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	 We propose a human–machine graphic control fault diagnosis system based on an extension 
neural network (ENN) and the chaos synchronization detection method. A high-frequency 
signal is injected into a photovoltaic (PV) module to observe the voltage variation under different 
fault conditions, and the fault type is diagnosed using the proposed algorithm. Firstly, defects are 
introduced into the PV module and a high-frequency signal is injected by a signal generator. The 
high-frequency oscilloscope through the high-frequency sensor captures the voltage signal. The 
feature of the signal is calculated by the chaos synchronization detection method and a chaotic 
error scatter map is established. The chaos eye coordinates of the scatter diagram are used as 
eigenvalues for fault diagnosis. Finally, the ENN is used for fault diagnosis of the PV module. 
Also, from a comparison of analysis results with those of a traditional neural network, the ENN 
can identify the type of PV module fault rapidly and the recognition accuracy is as high as 
87.5%. Small changes in the voltage signal can be detected effectively by using the chaos 
synchronization detection method, and the preprocessing of big data is reduced. The PV module 
fault state is identified accurately to demonstrate the applicability of the method to PV module 
fault diagnosis.

1.	 Introduction

	 Rapid industrial development has led to an increased quality of life for people but has also led 
to a significant increase in the use of traditional fossil fuels. The world is confronted with the 
crises of fossil energy exhaustion and higher CO2 emissions, which contribute to the global 
greenhouse effect and climate change. To reduce these effects, various countries are looking for 
alternative energy sources.(1) Multiple types of renewable energy can replace fossil energy, 
including hydropower, wind power, tidal power, and solar power. As renewable energy considers 
local climate conditions and the construction environment, solar power generation has low 
environmental pollution and produces no noise, employs a simple and modular structure, and 
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has high reliability. Therefore, solar power generation is undoubtedly a promising trend of 
renewable energy. Additionally, various countries have pushed energy policies actively in recent 
years, which has led to the rapid development of photovoltaic (PV) generation systems, which 
are becoming the main pillar of renewable energy development.(2–5) With the construction and 
extensive use of PV generation systems, it is necessary to consider the aging of PV modules in 
the long-term operation of systems, which may be damaged in the outdoor environment, leading 
to reduced power generation and sometimes failure. Therefore, to avoid PV generation system 
faults, to reduce maintenance, labor, and cost, and to increase the efficiency of maintenance, PV 
generation system fault detection has become an important issue.
	 Some experts have performed research on the fault diagnosis of PV modules. Most studies 
used power generation data obtained from simulation software or by the actual measurement of 
the PV module of a PV generation system and used different algorithms to diagnose the fault in 
the PV generation system. In a previous study, MATLAB/Simulink software was used to build 
an equivalent mathematical model of a PV generation system to simulate fault diagnosis.(6) 
However, nonlinear characteristics were exhibited as the atmospheric conditions changed, the 
simulation results were different from reality, and the parameter settings were difficult to 
calculate. In another study, maximum power point tracking (MPPT) was proposed on the basis 
of a thermal imager and PV controller, and a partial shadow fault was measured.(7) While the 
majority of experiments on the aging and fault diagnosis for PV modules were conducted 
through thermal imaging,(8) the application of thermal images has been limited due to high costs. 
An EL lens and drone were used to collect fault images to detect defects and faults effectively.(9) 
However, it was necessary for a professional to review the fault images, the failure information 
could not be obtained immediately, and the EL lens and drone had a relatively high cost. Past 
studies used artificial neural networks for fault diagnosis.(10,11) The diagnostic results were good, 
but to achieve more accurate recognition, a large amount of time and data were required for 
training and learning. A diagnostic method based on decision trees was proposed for a PV 
module.(12) This method has a good recognition rate but the diagnostic process requires more 
than 1000 inter-comparisons and the experimental period is too long. A diagnostic method based 
on the Gisement solaire par télédetection: Solar Radiation by Teledectection (GISTEL) model 
was also proposed for improving the accuracy of the location of a PV cell from a satellite image 
obtained through fuzzy logic.(13) However, this method is difficult to use in practice. Fault 
diagnosis by integrating chaos theory with extension theory could achieve high accuracy.(14) 
However, the matter-element weight of extension theory must be adjusted through training, and 
the accuracy of diagnosis decreased significantly under some temperature and illuminance 
conditions. 
	 In this study, we inject a high-frequency signal to capture the voltage drop of a PV module as 
a feature, which is combined with the Lorenz chaos synchronization detection method(15,16) and 
an extension neural network (ENN)(17) to identify the fault types of a PV module. Type 1 is a 
surface rupture of the module, Type 2 is module aging, and Type 3 is a module bypass diode 
failure. Compared with the thermal image detection method and EL lens detection method, the 
proposed method does not require the costs of a thermal image lens and EL lens or a professional 
to operate a drone for patrol inspection. The proposed chaos synchronization detection method 
is highly sensitive to the input signal; if the input signal changes slightly, the output result 
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presents a scale effect, which is favorable for extracting meaningful eigenvalues from the fault 
signal. Also, the ENN is a combination of extension theory and a neural network that provides a 
new correlation grade calculation for classification. It is characterized by parallel learning ability 
and a higher training iteration speed than that of a traditional neural network. It can perform the 
classification problem with range, continuous, and discrete outputs.

