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	 This paper presents a 3-opamp resistive bridge sensor analog front-end (AFE) integrated 
circuit (IC) with offset voltage compensation using an R-2R digital-to-analog converter (DAC). 
The proposed IC is implemented with a 3-opamp instrumentation amplifier (IA) to achieve high 
gain, high input impedance, and linearity. The two amplifiers in the first stage are multipath 
amplifiers with a chopper stabilization technique and ripple reduction loop (RRL). The chopper 
stabilization technique reduces 1/f flicker noise and DC offset, and the RRL mitigates the output 
ripple voltage resulting from the chopper stabilization technique. The multipath amplifier 
scheme compensates the notch characteristic in the frequency response caused by the RRL. A 
fully differential amplifier with a class-AB output stage is used in the second stage to achieve 
power efficiency. The 12-bit R-2R DAC is implemented to compensate the offset of the second-
stage output of the IA. The IA gain can be controlled from 12 to 48 dB using 2-bit and 3-bit 
programmable feedback resistor arrays in the first and second stages, respectively. The proposed 
IC is designed with a 0.18 μm complementary metal-oxide-semiconductor (CMOS) process and 
has an active area of 7.2 mm2. The simulated input-referred noise is 36.7 nV/√Hz at a frequency 
of 1 Hz and the simulated input offset voltage is 2.2 μV.

1.	 Introduction

	 As the nano/micro-electromechanical system (NEMS/MEMS) sensor market continues to 
grow with the development of Internet of Things (IoT) technologies and the demand for high-
performance sensor applications increases, high-precision sensor interface circuit technology is 
required. Resistive MEMS sensors are used in various applications such as strain gauges, 
pressure sensors, acceleration sensors, and force sensors.(1–5) For the implementation of a high-
precision sensor interface circuit for these high-performance resistive sensors, low noise, low 
offset, and high input impedance are required. There are two general architectures for a resistive 
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sensor interface circuit: a current-feedback instrumentation amplifier (CFIA) and a 3-opamp 
voltage feedback instrumentation amplifier (IA).(6) The CFIA has an advantage of high input 
impedance but the gain accuracy is limited due to the mismatch between the transconductance 
of the input stage and the output stage. The 3-opamp IA has high input impedance and can also 
achieve high linearity, and because the gain of the IA is determined by the resistance ratio, the 
IA gain can be controlled easily.(7) This paper presents a resistive sensor analog front-end (AFE) 
using a 3-opamp architecture.
	 To obtain a low-noise and high-precision sensor interface circuit, the auto-zeroing and 
chopper stabilization techniques are commonly used.(8) The auto-zeroing technique involves 
subtracting the offset voltage and reducing the low-frequency noise using a sampling capacitor. 
However, this technique is only suitable for discrete time operation and has limited ability to 
remove low-frequency noise because of noise folding due to aliasing. The chopper stabilization 
technique modulates low-frequency noise and generates a high-frequency ripple voltage at the 
output. As the low-pass filter (LPF) needed to remove this ripple voltage occupies a large area, a 
ripple reduction loop (RRL) can be used.(9) However, the RRL causes a notch characteristic in 
the frequency response near the chopper frequency and limits the bandwidth of the IA. 
	 This paper presents a chopper-stabilized multipath IA using a 3-opamp architecture with 
offset voltage compensation using an R-2R digital-to-analog converter (DAC). The multipath 
amplifier consists of a low-frequency path and a high-frequency path, and compensates the 
bandwidth limitation caused by the RRL. The R-2R DAC is used in the input of the second stage 
and is implemented with a fully differential amplifier to compensate the output offset voltage.

2.	 Proposed 3-Opamp Multipath IA with R-2R DAC

2.1	 Top architecture

	 The proposed resistive sensor AFE is implemented with a 3-opamp structure for high input 
impedance and high linearity. The proposed 3-opamp multipath IA with a 12-bit R-2R DAC is 
shown in Fig. 1. The first stage is implemented with chopper-stabilized multipath amplifiers for 
low-frequency noise performance, and the second stage is implemented with a fully differential 
amplifier with chopper stabilization and an RRL. A 12-bit R-2R DAC is used to calibrate the 
offset voltage. The output of the IA can be expressed as
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The feedback resistors R2 and R4 make up 2-bit and 3-bit programmable resistor arrays, 
respectively, and the gain of the IA can be controlled from 12 to 48.16 dB.

2.2	 Multipath amplifier

	 Figure 2 shows the structure of the multipath amplifier used in the proposed IA. The 
multipath amplifier consists of a high-frequency path and a low-frequency path. The high-
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Fig. 1.	 Top architecture of proposed multipath IA with output voltage offset compensation using R-2R DAC.

