
adaptive parameter updating rule given by Eqs. (3)–(9) is developed for this algorithm. To 
explain how this rule can ensure a good balance between the two abilities in principle, we 
conduct a parametric analysis of this algorithm based on the rule developed in this section. From 
Eqs. (3)–(5), it is evident that ωm and c1m decrease, whereas c2m increases as the iteration number 
k increases. These changes in the three parameters indicate that the global search ability of this 
algorithm can be increased in the early stage of evolution and will be dominated by the local 
search ability in the later stage. Thus, on the basis of the principle stated in Sect. 3.2, the 
likelihood of missing the global optimal solution can be decreased early in the evolution, and the 
likelihood of finding the global optimum can be increased later in the evolution.
	 Moreover, the global and local search abilities of ISAPSO can be adapted using the introduced 
parameter β. It is clear from Eqs. (3)–(5) that the variations in ωm and c1m decrease while the 
change in c2m increases with increasing β. This may imply that the global search ability of 
ISAPSO can be increased for a large β. From Eq. (9), a larger β indicates a larger distance 
between the personal best position of the particle and the global best position of the swarm. In 
this case, it is logical to enhance the global search ability of ISAPSO, so that particles can 
quickly converge toward the global best position and to reduce the likelihood of missing the 
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potentially vital solution space during the search. In contrast, it is desirable to strengthen the 
local search ability of ISAPSO for a small value of β to maximize the likelihood of finding the 
global optimum.
	 In summary, the three key coefficients of each particle in our proposed ISAPSO can be 
adaptively updated via the self-adaptive updating strategy defined by Eqs. (3)–(9) while 
complying with the principle noted in Sect. 3.2. As a result, the optimization efficacy of ISAPSO 
can be increased.

3.4	 Convergence-guaranteed parameter setting rule for ISAPSO

	 As shown in the Appendix, we have proven that ISAPSO converges if and only if 

	 1 1 2 20 2 2
1 1

m m m

m

c r c r ω
ω

< + < +
− < <

,	 (10)

where c1m and c2m are the cognitive and social acceleration coefficients, respectively, ωm is the 
inertia weight of each particle, and r1 and r2 are two random numbers uniformly distributed in 
[0, 1].
	 As shown by Eq. (10), despite obtaining the necessary and sufficient condition for the 
convergence of ISAPSO, the rule for setting the three coefficients under this condition to 
guarantee the convergence of ISAPSO still remains unknown. To address this issue, we provide 
a parameter setting rule to sufficiently guarantee the convergence of ISAPSO by integrating the 
developed rule defined by Eqs. (3)–(9) and the condition given by Eq. (10).
	 Lemma 1. The convergence of ISAPSO is sufficiently guaranteed only if the initial and final 
values of the three coefficients of each particle meet the following conditions.

	
1 1

1 2 1 2

2 2

1 1
0

min s f

max min

s f f s

c c

c c c c

ω

ω ω

+ > +


> > > −
 = > = >

	 (11)

	 Proof. Since c1m and c2m are positive and the two stochastic numbers r1 and r2 are uniformly 
distributed in [0, 1], it is trivial that 1 1 1m mc c r≥  and 2 2 2m mc c r≥ . Thus, one can easily see that

	
1 2

1 1 2 2

1 2

2 2
0 2 2

1 1
1 1

, 0

min m m
m m m

m
m

m m

c c
c r c r

c c

ω
ω

ω
ω

+ > +
< + < +− < < ⇒ − < < >

.	 (12)

	 If 1 2s fc c=  and 1 2f sc c=  in Eq. (11), it is trivial from Eqs. (4) and (5) and Eqs. (7) and (8) that 
1 2 1 1m m s fc c c c+ = +  for any particle at any iteration in ISAPSO. Moreover, one can easily see 

from Eqs. (3)–(5) that min m maxω ω ω≤ ≤ , 1 1 1f m sc c c≤ ≤ , and 2 2 2s m fc c c≤ ≤ . Therefore, we have
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1 1 1 2

1 2 1 2 1 2

2 2 2 2
1 1 1 1

0 , 0

min s f min m m

max min m

s f f s m m

c c c c

c c c c c c

ω ω
ω ω ω

+ > + + > +
 > > > − ⇒ − < < 
 = > = > >

.	 (13)