2.	 PV Module Detection Method

2.1	 Architecture of PV module fault diagnosis system 

	 This study uses an off-line detection mode, and three common PV module fault types are 
established: PV module breakage, PV module aging, and bypass diode failure of the PV module. 
Each combination comprises four units of a PV module connected in series to simulate fault 
conditions, and a high-frequency signal is injected into the PV module. The waveform is 
extracted using a high-frequency oscilloscope, the eigenvalues are extracted by the chaos 
synchronization detection method, and then the ENN is used for fault diagnosis. Figure 1 shows 
the architecture of the PV module fault diagnosis system and Fig. 2 shows the flow of the system.

Fig. 1.	 (Color online) Architecture of PV module fault diagnosis system.

Fig. 2.	 (Color online) Flow of PV module fault diagnosis system.
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2.2	 PV module defect construction

	 Long exposure to the sun ages PV modules, cracks are formed in PV modules due to external 
factors such as hail and trampling,(18) or sometimes the bypass diode fails in PV modules. These 
factors can greatly reduce the power generating efficiency of the solar PV system. Figure 3 is a 
stereogram of a PV module defect. Related specifications are shown in Table 1. The construction 
method of different PV module fault types is described below.

2.2.1	 PV module breakage

	 To produce a breakage in a PV module part of a PV module was placed under a blast burner 
until it reached a high temperature, and the physical phenomena of thermal expansion and 
contraction subsequently induced fracturing of the module surface, which imitated the hot spot 
effect on the heated surface. To simulate the module chip failure induced by human trampling or 
the strong impact of foreign matter, a normal PV module was knocked with a sharp object under 
an external force until a large area of reinforced glass was broken. Figure 4 shows the circuit 
used to measure the PV module. The PV was connected to a bypass diode in parallel and to an 
internal resistor (Ra). In this experiment, four PVs connected in series were employed. When a 
high-frequency square wave was injected by the signal generator, the fault signal waveform 
through the load was measured by an oscillograph.

Table 1 
PV module specifications
Project Specification
Max power (Pm) 20 W
Open circuit (Voc) 22.4 V
Max power voltage (Vmp) 18.2 V
Max power current (Imp) 1.10 A
Short circuit current (Isc) 1.197 A
Mode dimensions (L × W × H) 426 × 356 × 25 mm3

Fig. 3.	 (Color online) Stereogram of PV module 
defect.