Fig. 2.	 (Color online) Schematic of the multipath amplifier.

frequency input is amplified twice by Gm1 and Gm5 in the high-frequency path, and the low-
frequency input is amplified four times by Gm2, Gm3, Gm4, and Gm5 in the low-frequency path. 
To reduce the low-frequency noise such as the offset and low-frequency noise, chopper 
stabilization is implemented in the low-frequency path.
	 In the low-frequency path, an input signal in the baseband is modulated by chopper CH1. The 
modulated input signal is demodulated by chopper CH2 to the baseband and the offset or the 
low-frequency noise is also modulated by CH2. The modulated offset or low-frequency noise 
appears as a ripple at the output voltage. A multistage LPF is needed to remove this ripple 
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effectively, which deteriorates the area efficiency. To improve the area efficiency, an RRL is 
used in the low-frequency path. The RRL reduces the ripple at the output of Gm3 by a feedback 
method using the current adder.

2.3	 Fully differential amplifier

	 Figure 3 shows the structure of the fully differential amplifier used in the proposed IA. The 
fully differential amplifier is also implemented with chopper stabilization for low-frequency 
noise performance, and an RRL is used to reduce the ripple at the output. The common-mode 
rejection ratio (CMRR) is improved using two common-mode feedback (CMFB) circuits. The 
R-C CMFB in the cascode stage and the CMFB using the error amplifier give negative feedback 
of the common mode of the output signals of the cascode stage and the output stage, respectively.

2.4	 12-bit R-2R DAC

	 Figure 4 shows the R-2R DAC circuit used for offset calibration. The R-2R DAC output can 
be controlled with a 12-bit digital register input. The upper four bits are operated by a 
thermometer code so that the error at the upper bits can be reduced. The R-2R DAC can calibrate 
the offset voltage from −3.3 to 3.3 V with a step size of 1.61 mV.

3.	 Simulation Results

	 The transient simulation result of the proposed IA is shown in Fig. 5. The graph shows the 
input and output forms of a differential signal. The gain of the IA is set to the maximum gain of 

Fig. 3.	 Schematic of the fully differential amplifier.
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Fig. 4.	 Schematic of the 12-bit R-2R DAC.

Fig. 5.	 (Color online) Transient simulation result of the proposed IA.
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48.16 dB using the 2-bit and 3-bit programmable resistor arrays. An input signal of a 1 kHz sine 
wave with a peak-to-peak voltage of 20 mV is applied, and the output signal has a peak-to-peak 
voltage of 5.1 V.
	 Figure 6 shows the simulation result of the frequency response of the proposed IA. The 
chopper frequency is 125 kHz, and as the bandwidth limitation near the chopper frequency is 
compensated using the multipath amplifier, the IA has a unit-gain bandwidth (UGBW) of 
904 kHz at the maximum IA gain of 48.16 dB. 
	 The CMRR and the power supply rejection ratio (PSRR) simulation results are shown in Figs. 
7 and 8, respectively. As the proposed 3-opamp resistive sensor AFE is implemented with a fully 
differential architecture and two CMFBs are used in the fully differential amplifier in the second 
gain stage, the IA achieves a high CMRR performance. The simulated CMRR and PSRR are 
156.4 and 133.9 dB, respectively. Figure 9 shows the input-referred noise simulation result. The 
proposed IA has an input-referred noise of 36.7 nV/√Hz at a frequency of 1 Hz.
	 Figure 10 shows the DC offset voltage simulation result of the R-2R DAC. Under the variation 
of the digital register input code, the DC operating point of the IA output can be linearly 

Fig. 7.	 CMRR simulation result.

Fig. 6.	 Simulation result of the UGBW.
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Fig. 8.	 PSRR simulation result.

Fig. 9.	 Input-referred noise simulation result.

Fig. 10.	 (Color online) DC offset simulation result of the R-2R DAC.

controlled from −3.3 to 3.3 V. A summary of the performance of the proposed chopper-stabilized 
multipath IA and a comparison with other studies are shown in Table 1.(10–13)
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4.	 Conclusions

	 A chopper-stabilized multipath IA with offset voltage compensation using an R-2R DAC was 
presented. The IA is implemented with a 3-opamp for high input impedance and high linearity. 
The first stage of the proposed IA is implemented with a chopper-stabilized multipath amplifier 
with an RRL to achieve low-frequency noise performance and compensate the bandwidth 
limitation. The second stage is implemented with a chopper-stabilized fully differential amplifier 
with an RRL. An R-C CMFB and a common-mode output feedback CMFB with an error 
amplifier in the fully differential amplifier improve the CMRR of the IA. The total gain of the 
IA can be controlled from 12 to 48.16 dB using programmable resistor arrays. A 12-bit R-2R 
DAC is used to control the output DC offset of the IA and the offset can be adjusted linearly 
from −3.3 to 3.3 V. The proposed IA has an input offset voltage of 2.2 μV and an input-referred 
noise of 36.7 nV/√Hz at a frequency of 1 kHz. The CMRR and PSRR of the IA are 156.4 and 
133.9 dB, respectively. 
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