	 From Eqs. (12) and (13), it is trivial that

	
1 1

1 2

1 2 1 2

2 2
2 2 0

1 1
1 1

0

min s f
min m m

max min
m

s f f s

c c
c c

c c c c

ω
ω

ω ω
ω

+ > +
+ > + >

> > > − ⇒ − < < = > = >

.	 (14)

	 Thus, the proof of Lemma 1 is easily completed owing to the fact that the right-hand-side 
inequalities in Eq. (14) are the necessary and sufficient convergence condition [refer to Eq. (10)] 
for ISAPSO.
	 Recall that ωmin, ωmax, c1s, c1f, c2s, and c2f are predefined constants in the self-adaptive 
updating strategy defined by Eqs. (3)–(9). Therefore, the convergence condition given by Eq. (11) 
can be easily satisfied. This indicates that the convergence of ISAPSO can be easily and 
sufficiently guaranteed by suitably setting the initial and final values of the three coefficients of 
the particle. To this end, we set ωmax = 0.9, ωmin = 0.4, c1s = c2f = 2, and c1f = c2s = 0.1 in the self-
adaptive updating strategy proposed for ISAPSO based on our pilot test. With this suggested 
parameter setting, the convergence of the position and velocity trajectories of a particle in 
ISAPSO are illustrated in Fig. 4.

4.	 HIL Framework Developed for Ankle Exoskeleton During Human Walking

	 Leveraging ISAPSO and ILC, a two-level HIL optimization control framework is developed 
for the ankle exoskeleton during human walking. To minimize the soleus muscle activity in each 
gait cycle, the high-level optimizer uses ISAPSO to optimize the peak torque, peak time, rise 

(a) (b)

Fig. 4.	 Convergent position and velocity trajectories of particle in ISAPSO: (a) position and (b) velocity.
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time, and fall time of the device. The low level implements ILC to control the exoskeleton to 
follow the desired optimized ankle torque. The formulation of the ankle torque pattern during 
walking and the designs of the two levels in the HIL framework are next outlined.

4.1	 Formulation of ankle torque pattern during walking

	 As visualized in Fig. 5, during walking, the ankle torque has a hill-like shape that is primarily 
defined by four parameters: the peak torque, peak torque time, rise time, and fall time.(11,24) 
Universally, the hill-like pattern is composed of rising and falling cubic spline sections as 
follows:(11,24)

	
3 2

1 1 1 1 1
3 2

2 2 2 2 2

( )

( )

t a t b t c t d

t a t b t c t d

τ

τ

 = + + +


= + + +
,	 (15)

where τ1(t) and τ2(t) respectively denote the rising and falling cubic splines. t represents the time 
elapsed since the heel strike in the current stride, and ai, bi, and ci (i = 1, 2) are shape parameters 
that must be set.
	 The two spline sections defined by Eq. (15) satisfy(11,24)
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τ

τ τ
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τ

τ

τ

τ

τ

•

•

•

•

− =


=
 =
 + =



=

 =


− =

 + =

,	 (16)

where τp, tp, tr, and tf are the peak torque, peak torque time, rise time, and fall time, respectively.
	 Note that constraints given by  Eq. (15) fully define the shape of the ankle torque. Once τp, tp, 
tr, and tf  are known, the shape parameters ai, bi, and ci (i = 1, 2) in Eq. (15) can be obtained by 
solving Eq. (16). Once the shape parameters are determined, the ankle torque in Eq. (15) can be 
determined. Moreover, as shown in Fig. 6, different values of τp, tp, tr, and tf determine different 
ankle torque patterns. In addition, Zhang et al. discovered that a small torque (2 Nm), rather than 
zero, needs to be enforced at both torque onset and removal to avoid instability caused by torque 
measurement errors.(11) This discovery explains why we have 1( ) 2p rt tτ − =  and 2 ( ) 2p ft tτ + =  
in Eq. (16). See the supplementary materials of Ref. 11 for detailed information about modeling 
the ankle torque pattern during walking.
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4.2	 Design of high-level optimizer in the HIL framework

	 Recall that the high-level optimizer employs ISAPSO to optimize the peak torque, peak time, 
rise time, and fall time of the exoskeleton in each stride. During the design of the high-level 
optimizer, similarly to in some previous studies,(11,22) the root mean square (RMS) of the soleus 
muscle activity of each subject is used to build the objective function. Thus, the high-level 
optimization problem can be represented as follows:

	
Find : , , ,

Minimize :
l r

m p p r f

ma rms rms

X t t t

J E E

τ  =  
= +

	 (17)

subject to

	

min max
p p p

min max
p p p

min max
r r r
min max
f f f

t t t

t t t

t t t

τ τ τ ≤ ≤

 ≤ ≤


≤ ≤


≤ ≤

.	 (18)

Here, Xm is the variable vector to be optimized. τp, tp, tr, and tf are the peak torque (in Nm), the 
peak torque time (in % stride period), the rise time (in % stride period), and the fall time (in % 
stride period), Jma is the total soleus muscle activity of each user, and 

lrmsE  and 
rrmsE  are the 

RMS values of the previous soleus EMGs of each user’s left and right feet, respectively. The 
subscripts “min” and “max” in τp, tp, tr, and tf respectively indicate the lower and upper bounds 

Fig. 5.	 (Color online) Parameterization of ankle 
torque during walking.

Fig. 6.	 (Color online) Torque patterns determined 
for different values of ankle torque control parameters.
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of the corresponding parameter. In this study, we have 2min
pτ = , min

p Msτ =  (Ms is the body 
weight of the user), 30%min

pt = , 65%max
pt = , 10%min

rt = , 40%max
rt = , 5%min

ft = , and max 20%ft = .
	 Note that the raw soleus EMGs must be filtered, so that noises contained in the muscle can be 
eliminated from the calculation of the objective function in the high-level optimizer. In this 
paper, similar to some other studies,(11,22,23) the raw soleus EMGs of each subject are filtered by 
a low-pass second-order Butterworth filter, then a high-pass second-order Butterworth filter. We 
follow the suggestion of Buchanan et al.(38) of empirically setting the cut-off frequencies of the 
low-pass and high-pass filters to 4 and 10 Hz, respectively. However, the frequency of the soleus 
muscle generally ranges from almost zero to hundreds of Hz. The soleus EMGs can still be 
powerful with a cut-off frequency greater than 10 Hz or smaller than 4 Hz. Thus, it is necessary 
to further investigate the effect of the cut-off frequencies on the EMG data processing in the near 
future.
	 After establishing the optimization model defined by Eqs. (17) and (18), the high-level 
optimizer then applies ISAPSO to optimize the peak torque τp, peak torque time tp, rise time tr, 
and fall time tf with the goal of minimizing the objective function defined by Eq. (17). During 
the optimization process, the position vector of each particle in ISAPSO is coded by these four 
ankle torque pattern parameters. To guarantee that the position vector of each particle satisfies 
the constraints given by Eq. (18), we use the following saturation mechanism to modify each 
element of the position vector of each particle in ISAPSO:
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, if 
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where 
imx  denotes the ith (i = 1, 2, 3, 4) element in the position vector of particle m, and 

i
max
mx  

and 
i

min
mx  denote the upper and lower bounds of the ith element, respectively. Note that the upper 

and lower bounds of each element refer to the corresponding torque pattern control parameter 
constraints depicted above. 
	 During the search, the main loop of ISAPSO is not executed until the iteration number of the 
swarm reaches the given maximum iteration number. Also, the personal best position (pbestm) of 
each particle and the global best solution (gbest) are substituted by those of the particle only if 
the fitness value of the particle is less than those of pbestm and gbest. Moreover, the updated 
gbest is sent to the low-level controller in the HIL optimization framework. Note that the global 
best solution searched for by ISAPSO is not the global optimum since the proposed algorithm is 
a first-order convergent algorithm. Thus, the four optimized ankle torque parameters in the 
high-level optimizer are near optimal. The steps in using ISAPSO to optimize the above 
parameters are given in Table 1.

4.3	 Design of low-level controller in the HIL framework

	 As demonstrated in Fig. 7, we have developed an ankle exoskeleton to assist human walking. 
The size of the exoskeleton is designed on the basis of the average foot size of a normal adult. 
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The distance between the heel and the toe is 230 mm. The vertical height and horizontal distance 
between the ankle joint and the heel are both 80 mm. Two high-strength fiberglass boards 
connected by carbon steel are attached at the joint of the exoskeleton. The exoskeleton is 
connected to an off-board commercial motor (Maxshine 130MSL10025) by a Boden rope. A 
tension sensor is connected to the end of the Boden rope. 
	 The designed exoskeleton is driven by a motor controller with a rated power of 2.6 kW and a 
5:1 planetary reducer. The motor used for the exoskeleton is shown in Fig. 8, where A, B, C, D, 
and E respectively denote the servo motor, planetary reducer, pulley, transformer, and motor 
controller. The motor driver changes its voltage output on the basis of the desired ankle torque. 
Different motor voltage outputs result in different tensions that the Boden rope transfers to the 
exoskeleton device, and consequently different assistance torques are provided by the device to 
the ankle.
	 Owing to its simplicity and promising control stability, the ILC algorithm is used to update 
the desired motor torque for the next step in our developed HIL framework as follows:(33)