Fig. 4.	 (Color online) Circuit for measuring surface breakage of PV module.
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2.2.2	 PV module aging

	 The elements of a PV module age with time or temperature changes. The aging of insulation 
will have a strong impact on the operational safety of electrical equipment. To construct an aged 
PV module using the aging fault construction method proposed in Ref. 19, additional resistors 
with resistances of 2 and 10 Ω were separately applied to the PV module in series connection for 
testing. A variable resistor was connected to the PV module in series, i.e., the internal resistor 
(Ra) of the PV module in Fig. 4 was replaced by a variable resistor as shown in Fig. 5. The 
purpose was to detect the aging of the overall loop or regional lines and contact points. Similarly, 
four PV modules were connected in series to simulate a fault due to aging, a high-frequency 
square wave was imported by a signal generator, and the fault signal waveform through the load 
is measured by an oscillograph.

2.2.3	 PV module bypass diode failure

	 In the PV conversion process, the PV module is likely to have problems due to external 
factors. For example, the shade of trees and bird droppings reduce electricity generation. A 
damaged or shielded region will generate heat, making a bypass diode very useful. This diode 
makes the current of normal PV modules pass by the faulty PV module to reduce the heating 
effect and protect the module against immediate overburn. The PV module bypass diode in Fig. 
4 was removed to build the bypass diode failure state shown in Fig. 6, where four PV modules 
were similarly connected in series to simulate the aging fault. A high-frequency square wave 
was imported by a signal generator, and the fault signal waveform through the load was 
measured by an oscillograph.

3.	 Proposed Fault Diagnosis Algorithm

3.1	 Chaos synchronization detection method

	 The American meteorologist Edward Norton Lorenz discussed the unstable characteristic of 
nonlinear systems and used a simple mathematical model of chaos theory to obtain nonperiodic 

Fig. 5.	 (Color online) Measuring circuit for the aged 
PV module.

Fig. 6.	 (Color online) Measuring circuit for bypass 
diode failure of PV module.
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results. A signal generates chaotic attractors through chaos theory. The signal is orderly but has 
a nonperiodic motion trajectory. This trajectory produces a tremendous change from a small 
initial change because of the highly sensitive response to a microscale initial phenomenon, 
making chaos theory suitable for application to original data with a small variation range. Chaos 
theory is used in many fields such as biology, economics, physics, and engineering. Common 
chaos theories include the Lorenz chaos theory, Chen–Lee chaos theory, and Sprott chaos 
theory. Chaos theory has a master system (MS) and a slave system (SS), expressed as Eqs. (1) 
and (2), respectively. When the two systems receive different signals, the signal values are 
subtracted to generate the chaos dynamic error, and the MS and SS generate the motion 
trajectory of different dynamic errors for the engineering domain. A controller is added to the 
SS to track the MS. The MS and SS are gradually adjusted to the same motion trajectory by a 
controller, which is called chaotic synchronization action.(20)

	 Therefore, the captured PV module voltage signal is input in a master–slave synchronization 
system, and the dynamic errors of the natural chaos of the SS and MS are respectively subtracted 
by the master and slave chaotic systems to obtain the chaos dynamic error state.
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Here, fi (i = 1, 2, ..., n) is a nonlinear function, Eq. (1) is subtracted from Eq. (2) to obtain the 
master–slave dynamic error, expressed as Eq. (3), and the calculated dynamic error equation is 
expressed as Eq. (4). 
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	 The Lorenz master and slave chaos systems are mathematical models established on the basis 
of the chaos theory and can generate infinite models. In this study we use the Lorenz equation 
and two Lorenz chaos systems, i.e., the Lorenz master and slave chaos systems expressed as Eqs. 
(5) and (6), respectively.
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	 The chaos dynamic error is defined as 1 1 1 2 2 2,  e y x e y x= − = − , and 3 3 3e y x= − , the dynamic 
error vector is [ ]1 2 3, , Te e e=e , and the dynamic error equation of the Lorenz master and slave 
chaos systems is represented in a matrix as follows:(21) 
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x is set as the MS and its initial value is zero. y is set as the SS with the PV voltage as its initial 
value. α, β, and γ are coefficients for adjusting the error (α = 10, β = 28, γ = 8/3), and the Lorenz 
master and slave chaos systems are derived from this group of error coefficients.(22) The distance 
of chaos eye coordinates in the chaotic scatter diagram is calculated by using the largest root-
mean-square deviation. The chaos eye coordinate distances Z of chaotic scatter diagrams e1e2, 
e2e3, and e1e3 are calculated using Eq. (8). The values are compared to obtain the maximum 
value, defined as the preferred eigenvalue. Table 2 shows the longest distance between two chaos 
eye coordinate distances from the e2e3 chaotic scatter diagram, and the chaos eye coordinate 
value is used as the eigenvalue of the PV module diagnosis system. The chaos dynamic error 
scatter map is defined as shown in Fig. 7.

