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	 Detection of the facial skin condition enables people to better understand skin problems and 
helps them select appropriate treatment methods and maintenance products. We collected facial 
images of different skin problems by using an image optical sensor. To overcome the problem of 
insufficient training data, the collected dataset was expanded through data augmentation. In the 
field of computer vision, deep learning is often used for solving image recognition problems 
with high accuracy. Therefore, we used a convolutional neural network (CNN) to detect facial 
images of different skin problems. To overcome the difficulty of parameter selection and 
increase the recognition rate and robustness of the CNN, the parameters of the CNN were 
optimized using the Taguchi method. Eight control factors in the convolutional layer and the L36 
orthogonal array (OA) were used in experiments. Analysis of variance was used for statistical 
analysis in the design of the experiments to obtain the optimal parameter combination for the 
developed CNNs. The experimental results indicate that the CNN optimized using the Taguchi 
method had an accuracy of 86.95%. The accuracy of the optimized CNN was 7.24% higher than 
that of the original CNN. The experimental results prove that the proposed hyperparameter 
optimization method can effectively improve the accuracy of network detection.

1.	 Introduction

	 Artificial-intelligence image detection has begun to receive increasing attention in facial 
cosmetology because it can be used to detect skin conditions and identify an appropriate 
treatment strategy.(1,2) The complex spatial structures of the skin and lesions associated with 
continuous skin color changes, pigmented spots, wrinkles, red skin, and acne can be identified; 
however, such identification is limited by the poor discrimination ability of the human eye. To 
assist skin analysis experts in dermatology and cosmetology, an image processing system must 
be able to identify the aforementioned skin conditions.(3) A suitable automatic system for facial 
condition detection must be able to detect facial conditions from images. Certain challenges, 
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such as a lack of training data (deep learning requires a large dataset), exist in facial image 
detection based on deep learning.(4,5) To address these challenges, in this study, we used various 
data augmentation methods to increase the size of the training set, and deep learning and 
parameter optimization were conducted to detect different types of skin problems. For image 
recognition, deep learning is superior to conventional image processing because it does not 
require users to determine the image capture characteristics.(6) 
	 Among the deep learning methods, convolutional neural networks (CNNs) have achieved 
considerable success in image analysis applications, such as object detection, facial recognition, 
and medical image classification.(7–9) CNNs usually consist of fully connected layers (e.g., input 
layer and output layer), convolutional layers, and pooling layers for downsampling.(10) CNNs are 
the most commonly used deep learning architecture, and numerous CNN architectures, such as 
LeNet-5, AlexNet, and GoogleNet, are available.(11–13) LeNet-5 is superior to traditional image 
processing methods.(14) Lin et al.(15) proposed the LeNet-5 architecture and used it to classify 
breast histopathology images effectively. In the current study, we applied LeNet-5 in facial 
image detection. This network requires a large number of training parameters, and its parameter 
setting is complicated.(16) Therefore, the parameters of LeNet-5 must be optimized. The Taguchi 
method is commonly used for optimizing the parameters of LeNet-5 to increase its classification 
accuracy. It is a useful method for improving the design of experiments according to the 
parameters, system, and tolerance, and is widely used in quality assurance systems for the 
statistical analysis of collected data.(17) The Taguchi method is also useful for determining the 
optimal parameter combination with minimum experimentation and the order of importance of 
control parameters.(18) Moreover, it is a robust approach for optimizing the control parameters.(19) 
In the Taguchi method, an orthogonal array (OA) is used. This array comprises horizontal level 
factors and other factors that are mapped during an experiment.(20) 
	 The Taguchi method is used to determine the optimal parameter combination for deep 
learning networks. The problem of the complicated parameter setting process in CNNs can be 
overcome by using the Taguchi method, which can obtain the optimum parameters in a relatively 
short time with a relatively low cost and a small number of experiments.(21) Lin et al.(9) used the 
Taguchi method to determine the optimum parameter combination for a CNN structure to 
improve the accuracy of lung cancer classification. On the basis of the aforementioned 
discussion, in this paper, we propose a CNN with Taguchi parametric optimization for facial 
image detection applications. The main aim of this study was to use the Taguchi method to 
optimize the parameters of a CNN for facial image detection applications. The contributions of 
this study are described as follows. First, the optimal combination of parameters, such as the 
convolution kernel size, number of filters, stride, and padding, for a CNN is obtained by using 
the Taguchi method. Second, the Taguchi method is used to reduce the number of experiments, 
and thus the time required for facial image detection, and to increase the accuracy of facial 
image detection. 
	 The remainder of this paper is organized as follows. Section 2 describes the Taguchi method, 
adopted materials, and developed CNN model. Section 3 presents the experimental results 
obtained when using the Taguchi method in the developed CNN. Finally, Sect. 4 presents the 
conclusions of this study and recommendations for future research.	