Table 1
Steps in ISAPSO in the high-level optimizer in the HIL framework.
1: set the required simulation parameters and initialize the swarm
2: while not exist condition do
3:    for each particle m do
4:         calculate the objective function of the particle by Eq. (17)
5:         update the personal best position (pbestm) of the particle
6:         update the velocity and position information of the particle by Eq. (2)
7:         modify the position vector of the particle by Eq. (19)
8:        update the three coefficients of each particle by Eqs. (3)–(9)
9:    end for
10:  update gbest of the swarm and send it to the low-level controller
11:  increase the iteration number by 1 and check the exist condition
12: end while

Fig. 7.	 (Color online) Developed ankle exoskeleton. Fig. 8.	 (Color online) Motor used for the ankle 
exoskeleton.
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	 ( , 1) ( , ) ( ( , ) ( , ))d d g d at n t n k t n t nτ τ τ τ+ = + − ,	  (20)

where n and n + 1 denote the current and next steps, τd(t, n + 1) and τd(t, n) denote the desired 
motor torque at steps n + 1 and n steps, and kg is the constant iterative learning gain and has a 
value of less than 1, respectively. τa(t, n) denotes the actual torque of the exoskeleton and t is the 
time index as a percentage of the stride period.
	 By using Eq. (20), ILC updates the desired motor torque for the next step based on the ankle 
torque errors of the current step in the HIL framework. The iterative learning gain has profound 
effects on the performance of ILC. A greater gain accelerates the convergence of ILC, although 
this will generate a relatively large control error according to the results of our pilot test. Thus, 
we empirically set the iterative learning gain to 0.5 as a compromise between the convergence 
rate and tracking performance. 
	 Since we cannot access the proprietary controller used in the Maxshine motor driver, the 
precise relationship between its input and output remains unknown. However, we can still 
assume that the input and output of the motor driver have a linear relationship when the motor 
runs at a moderate and steady speed. Therefore, the proportional coefficient between the input 
and output of the motor can be obtained using system identification technology. In this study, the 
motor control in the lower level adopts the following torque control model:

	 ( , 1)( ) d

v

t nv t
k

τ +
= ,	  (21)

where v(t) is the output voltage of the motor, τd(t, n + 1) is the desired motor torque, and kv is the 
proportional coefficient between the input and output of the Maxshine motor. We use kv = 12.69 
in this paper, which was obtained using system identification technology. In addition, the 
sampling and control frequencies of the low-level motor controller are 100 and 3000 Hz, 
respectively.
	 In the low-level controller system, the motion of the motor is transferred to the exoskeleton 
device through the Boden rope to provide assistive torque to the ankle. In this study, the actual 
ankle torque provided by the exoskeleton is calculated as follows:

	 ( , ) ( )a bt n f t Rτ = ,	 (22)

where τa(t, n) is the actual ankle torque of the ankle exoskeleton and R is the length of the tension 
and is determined by the mechanical structure of the ankle exoskeleton (R = 0.11 m). fb(t) denotes 
the tension of the Boden rope and can be determined as

	 1( ) ( )bf t k v t= ,	 (23)

where v(t) is the voltage output of the motor driver and can be obtained from Eq. (21). k1 = 0.2686 
is the coefficient between the tension of the Boden rope and the voltage output of the motor 
driver.
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5.	 Experiments, Results, and Analysis