	 ( ) ( ) ( ) ( )2 2 2 2
11 21 11 21 12 22 12 22Z X X Y Y X X Y Y′ ′ ′ ′= − + − + −− + 	 (8)

Table 2 
Comparison of PV module fault feature values.
Chaotic system e1e2 e2e3 e1e3
Chaos eye coordinate distance (Z) 14.99 40.36 12.55
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3.2	 Extension neural network

	 Extension theory provides a new correlation grade calculation for classification processing, 
and the predominant feature of a neural network is parallel learning ability. Therefore, their 
combination provides a new classification recognition method. The ENN can perform supervised 
learning and possesses the ability to solve classification problems with consecutive inputs and 
discrete outputs.(17)

	 Figure 8 shows the basic structure of an ENN that includes an input layer and an output layer. 
A characteristic sample is obtained at the node of the input layer, and a preset weighting 
parameter is used to generate an input pattern image. In this network architecture, each 
connected input node and output node has two weights. One weight represents the minimum 
value of the input feature of this node, and the other weight represents the maximum value of the 
input of the node. For example, U

kjW  and L
kjW  are connected at the jth input node and kth output 

node. A flow chart of the ENN is shown in Fig. 9.

3.2.1	 Extension neural network learning rule

	 The ENN is used for supervised learning, and an output value identical to the target is 
achieved by adjusting the weight or reducing the error of the output value.(23) Several variables 
are defined before learning. Let the learning sample be { }1 2, , , NPX x x x= …  and NP be the 
number of training samples. The ith sample is { }1 2, , ,p P P P

i i i incX x x x= … , the total number of 
characteristic samples is nc, and the type of the ith sample is p. To evaluate the correctness of 
ENN prediction, the testing error is set as Nm and the total error ratio is set as
		

	 .m
T

p

NE
N

= 	 (9)

Fig. 7.	 (Color online) Scatter map of chaos dynamic error.
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	 The ENN learning rule is described below:
Step 1:	 Set the weights between an input node and an output node as Eqs. (10) and (11) in 

accordance with the characteristic model.
		

	 { }max
P

U k
kj ij

i N
w x

∈
= 	 (10)

	 { }min
N

L k
kj iji P

w x
∈

= 	 (11)

Step 2:	 Calculate the median weight of each feature, expressed as Eqs. (12) and (13).
		

	 { }1 2, , ...,k k k knZ Z Z Z= 	 (12)

	 ( )    / 2L U
kj kj kjZ W W= +  for   1,2, , ; 1,2, ,c ck n j n= … = … 	 (13)

Step 3:	 Read the ith training sample and characteristic number p, expressed as Eq. (14). 

	 { }   
1 2  ,  , ...,  p p p p

i inci iX X X X= ,  cP n∈ 	 (14)

Step 4:	 Use the extension distance to calculate the distance from the kth cluster to the sample, 
expressed as Eq. (15).

Fig. 8.	 (Color online) Basic structure of ENN. Fig. 9.	 (Color online) ENN flow chart.
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Step 5:	 Look for * *
* },  min{ik ikk ED ED= . If *k p= , proceed to Step 7; otherwise, proceed to 

Step 6.
Step 6:	 The new pth and k*th weights are described below.
	 The pth and k*th weight medians are updated using Eqs. (16) and (17), respectively. 