Sensors and Materials, Vol. 33, No. 8 (2021)	 2913

2.	 Materials and Methods

	 We developed a CNN to detect facial skin conditions with high accuracy. We used the 
Taguchi method to optimize the parameters of the CNN and the analysis of variance (ANOVA) 
for statistical analysis. ANOVA was used to identify the parameters that affected the accuracy of 
the developed CNN model, then the optimal parameter combination of the CNN was obtained 
using the Taguchi method. Figure 1 shows the framework of the CNN developed with the 
Taguchi optimization used to improve the classification performance. This study involved three 
main steps. First, the developed CNN model was used to detect normal skin, pigmented spots 
and wrinkles, and red skin and acne (Sect. 2.1). Next, the Taguchi method was used to determine 
the optimal parameter combination for the developed CNN architecture (Sect. 2.2). Finally, 
facial images were collected to test the CNN model (Sect. 2.3).

2.1	 CNN architecture

	 We applied the LeNet-5 CNN model for facial image detection. As displayed in Fig. 2, the 
LeNet-5 architecture comprises four parts: a convolution layer, a pooling layer, a fully connected 
layer, and an activation function. The LeNet-5 architecture used in this study comprises three 
convolutional layers, two max pooling layers, and two fully connected layers.

Fig. 1.	 (Color online) Framework of the developed CNN with Taguchi optimization.

Fig. 2.	 (Color online) Basic structure of LeNet-5.
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	 Images with a size of 50 × 50 × 3 pixels are input into the adopted LeNet-5 network structure. 
The first convolutional layer contains six filters with a convolution kernel size of 5 × 5 pixels. 
The second convolutional layer contains 16 filters with a convolution kernel size of 5 × 5 pixels. 
Full zero padding is adopted in both these layers. The third convolutional layer contains 120 
filters with feature maps with a size of 1 × 1 pixel. Two max pooling layers are inserted between 
the three convolutional layers. These layers reduce the number of feature dimensions and 
maintain max pooling of kernel size and stride as 2 × 2 pixels. To categorize samples as benign 
or malignant, a fully connected layer is used with the rectified linear unit (ReLU) nonlinear 
activation function. The kernel, stride, padding, and filter can have different sizes. The 
parameters of the proposed CNN architecture are presented in Table 1.
	 We determined the detection performance of the proposed CNN architecture after Taguchi 
parametric optimization in terms of the accuracy, recall, precision, and false positive rate (FPR), 
which were derived from a confusion matrix. The diagonal elements of the confusion matrix 
indicate the number of correctly identified images, and the off-diagonal elements represent the 
incorrectly identified images. The accuracy, recall, precision, and FPR are expressed as 
follows:(22)
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+ + +
,	 (1)

	 TPRecall
TP FN

=
+

,	 (2)

	 TPPrecision
TP FP

=
+

,	 (3)

	 FPFPR
FP TN

=
+

,	 (4)

Table 1
Parameters of the proposed CNN architecture.
Layer Image Size Kernel Size Stride Padding Filter 
Input 50 × 50 × 3 — — — —
Conv 1 — 5 × 5 1 0 6
ReLU — — — — —
Max pooling 1 — 2 × 2 2 × 2 — —
Conv 2 — 5 × 5 1 0 16
ReLU — — — — —
Max pooling 2 — 2 × 2 2 × 2 — —
Conv 3 — 1 × 1 1 0 120
Fully connected — — — — 84
Fully connected — — — — 3
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where TP, FP, TN, and FN indicate the numbers of true positives, false positives, true negatives, 
and false negatives, respectively. The model included two classes, namely, P and N. Accuracy 
indicates the rate of correct predictions across the entire dataset; test sensitivity indicates the 
ability to identify patients with facial skin diseases correctly; and the clinical specificity of a test 
indicates the extent to which the test correctly identifies patients without the disease.