5.1	 Experimental protocol

	 In this paper, eight healthy subjects (age: 24 ± 1.2 years; mass: 63 ± 5.1 kg; height: 
168 ± 3.5 cm, average ± standard deviation) were recruited to experimentally verify the 
developed method. All subjects had no prior experience in using the exoskeleton. Prior to the 
experiments, all subjects provided written informed consent for the experimental study approved 
by Wuhan University of Technology.
	 The experimental platform is displayed in Fig. 9 and contains (1) a membrane switch to 
distinguish the gait cycle of the subject, (2) an ankle exoskeleton worn on each subject’s left 
foot, (3) a motor (Maxshine 130MSL10025), (4) a laptop (ThinkPad E531), (5) two STM32 single 
chips, (6) an electromyograph (ELONXI EMG 100-Ch-Y-RA) to record muscle EMGs, (7) a 
force sensor (DYMH-103), and (8) a treadmill (JET300).
	 For rigorous evaluation, we conducted five tests on each subject under the normal walking 
model, the zero-torque model, the static assistance condition, and the cases optimized by 
standard PSO and ISAPSO in our HIL framework. See Ref. 12 for more detailed information 
about the normal walking model, the zero-torque model, and the static assistance condition. For 
convenience, the five tests are denoted by Case1 to Case5. To reduce the effect of randomness, 
the five tests were conducted in random order for each subject. Note that each test lasted 20 min 
with a 5 min break allowed for each subject between any two tests to avoid muscle fatigue. As 
described in Sect. 4.2, the soleus muscle activity of each subject was recorded for the final 3 min 
of each test. We then compared the obtained muscle activity in each test.
	 For Case4 and Case5, the swarm size and maximum iteration number of standard PSO and 
ISAPSO were respectively set to 30 and 50 for each subject. The simulation parameters of 
standard PSO were set to ω = 1 and c1 = c2 = 2.5 in accordance with the original literature. The 
simulation parameters of ISAPSO were set to ωmax = 0.9, ωmin = 0.4, c1s = c2f = 2, and c1f = c2s = 
0.1 on the basis of the analysis results in Sect. 3.4. 

Fig. 9.	 (Color online) HIL experimental platform: (a) side view and (b) back view.

(a) (b)
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5.2	 Experimental results and analysis

	 Table 2 shows the numerical results of each test for each subject, where the best results 
among the five tests for each subject are highlighted in bold. Note that the obtained torque 
pattern control parameters under Case1 and Case2 are represented by “NA” in Table 2 due to the 
fact that the exoskeleton provides no assistance to each subject for these two cases. The average 
muscle activity and the soleus EMGs of each subject are visualized in Figs. 10 and 11, 

Table 2
Results for each subject under different test conditions.

Subject Condition Obtained [τp, tp, tr, tf ] Muscle activity of soleus
[Nm, %Stride, %Stride, %Stride] Left foot Right foot Total

1 Case1: Normal walking NA 0.3019 0.3045 0.6064
Case2: Zero torque NA 0.3497 0.3358 0.6855
Case3: Static assistance [20.25, 56.13, 19.32, 18.99] 0.2583 0.2690 0.5273
Case4: Optimized by standard PSO [15.35, 61.01, 30.36, 19.26] 0.2308 0.2284 0.4592
Case5: Optimized by ISAPSO [12.53, 58.42, 28.53, 17.54] 0.2147 0.2053 0.4220

2 Case1: Normal walking NA 0.1917 0.1799 0.3716
Case2: Zero torque NA 0.2488 0.2101 0.4589
Case3: Static assistance [18.35, 60.45, 21.21, 16.78] 0.1963 0.1570 0.3533
Case4: Optimized by standard PSO [14.58, 61.65, 17.73, 15.44] 0.1783 0.1234 0.3017
Case5: Optimized by ISAPSO [15.35 , 63.54 , 20.45 , 11.35] 0.1621 0.1112 0.2733

3 Case1: Normal walking NA 0.2285 0.2673 0.4958
Case2: Zero torque NA 0.2645 0.3377 0.6022
Case3: Static assistance [19.56, 62.91, 24.46, 15.31] 0.1921 0.2631 0.4552
Case4: Optimized by standard PSO [18.80, 57.53, 25.10, 12.25] 0.1714 0.2504 0.4218
Case5: Optimized by ISAPSO [17.54, 61.53, 22.54, 14.43] 0.1643 0.2395 0.4038

4 Case1: Normal walking NA 0.3541 0.3284 0.6825
Case2: Zero torque NA 0.3823 0.3528 0.7351
Case3: Static assistance [19.25, 62.03, 19.47, 20.38] 0.3141 0.3183 0.6324
Case4: Optimized by standard PSO [16.58, 61.94, 17.38, 19.57] 0.3005 0.2963 0.5968
Case5: Optimized by ISAPSO [18.42, 57.04, 12.94, 17.52] 0.2862 0.2816 0.5678