	 ( )   
 

pnew old old
pj pj ij pjZ Z X Z= + − ,   cP n∈ 	 (16)

	 ( )    
 * * *

pnew old old
k j k j ij k jZ Z X Z= + − ,   cP n∈ 	 (17)

	 The pth and k*th weights are updated using Eqs. (18)–(21), wherein η is the learning 
rate.

	 ( )( )  ( )   
  
L new L old p old
pj pj ij pjW W X Zη= + − 	 (18)

	 ( )( )  ( )   
  
L new U old p old
pj pj ij pjW W X Zη= + − 	 (19)

	 ( )( )  ( )   
 * *
L new L old p old
pj ij k jk jW W X Zη= + − 	 (20)

	 ( )( )  ( )   
 * *
L new U old p old
pj ij k jk jW W X Zη= + − 	 (21)

Step 7:	 Repeat Steps 3 to 6 until all samples have been classified. 
Step 8:	 If the classification has converged or the total error rate reaches a minimum standard 

value, stop the process; otherwise, return to Step 3. 

3.2.2	 Extension neural network recognition stage

	 After the ENN has completed learning, classification or recognition can be performed using 
the following algorithm.
Step 1:	 Read the weighting matrix learned by the ENN.
Step 2:	 Calculate the median of each center, expressed as Eqs. (12) and (13).
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Step 3	 Read the test sample expressed as

	 { }1 2, , ,t t t mX X X X= … .	 (22)

Step 4:	 Use the proposed extension distance to calculate the distance from each cluster.
Step 5:	 Look for k* using the cluster types of EDik* = min{EDik} and Oik* = 1.
Step 6:	 If all test samples are classified, stop the process; otherwise, return to Step 3.

4.	 Actual Measurement and Analysis of Results

4.1	 PV module signal measurement and extraction 

	 Figure 10 shows the PV module signal testing platform for this study; the PV module is 
measured in an off-line mode without a power supply. Four 20 W PV modules are connected in 
series to form a loop, and the PV module is turned over to avoid the PV effect. The waveform 
generator generates a 250 kHz square wave signal, which is injected into the test PV module 
output end. The high-frequency oscilloscope captures the variations of the voltage waveform of 
inductive loads connected to the loop in series.
	 A WAVESURFER 3054 oscillograph is used in this study. The upper bound of the bandwidth 
is 500 MHz, the sampling rate is 4 GS/s, the input is four analog channels, the maximum 
withstand voltage is 400 V, the probe has a magnification of 1, the withstand voltage is 150 V, 
and the effective extraction frequency is 100 MHz.
	 Three types of PV module faults are constructed in this study. These faults are breakage, 
aging, and bypass diode failure. Two complete cycles are extracted from each fault type as data 
samples. The data sampling time is 8 μs, the sampling frequency is 4 GS/s, and there are 32000 
sampling points. The measured waveforms of PV module breakage, aging, and bypass diode 
failure are respectively shown in Figs. 11–13. 

Fig. 10.	 (Color online) PV module signal testing platform.
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Fig. 11.	 (Color online) Waveform of PV module breakage.

Fig. 12.	 (Color online) Waveform of PV module aging.

Fig. 13.	 (Color online) Waveform of PV module bypass diode failure.
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4.2	 Extraction of signal characteristic value by chaos synchronization detection method

	 There are 32000 measured voltage signals for each type of PV module fault. It is impossible 
to obtain explicit features from the waveform. Therefore, we use the chaos synchronization 
detection method to calculate the 32000 voltage data. The chaos eye coordinates of the chaotic 
scatter diagram are extracted as the eigenvalues for fault recognition. This method effectively 
compresses mass data and extracts representative eigenvalues. The accuracy of ENN recognition 
is thus enhanced effectively.
	 The three voltage waveforms of the PV module are calculated by the Lorenz chaos 
synchronization detection method. The chaotic scatter diagram and chaos eye coordinates are 
shown in Figs. 14–16. The chaos eye coordinates of the PV module fault types are represented as 
chaos eye coordinate distributions, as shown in Fig. 17, which provide the eigenvalues for ENN 
recognition and fault classification.