2.2	 Taguchi method

	 In this study, the Taguchi method was used to find the optimal parameter combination for the 
CNN architecture. The Taguchi method is a design of experiments method, which is a statistical 
approach that involves using an OA to collect experimental data for analysis. A flowchart of the 
Taguchi method is illustrated in Fig. 3.
	 The steps in the Taguchi method are as follows:
Step 1: Define the experimental problem
Step 2: Determine the quality characteristics
	 The signal-to-noise (S/N) ratio refers to the ratio between the desired value and undesired 
factors and was selected as the optimization criterion in this study. To determine the optimal 

Fig. 3.	 Flowchart of the Taguchi method.
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process parameters for predicting model performance, the S/N ratio was optimized according to 
the important factors. The S/N ratio can be analyzed in terms of three performance 
characteristics: larger-is-better, nominal-is-better, and smaller-is-better characteristics.(23) In this 
study, the larger-is-better performance characteristic was preferred.

	 2
1

1 110log
n

i i

S
N n y=

 
= −   

 
∑ ,	 (5)

where n is the number of repetitions in a trial and y is the output of the network.
Step 3: Determine the levels of control factors
	 In this study, eight control factors and a mixture of levels 2 and 3 were adopted. Table 2 
presents the control factor parameters of the developed CNN, where A–D and E–H are the 
parameters of the first and second convolutional layers, respectively.
Step 4: Prepare an OA for the experiment
	 In this study, an OA table was used to collect experimental data for analysis. To reduce the 
number of experiments and improve the credibility of the results, the L36 orthogonal table 
presented in Table 3 was adopted.
Step 5: Perform the experiment
	 When the S/N ratio is closer to the target value, the quality loss is lower. The optimal 
experimental results are obtained by calculating the S/N ratio of each factor and level. We used 
three observations to calculate the S/N ratio. The observed value was equivalent to the test 
accuracy under the same conditions in each set of experiments. The higher the average accuracy 
was in the optimization process, the higher the S/N ratio was. A total of 36 experimental runs 
were generated using Minitab.
Step 6: Conduct data analysis
	 ANOVA was used to determine the significance of the process parameters.(24) The degree of 
freedom (DOF), sum of squares (SS), mean of square (MS), F-test significance (F), and 
percentage contribution (PC) were calculated as follows:

	 1ADOF K= − ,	 (6)

Table 2
Control factor parameters of the developed CNN.
No. Factor Level 1 Level 2 Level 3
A conv1_Kernel size 3 5 7
B conv1_Filter 4 6 12
C conv1_Stride 1 2 —
D conv1_Padding 0 1 —
E conv2_Kernel size 3 5 7
F conv2_Filter 8 16 32
G conv2_Stride 1 2 —
H conv2_Padding 0 1 —
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Table 3
OA for experimental parameter setting.

Factor Factor
Run A B C D E F G H Run A B C D E F G H
1 3 4 1 0 3 8 1 0 19 3 4 1 1 7 32 2 0
2 5 6 1 0 5 16 1 0 20 5 6 1 1 3 8 2 0
3 7 12 1 0 7 32 1 0 21 7 12 1 1 5 16 2 0
4 3 4 1 0 3 16 1 0 22 3 6 1 1 7 32 1 1
5 5 6 1 0 5 32 1 0 23 5 12 1 1 3 8 1 1
6 7 12 1 0 7 8 1 0 24 7 4 1 1 5 16 1 1
7 3 6 1 1 7 8 2 1 25 3 6 1 0 3 16 2 1
8 5 12 1 1 3 16 2 1 26 5 12 1 0 5 32 2 1
9 7 4 1 1 5 32 2 1 27 7 4 1 0 7 8 2 1

10 3 12 2 0 5 8 2 1 28 3 6 2 1 5 16 1 0
11 5 4 2 0 7 16 2 1 29 5 12 2 1 7 32 1 0
12 7 6 2 0 3 32 2 1 30 7 4 2 1 3 8 1 0
13 3 12 2 1 3 32 1 1 31 3 12 2 0 7 16 2 0
14 5 4 2 1 5 8 1 1 32 5 4 2 0 3 32 2 0
15 7 6 2 1 7 16 1 1 33 7 6 2 0 5 8 2 0
16 3 12 2 1 5 8 2 0 34 3 4 2 0 5 32 1 1
17 5 4 2 1 7 16 2 0 35 5 6 2 0 7 8 1 1
18 7 6 2 1 3 32 2 0 36 7 12 2 0 3 16 1 1
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Fig. 4.	 (Color online) Example images from the dataset.

Table 4
Specifications of the optical sensor of the CCD.