5 Case1: Normal walking NA 0.2853 0.2963 0.5816
Case2: Zero torque NA 0.3274 0.3173 0.6447
Case3: Static assistance [19.56, 71.37, 20.47, 19.53] 0.2953 0.2734 0.5687
Case4: Optimized by standard PSO [17.58, 59.64, 21.02, 17.45] 0.2483 0.2531 0.5014
Case5: Optimized by ISAPSO [13.76, 62.92, 20.53, 18.53] 0.2301 0.2396 0.4597

6 Case1: Normal walking NA 0.3207 0.3421 0.6628
Case2: Zero torque NA 0.3486 0.3702 0.7188
Case3: Static assistance [20.48, 62.73, 22.67, 20.48] 0.3194 0.3012 0.6206
Case4: Optimized by standard PSO [19.57, 61.45, 22.47, 18.04] 0.2704 0.2993 0.5697
Case5:Optimized by ISAPSO [17.47 , 63.04 , 19.87 , 17.94] 0.2563 0.2801 0.5364

7 Case1: Normal walking NA 0.2563 0.2751 0.5314
Case2: Zero torque NA 0.2753 0.3173 0.5926
Case3: Static assistance [17.91, 61.36, 25.73, 19.31] 0.2474 0.2845 0.5319
Case4: Optimized by standard PSO [15.49, 62.94, 24.57, 16.46] 0.2193 0.2283 0.4476
Case5: Optimized by ISAPSO [16.58, 56.28, 19.58, 15.40] 0.1946 0.2118 0.4064

8 Case1: Normal walking NA 0.2080 0.2410 0.4490
Case2: Zero torque NA 0.2337 0.2963 0.5300
Case3: Static assistance [21.56, 64.45, 26.89, 19.11] 0.2235 0.2766 0.5001
Case4: Optimized by standard PSO [19.37, 63.38, 25.46, 16.29] 0.1874 0.2246 0.4120
Case5: Optimized by ISAPSO [16.54, 57.43, 24.34, 17.53] 0.1692 0.1853 0.3545
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Fig. 10.	 (Color online) Average muscle activity of eight subjects in different tests.

Fig. 11.	 (Color online) Obtained soleus EMGs of each subject’s feet under each test condition. (a)–(d) correspond to 
subjects 1–4, respectively.

(a) (b)

(c) (d)
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respectively. Figure 12 shows the fitness value curves optimized by standard PSO and ISAPSO 
for each subject. Table 3 shows the percentage improvements in total soleus muscle activity of 
the eight subjects for Case5 compared with the other four cases.
	 It can be clearly observed from Table 2 that Case5 has the lowest muscle activity of each 
subject, followed by Case4, Case3, Case1, and Case2. Also, from Fig. 10, it is evident that Case5 
outperforms the other four cases in terms of the average muscle activity for the eight subjects. 
These two observations indicate that our proposed method has superior performance to the other 
methods considered in this paper. It is also evident from Fig. 11 that Case5 can significantly 
reduce the magnitude of the soleus EMGs of each subject among the five considered cases. This 
also suggests the effectiveness and superiority of our proposed method. 

Fig. 11.	 (Continued) (Color online) Obtained soleus EMGs of each subject’s feet under each test condition. (e)–(h) 
correspond to subjects 5–8, respectively.

(e) (f)

(g) (h)
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Fig. 12.	 (Color online) Fitness value curves optimized by standard PSO and ISAPSO for different subjects. (a)–(h) 
correspond to Subjects 1–8, respectively.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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	 Moreover, it can be seen from Fig. 12 that, compared with those for Case4, the fitness value 
curves under Case5 for most of the eight subjects continue to fall in the later stage of the 
evolution. This may imply that, compared with standard PSO, the proposed ISAPSO has a better 
trade-off between global and local search abilities. This can probably be explained by the fact 
that the self-adaptive parameter updating strategy proposed in ISAPSO can better balance the 
global and local search abilities. This can reflect the effectiveness of the self-adaptive parameter 
updating strategy proposed in ISAPSO to some extent.
	 Note that the above analysis can only show the general efficacy and superiority of the 
proposed method. The concrete differences between our proposed method and the other four 
methods for the compared cases still remain unknown. To this end, a paired t-test was conducted 
on the statistical results in Table 3 to concretely identify the differences between Case5 and the 
other four cases. Since eight subjects performed five tests in this study, the t-test analysis was 
executed with N = 8 at a confidence level of 95%. It was found that compared with Case4, Case 
3, Case2, and Case1, Case5 had average reductions of 8.58 ± 3.82, 23.46 ± 10.21, 47.04 ± 13.54, 
and 28.52 ± 8.14% (mean ± standard deviation), respectively, in the average total soleus muscle 
activity of the eight subjects at a confidence level of 95%.
	 The results of our analysis allow us to conclude that our proposed method significantly 
outperforms the other methods compared in this paper. Thus, the proposed method can be 
considered as an effective alternative in HIL optimization for the ankle exoskeleton during 
human walking.
	