Fig. 14.	 (Color online) Chaotic scatter diagram and 
chaos eye coordinates of PV surface rupture.

Fig. 15.	 (Color online) Chaotic scatter diagram and 
chaos eye coordinates of PV module aging.

Fig. 16.	 (Color online) Chaotic scatter diagram and chaos eye coordinates of PV module bypass diode failure.
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4.3	 ENN recognition result and comparison

	 We use MATLAB to compose the ENN to implement the system for recognizing PV module 
faults. Figure 18 shows the ENN training curve. It can be observed that the error rate is zero 
when the training is iterated nine times, meaning that the ENN has completed its training and 
learns successfully. The recognition accuracy rate is 87.5%.
	 The chaos eye eigenvalue for PV module fault types was employed for training and 
recognition using the most commonly adopted backpropagation network (BPN), and the results 
were compared with those from the ENN. As shown in Table 3, the recognition results of the 
ENN yield the highest accuracy rate of 87.5%, followed by the 75% for probabilistic neural 
network (PNN). Moreover, the accuracy rate from the recognition results of the ENN is superior 
to the rates from all other traditional neural network algorithms with the largest difference being 
45%.
	
4.4	 ENN recognition result and comparison

	 LabVIEW developed by National Instruments has a special link library for hardware, 
instrument control, and analytical software with powerful functions and high applicability. We 
used LabVIEW graphic control program software to implement the diagnostic recognition 
system of human–machine interface graphic control for the PV module, which is convenient for 
maintenance and operating staff to perform fault diagnosis. Figure 19 shows the human–
machine graphic control detection interface developed for the PV model. The PV module voltage 
signal is transferred to the human–machine interface system, then chaos synchronization 
detection and ENN recognition of the PV module are performed instantly and the fault diagnosis 
result is displayed.
	 Figure 19 shows the fault diagnosis output result of PV module breakage. The human–
machine interface has the following functions.
(a)	Fault display light signal: the diagnostic result after ENN recognition of the feature value.
(b)	Voltage waveform: the measured signal of the PV module.

Fig. 17.	 (Color online) Chaos eye coordinates of PV module fault types represented as chaos eye coordinate 
distributions.
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Table 3 
Recognition results of ENN and other algorithms.
Algorithm Epoch Learning rate (%) Accuracy rate (%) Ranking
ENN 20 100 87.5 1
PNN 1 N/A 75 3
MNN (4-9-3) 1000 82.1 62.5 2
MNN (4-18-3) 1000 81.2 50 4
MNN (4-10-3) 1000 67.9 47.5 5
MNN (4-17-3) 1000 60.3 42.5 6

Fig. 18.	 (Color online) ENN training curve.

Fig. 19.	 (Color online) Human–machine interface graphic control diagnostic recognition system.

(c)	Chaos eye coordinate value: the chaos eye coordinate value of the chaos scatter diagram is 
the feature value of the PV module voltage.

(d)	Chaos scatter diagram: the chaos scatter diagram after theoretical calculation of the PV 
module voltage signal by chaotic synchronization detection.
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5.	 Conclusions

	 We proposed a method for PV module fault recognition based on the ENN and chaos 
synchronization feature extraction. Three common fault types were constructed for the PV 
module. The chaos eye coordinates of the Lorenz chaos synchronization system were used as the 
feature of fault diagnosis. The advantage of this method is that it compresses a large amount of 
data while effectively extracting eigenvalues from this data. The trained ENN was used for 
identifying fault types. The recognition accuracy rate of the proposed method is as high as 
87.5%, superior to that of a traditional neural network, proving that the method proposed in this 
study is effective for PV module fault diagnosis. Additionally, we used LabVIEW to develop a 
human–machine interface graphic control diagnostic program, which is integrated with a chaos 
synchronization detection method and the ENN to build a real-time measurement and 
recognition system. It is implemented in the PV module fault diagnosis recognition system.
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