Vendor Product model 
number

Reported 
resolution (MP)

Pixel pitch
(μm)

Die length
(mm)

Die width
(mm)

Die area
(mm2)

Sony A2111 12.0 1.00 4.04 5.53 22.3
Sony A2161 12.0 1.40 5.78 7.01 40.5

where KA represents the number of levels of factor A, SST represents SS of the total change, T 
represents the sum of all observations, N represents the total number of experiments, SSA 
represents SS for factor A, Ai represents the sum of all observations at level i for factor A, nAi 
represents the number of observations at level i for factor A, MSA represents the variance of 
factor A, MSe represents the variance in the error for factor A, and FA represents the F ratio of 
factor A.
Step 7: Determine whether the goal has been achieved
	 In ANOVA, F indicates that a factor has a stronger influence. PC indicates that if the level of 
a factor changes, the degree of network parameter optimization may be affected. If the obtained 
control factors improve the accuracy of a CNN, the experiment is concluded; otherwise, the 
process returns to Step 3 to redetermine the levels of the control factors.

2.3	 Materials

	 In this study, facial images from 66 people (63 women and 3 men) were collected to detect 
skin problems. For each face, 2–4 images of different parts of the skin were collected. The total 
number of images was 212, and the dataset was divided into three categories: normal condition, 
pigmented spots and wrinkles, and red skin and acne (Fig. 4). The images in this dataset were 
obtained using a charge-coupled device (CCD). The specifications of the optical sensor in this 
CCD are presented in Table 4. To increase the diversity of data, we increased the number of 
images in the original dataset. A total of 10 lighting levels between 0.6 and 1.5 eV (in increments 
of 0.1 eV) were used for each image to achieve a 10-fold increase in the number of images. The 
augmented dataset contained 2332 images. Table 5 presents the numbers of images before and 
after data augmentation.
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3.	 Experimental Results

3.1	 Performance analysis

	 In this study, the L36 OA of the Taguchi method was used to optimize the parameters of the 
developed CNN. We then used the optimized network parameters to detect different skin 
conditions in the augmented dataset. We examined the adjustable factors that affect the accuracy 
of the CNN predictions and selected eight factors (the convolution kernel, filter, stride, and 
padding size in the two convolutional layers) as the control factors. To improve the reliability of 
the experimental results, we combined the test results obtained from a set of experiments using 
the orthogonal table to calculate the average observation results. Table 6 presents the 
experimental parameters, the accuracy of the CNN, and the S/N ratio for each set of experiments. 
S/N ratios were calculated using the ideal quality function, namely, the higher-the-better 
function. The larger the S/N ratio, the smaller the quality loss and the higher the quality 
obtained. According to the results obtained from 36 sets of experiments, the maximum mean 
accuracy (87.62%) was achieved in Run #5 and the minimum mean accuracy (74.52%) was 
achieved in Run #16.
	 The S/N ratio was improved by implementing better concepts. The mean S/N ratios obtained 
for each level and the optimal parameters obtained using the yield extraction method are 
presented in Table 7 and Fig. 5. The importance ranking of parameters was as follows: 
conv2_Filter > conv1_Stride > conv2_Stride > conv1_Kernel size > conv2_Padding > 
conv2_Kernel size > conv1_Filter > conv1_Padding. The optimal levels were A2 (level 2 for 
conv1_Kernel size), B3 (level 3 for conv1_Filter), C1 (level 1 for conv1_Stride), D2 (level 2 for 
conv1_Padding), E3 (level 3 for conv2_Kernel), F3 (level 3 for conv2_Filter), G1 (level 1 for 
conv2_Stride), and H2 (level 2 for conv2_Padding).
	 The ANOVA results presented in Table 8 indicate the degree of influence of each control 
factor and the optimized parameter combination. The PCs of factors F and C were 36.26 and 
31.28%, respectively; thus, conv2_Filter and conv1_Stride had a high influence on the 
optimization results. The PCs of factors B, D, E, and H were 0.76, 0.05, 0.87, and 2.4%, 
respectively; thus, conv2_Filter and conv1_Stride had a limited influence on the optimization 
results.

Table 5
Numbers of images before and after data augmentation.