6.	 Conclusions and Future Work

	 With the goal of enhancing human walking mobility, we designed an HIL optimization 
control framework for an ankle exoskeleton by employing a newly developed ISAPSO algorithm 
and the ILC algorithm. To obtain a good balance between the global and local search abilities of 
ISAPSO, we proposed a self-adaptive parameter updating strategy to adjust the three key 
coefficients of the particles in the PSO optimizer. Moreover, the convergence and a convergence-
guaranteed parameter setting rule concerning ISAPSO were derived. Then, an HIL optimization 
framework was established by using ISAPSO and the ILC algorithm to individually and 
automatically identify the assistive strategies that the exoskeleton provides to each subject. The 
experimental results show that the proposed method can significantly reduce the soleus muscle 
activity of each subject compared with the other four cases considered.
	 The results and methods reported in this paper raise several issues that deserve future study. 
Firstly, the convergence speed of ISAPSO needs to be further improved so as to avoid muscle 

Table 3
Total soleus muscle activity improvements over eight subjects in Case5 compared with the other cases (in %).

Case5 to Case1 Case5 to Case2 Case5 to Case3 Case5 to Case4
Best 44.38 67.91 41.07 16.22
Worst 20.20 29.46 11.37 4.46
Average 28.52 47.04 23.46 8.58
Std. 89.14 13.54 10.21 3.82
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fatigue of the experimenter. Secondly, although the objective function determined by the soleus 
muscle activity implemented in this paper is a commonly accepted index, we are still considering 
the possibility of mixing soleus EMGs with other muscle EMGs, such as those of the main 
muscles of the human hip, to establish a more comprehensive objective function. Thirdly, despite 
confirming the efficiency and superiority of the proposed method by comparing its performance 
with those of the normal walking model, static assistance condition, zero-torque model, and the 
case optimized by standard PSO, its performance should also be compared with those of some 
other well-established EAs. Finally, we are also considering the possibility of developing more 
advanced bionic controlling algorithms to design the low-level controller in a forthcoming study 
to further reduce the walking cost consumed by the user.
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Appendix: Convergence investigation of ISAPSO

	 As a stochastic algorithm, the convergence of PSO is of great importance because it 
profoundly affects the optimization performance of PSO in different situations. To this end, the 
convergence of the proposed ISAPSO is investigated in this subsection. Because the dimensions 
in the velocity and position vectors of the particles in this algorithm are independent, the motion 
rule given by Eq. (2) can be rewritten as the following 1D dynamic system:

	
( 1) ( )1

( 1) ( )
m mm

e
mm m

X k X kc c
P

cV k V k c
ω
ω

+ −      
= +      −+      

,	 (24)

where

	 1 1 2 2m mc c r c r= + ,	 (25)

	 1 1 2 2

1 1 2 2

m m
e

m m

c r pbest c r gbestP
c r c r

⋅ + ⋅
=

+
.	 (26)
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	 Let λ1,2 be the characteristic roots of the dynamic system represented by Eq. (24). Then, we 
can readily obtain the characteristic equation and roots to this system as

	 2 (1 ) 0m mcλ ω λ ω− + − + = ,	 (27)

	
2

1,2
1 (1 ) 4

2
m m mc cω ω ω

λ
+ − ± + − −

= .	 (28)

	 Clearly, the dynamic system represented by Eq. (23) converges if and only if(33)

	 1 2{| |,| |} 1Max λ λ < .	 (29)

	 Since the characteristic roots λ1,2 can be real or complex, both cases are discussed in the 
following.
	 (a) When λ1,2 are complex, namely, λ1,2 ∈ , where  is the imaginary domain.
	 Lemma 2. For the dynamic system defined by Eq. (24), λ1,2 ∈  if and only if

	
1 2 1 2

0
m m m m

m

cω ω ω ω

ω

 + − < < + +


≥
.	 (30)

	 Proof. It is clear from the characteristic equation given by Eq. (27) that λ1,2 are two complex 
roots if and only if

	 2(1 ) 4 0m mcω ω+ − − < .	 (31)

Lemma 2 is easily proved by expanding Eq. (31). 