Classification Number of images 
before increment

Number of images 
after increment

Normal 46 506
Pigmented spots plus wrinkles 79 869
Red skin plus acne 87 957
Total 212 2332
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Table 7
Mean S/N ratios for each level and the optimal parameters.
Factor A B C D E F G H
Level 1 −1.701 −1.634 −1.460 −1.636 −1.640 −1.878 −1.479 −1.676
Level 2 −1.556 −1.658 −1.798 −1.622 −1.657 −1.562 −1.778 −1.582
Level 3 −1.615 −1.594 — — −1.590 −1.447 — —
Max−Min 0.145 0.064 0.338 0.014 0.067 0.430 0.299 0.094
Ranking 4 7 2 8 6 1 3 5
Best level 2 3 1 2 3 3 1 2

Table 6
S/N ratios for each set of experiments.

Run Factor Result
A B C D E F G H Y1 (%) Y2 (%) Y3 (%) Yavg (%) S/N(Y)

1 3 4 1 0 3 8 1 0 84.86 86.00 79.00 83.29 −1.607
2 5 6 1 0 5 16 1 0 85.29 88.29 85.29 86.29 −1.284
3 7 12 1 0 7 32 1 0 85.86 83.86 86.00 85.24 −1.389
4 3 4 1 0 3 16 1 0 86.14 83.43 87.29 85.62 −1.353
5 5 6 1 0 5 32 1 0 87.29 87.43 88.14 87.62 −1.148
6 7 12 1 0 7 8 1 0 85.14 85.71 81.71 84.19 −1.501
7 3 6 1 1 7 8 2 1 83.29 78.86 74.00 78.71 −2.109
8 5 12 1 1 3 16 2 1 85.29 83.86 85.00 84.71 −1.442
9 7 4 1 1 5 32 2 1 87.43 86.71 84.86 86.33 −1.279

10 3 12 2 0 5 8 2 1 77.00 81.14 70.43 76.19 −2.407
11 5 4 2 0 7 16 2 1 81.14 76.43 83.43 80.33 −1.920
12 7 6 2 0 3 32 2 1 84.00 76.86 84.71 81.86 −1.764
13 3 12 2 1 3 32 1 1 86.14 85.86 86.00 86.00 −1.310
14 5 4 2 1 5 8 1 1 80.86 85.43 82.57 82.95 −1.630
15 7 6 2 1 7 16 1 1 81.71 84.71 84.00 83.48 −1.572
16 3 12 2 1 5 8 2 0 77.29 71.29 75.00 74.52 −2.569
17 5 4 2 1 7 16 2 0 74.71 82.86 83.71 80.43 −1.927
18 7 6 2 1 3 32 2 0 83.00 76.14 85.00 81.38 −1.819
19 3 4 1 1 7 32 2 0 82.86 86.29 86.00 85.05 −1.411
20 5 6 1 1 3 8 2 0 81.43 80.14 80.57 80.71 −1.862
21 7 12 1 1 5 16 2 0 82.57 82.57 86.43 83.86 −1.535
22 3 6 1 1 7 32 1 1 86.57 87.00 85.43 86.33 −1.277
23 5 12 1 1 3 8 1 1 86.43 83.57 84.43 84.81 −1.434
24 7 4 1 1 5 16 1 1 87.57 84.14 86.71 86.14 −1.299
25 3 6 1 0 3 16 2 1 83.29 85.00 84.29 84.19 −1.496
26 5 12 1 0 5 32 2 1 86.14 88.29 86.43 86.95 −1.216
27 7 4 1 0 7 8 2 1 83.57 82.71 82.29 82.86 −1.634
28 3 6 2 1 5 16 1 0 83.14 84.14 76.29 81.19 −1.835
29 5 12 2 1 7 32 1 0 86.71 86.43 86.57 86.57 −1.253
30 7 4 2 1 3 8 1 0 80.43 79.00 77.71 79.05 −2.045
31 3 12 2 0 7 16 2 0 85.71 82.14 84.57 84.14 −1.504
32 5 4 2 0 3 32 2 0 80.43 77.14 81.71 79.76 −1.972
33 7 6 2 0 5 8 2 0 77.57 79.29 77.43 78.10 −2.149
34 3 4 2 0 5 32 1 1 85.86 80.86 85.14 83.95 −1.529
35 5 6 2 0 7 8 1 1 81.86 84.43 83.71 83.33 −1.586
36 7 12 2 0 3 16 1 1 86.29 83.57 80.71 83.52 −1.573
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Fig. 5.	 (Color online) Response graph of the S/N ratios for different factor levels.

3.2	 Comparison of methods

	 We compared the accuracy of the Taguchi-optimized CNN model with that of the original 
CNN model. These CNN models were optimized using the optimal parameter configuration to 
increase their accuracies. The parameter settings and accuracies of these CNNs are presented in 
Table 9. After three additional experiments with the optimal parameter combination, the original 
CNN model and the CNN model with Taguchi parametric optimization yielded accuracies of 
79.71 and 86.95%, respectively. Thus, the accuracy of the CNN with Taguchi parametric 
optimization was 7.24% higher than that of the original CNN. These results indicate that 
parametric optimization is essential for CNN models. The optimum kernel, filter, stride, and 
padding sizes were 5, 12, 1, and 1 for the first convolutional layer and 7, 32, 1, and 1 for the 
second convolutional layer, respectively.
	 We compared the facial image classification performance of the Taguchi-optimized CNN, 
VGG-16,(13) AlexNet,(12) and the original CNN. The classification results obtained with these 
models are presented in Table 10. Optimal recall, precision, FPR, and accuracy values of 89.1, 
88.8, 11.2, and 86.95%, respectively, were obtained for the CNN with Taguchi parametric 
optimization. Moreover, the performance of the network improved after parameter optimization. 
In particular, the precision of class 1 increased to 100% for the CNN with Taguchi parametric 
optimization. The experimental results indicate that the proposed CNN is superior to the other 
networks.

Table 8
ANOVA results.
Factor DOF SS FA PC (%)
A 2 0.1268 0.5496 3.86
B 2 0.0251 0.1030 0.76
C 1 1.0290 8.5778 31.28
D 1 0.0017 0.0161 0.05
E 2 0.0287 0.1175 0.87
F 2 1.1927 6.3989 36.26
G 1 0.8063 8.4403 24.51
H 1 0.0789 0.6746 2.40
Sum 35 — — 100
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Table 9
Comparison of the accuracies and parameter settings of the original CNN and the CNN with Taguchi parametric 
optimization.

Layer Factor Original CNN CNN with Taguchi parametric 
optimization

Conv 1

Kernel size 5 5
Filter 6 12
Stride 1 1

Padding 0 1

Conv 2

Kernel size 5 7
Filter 16 32
Stride 1 1

Padding 0 1
Accuracy (%) 79.71 86.95

Table 10
Comparison of the facial image classification performance.
Method Recall (%) Precision (%) FPR (%) Accuracy (%)

VGG-16
1 82.9

53.0
1 39.4

50.8
1 60.6

49.2 46.572 50.5 2 54.7 2 45.3
3 25.7 3 58.3 3 41.7

AlexNet
1 72.4

70.9
1 91.7

74.7
1 8.3

25.3 70.572 69.3 2 67.5 2 32.5
3 70.9 3 64.9 3 35.1

Original CNN
1 86.2

79.8
1 92.3

80.9
1 7.7

19.1 79.712 74.6 2 77.3 2 22.7
3 78.5 3 73.0 3 27.0

CNN with Taguchi 
parametric 
optimization

1 100
89.1

1 98.7
88.8

1 1.3
11.2 86.952 82.2 2 86.1 2 13.9

3 85.1 3 81.6 3 18.4

4.	 Conclusions

	 In this paper, a CNN with Taguchi parametric optimization was proposed for facial skin 
condition detection. We used the Taguchi method with the L36 OA and mixing stage factor VIII 
to increase the accuracy of facial skin condition detection. The ANOVA results indicated that the 
conv2_Filter and conv1_Stride factors had a high influence on the results. The original CNN 
model attained an accuracy of 79.71% and the average accuracy of the CNN with Taguchi 
parametric optimization was 86.95%; thus, Taguchi parametric optimization improved the 
accuracy by 7.24%. We also compared the classification performance of the Taguchi-optimized 
CNN, VGG-16, AlexNet, and the original CNN. Optimal recall, precision, FPR, and accuracy 
values of 89.1, 88.8, 11.2, and 86.95%, respectively, were obtained for the CNN with Taguchi 
parametric optimization. The experimental results indicate that the proposed hyperparameter 
optimization method can effectively improve the accuracy of facial skin condition detection.
	 We used the Taguchi method to find the optimal parameter combination for a CNN 
architecture to reduce the experiment time and increase the detection accuracy. A limitation of 
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this study is that only the lighting level was adjusted for data augmentation. In future studies, 
facial images can be divided into multiple areas, and the misclassification rate can be reduced by 
using other data augmentation methods, such as flipping, rotation, and cropping, and by 
developing new architectures for hyperparameter optimization. In addition, only three classes 
were chosen for skin detection in this study, and we will explore more classes in future work.
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