	 Lemma 3. In the case where λ1,2 ∈ , the dynamic system given by Eq. (24) converges if and 
only if

	
1 2 1 2
0 1

m m m m

m

cω ω ω ω

ω

 + − < < + +


≤ <
.	 (32)

	 Proof. From Eq. (28), it is clear that, for λ1,2 ∈ , we have

	 1 2 1 2{| |,| |} | | | | mMax λ λ λ λ ω= = = .	 (33)
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	 Thus, in such a case, Max{|λ1|, |λ2|} < 1 holds if and only if

	 1mω < .	 (34)

	 Considering the conditions given by Lemma 2 and the fact that Max{|λ1|, |λ2|} < 1, it can be 
easily concluded that the dynamic system expressed by Eq. (24) converges under the situation 
where λ1,2 ∈  if and only if

	
1 2 1 2
0 1

m m m m

m

cω ω ω ω

ω

 + − < < + +


≤ <
.	 (35)

	 This completes the proof of Lemma 3. 
(b) When λ1,2 are real, namely, λ1,2 ∈ .
	 Lemma 4. For the dynamic system given by Eq. (24), λ1,2 are two real roots if and only if

	
, 0

1 2   1 2 0
m

m m m m m

c R

c or c

ω

ω ω ω ω ω

∈ <


≤ + − ≤ + − ≥ ，
.	 (36)

	 Proof. It is evident from Eq. (27) that λ1,2 are two real roots if and only if

	 2(1 ) 4 0m mcω ω+ − − ≥ .	 (37)

Lemma 4 is easily proved by expanding Eq. (37). 

	 Lemma 5. For any λ1,2 ∈ , the dynamic system given by Eq. (24) converges if and only if

	
0 2 2, 1 0

0 1 2  or 1 2 2 2,0 1
m m

m m m m m m

c

c c

ω ω

ω ω ω ω ω ω

≤ < + − < <


< ≤ + − + + < < + ≤ ≤
.	 (38)

	 Proof. For any λ1,2 ∈ , it is trivial from Eqs. (28) and (29) that Max{|λ1|, |λ2|} < 1 if and only 
if

	
21 (1 ) 4

1 1
2

m m mc cω ω ω+ − ± + − −
− < < .	 (39)

It is clear that, for λ1,2 ∈ , Eq. (39) can be rewritten as
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	 23 (1 ) 4 1m m m mc c cω ω ω ω− − < ± + − − < − + .	 (40)

	 By expanding Eq. (27), we find that Max{|λ1|, |λ2|} < 1 holds in the case that λ1,2 ∈  if and 
only if

	
2 2 0

0
m c

c
ω + − >


>

.	 (41)

	 Simultaneously considering the conditions given by Lemma 4 and Max{|λ1|, |λ2|} < 1 given 
by Eq. (41), it can be easily proven that Lemma 5 is satisfied when λ1,2 ∈ . 
	 Lemma 6. The dynamic system given by Eq. (24) converges in any domain if and only if

	 1 1 2 20 2 2
1 1

m m m

m

c r c r ω
ω

< + < +
− < <

.	 (42)

	 Proof. Combining the conditions given by Lemma 3 and Lemma 5, it is trivial that the 
dynamic system given by Eq. (24) converges in any domain if and only if

	
0 2 2

1 1
m

m

c ω
ω

< < +
− < <

. 	 (43)

	 Substituting Eq. (24) into Eq. (42) completes the proof of Lemma 6. 
	 The convergence domain of the dynamic system given by Eq. (24), i.e., the proposed ISAPSO, 
is displayed in Fig. A1. The convergence of this algorithm is necessarily and sufficiently 
guaranteed if any pair of selected control parameters ωm and c (c = c1m r1 + c2m r2) of each 
particle is located within the domain shown in Fig. A1(b).
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(a) (b)

(c) (d)

Fig. A1.	 (Color online) Real convergence domain of ISAPSO: (a) 3D convergence domain, (b) 2D projection of ωm 
and c, (c) 2D projection of ωm and Max{|λ1|, |λ2|}, and (d) 2D projection of c and Max{|λ1|, |λ2|}.


