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	 Automated guided vehicles (AGVs) are the main delivery vehicle for the horizontal transport 
of containers between the quayside and yard of automated container terminals (ACTs). The 
coordination of AGVs with the quayside bridge and yard bridge is necessary for loading and 
unloading operations at the wharf and to improve logistics management efficiency. Toward 
solving the problem of AGV path planning and sensor-aware obstacle avoidance in a dynamic 
complex environment for the Internet of Things (IoT), we proposed an improved ant colony 
algorithm based on an adaptive dynamic parameter adjustment strategy (IACA-ADPA) in this 
paper. The grid method is first used to construct a motion space model because it is easy to 
implement, analyze, store, and express, and make the AGV reach its target node safely and 
smoothly. Then the proposed IACA-ADPA is used for global path planning and for efficient 
AGV path design and adjustment. Finally, the improved time window adjusts the waiting time of 
the AGV to avoid local collisions. The simulation results of different scale paradigms show that 
the IACA-ADPA can effectively avoid road section obstacles and node obstacles, and improve 
the safety and efficiency of a multi-AGV system.

1.	 Introduction

	 In logistics storage spaces, such as intelligent warehouses and automated terminals, multiple 
automated guided vehicles (AGVs) are often used to transport goods, and issues such as 
congestion and collision among AGVs inevitably exist. Therefore, the path planning of multiple 
AGVs is more complicated than single-path planning.(1,2) Multi-AGV path planning is a hot and 
difficult topic in current research. Many studies have focused on AGV path planning and 
adjustment, which is a key point in multi-AGV path planning. For example, Smolic-Rocak et al. 
used a time window in the form of a vector, judged the feasibility of candidate paths by inserting 
an appropriate time window, and performed an overlapping test of the time window in their 
proposed multi-AGV dynamic path method.(3) Given the deficiency of static path planning, 
Ren et al. updated the time window for tasks with low priority based on the ideal time window 
for alternative paths to avoid vehicle–vehicle obstacles and collisions.(4)
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	 In addition to path design and adjustment, AGVs can also avoid obstacles by waiting (such as 
by slowing down and stopping). Xu et al. realized multi-AGV collision avoidance by adjusting 
the AGV sequence of corresponding nodes in real time to solve the problem of AGVs being 
unable to follow a predetermined path planned by the time window in a dynamic unstable 
environment.(5) Cao et al. adopted a two-stage traffic control strategy to avoid obstacles and 
deadlocks in a multi-AGV system. First, they calculated the moving path of each AGV offline 
and then controlled the operation of each AGV online through a traffic controller.(6) However, 
such waiting strategies are only temporary measures to avoid obstacles, and a waiting strategy is 
not considered in initial path planning. Different waiting strategies have different effects on the 
overall operating efficiency of AGVs, and the waiting time is also a key problem in the process 
of multi-AGV operation. Zhou and He predicted collisions by space and time obstacle detection, 
compared the time overhead of two kinds of collision avoidance based on the wait and changing 
the path, and chose the implementation requiring less time in their proposed collision avoidance 
scheduling policy based on the rolling time domain of shuttle cars.(7) However, in their study, an 
AGV on a node was only allowed to run or stop simultaneously, which limits its application 
scope. Mehrabad designed a mathematical model including job shop scheduling and an obstacle-
free path problem, and proposed a two-stage ant colony algorithm (ACA) while considering the 
route choice and waiting situation on the node.(8) However, in these studies, it was assumed that 
the road network grid was a square, whereas the actual situation is more complex and requires 
further study.
	 The AGV path planning problem refers to finding an optimal path from a starting point to a 
termination point in a working environment with obstacles so that the AGV can safely bypass all 
obstacles without collision and take the shortest path in the movement process.(9,10) At present, 
much progress has been made in research on the path planning problem under a static 
environment, which mainly uses one-off global planning to find a safe path from the start to the 
finish, where the path is optimized by an algorithm such as the genetic algorithm (GA), neural 
network, or fuzzy algorithm. However, in these methods the search space used for evaluation is 
large, the algorithm is complex, and the efficiency is low.
	 Due to the complex situation in which both known and unknown dynamic obstacles exist in 
the dynamic environment, in this paper, we adopt the promising idea of combining global path 
planning and local collision avoidance planning. We use the improved ant colony algorithm 
based on an adaptive dynamic parameter adjustment strategy (IACA-ADPA) for the global path 
planning of an AGV according to global static information for the first time. On this basis, 
dynamic collision prediction and information feedback based on a local scroll window are then 
used to carry out local collision avoidance planning, and a safe collision-free AGV path with a 
relatively short distance is determined, thus providing a joint global path planning and local 
collision avoidance planning solution for research on multi-AGV path planning in a dynamic 
environment.
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2.	 Related Work

2.1	 AGV path planning for obstacle avoidance

	 If an obstacle on an AGV path is not properly considered, it will increase the time and cost of 
the operation of the AGV, as well as the waiting time at the quayside bridge or yard bridge, and 
the overall loading time of an automated container terminal (ACT), thus reducing its operational 
efficiency and greatly increasing the operation cost of the terminal. Therefore, video multi-AGV 
path planning considering obstacle avoidance is a key issue for ACT operation management as 
shown in Fig. 1. Research on relevant models and algorithms has provided us with an important 
theoretical basis for terminal operation and management.
	 AGV path planning for obstacle avoidance has become the focus of current research. 
Lyu et al. embedded the Dijkstra algorithm with a time window into the GA to search the 
shortest path and detect the collision of multiple vehicles simultaneously.(11) Fazlollahtabar et al. 
established a mixed-integer programming (MIP) model and proposed a two-stage optimization 
method (e.g., searching a solution space and finding the optimal solution) to avoid obstacles 
between AGVs.(12) Nishi and Tanaka proposed a Petri net decomposition method for bidirectional 
AGV system scheduling and path obstacle avoidance in a dynamic environment. The whole Petri 
net was decomposed into a task subnet and an AGV subnet, and a method to avoid deadlock was 
embedded in the AGV subnet.(13) Miyamoto and Inoue established a MIP model and proposed a 
local random search method to solve the path planning problem in AGV system scheduling and 
obstacle avoidance with a limited capacity.(14) Both AGV path planning and task scheduling 
were considered in the previous research, and path obstacles were avoided by adjusting the job 
sequence of AGV tasks. Usually, however, the order of AGV task execution is determined.
	 When it is necessary to determine the order of AGV tasks, most studies have focused on the 
path search method. Maeopolski used a matrix to describe the layout of a transportation system 
and regarded the AGV as moving from matrix to matrix at a fixed average velocity, thus 

Fig. 1.	 (Color online) Model of sensor-aware obstacle avoidance.
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proposing a new paradigm to prevent AGV collision and deadlock.(15) Antakly et al. utilized 
temporal Petri nets to model the path search and proposed a three-stage heuristic algorithm to 
avoid collisions with other AGVs by imposing appropriate delays on AGVs.(16) Mohammadi and 
Shirazi proposed an advanced flexible process model based on simulation to dynamically 
prevent AGV collision and deadlock through a predictive mechanism.(17) Fanti et al. coordinated 
AGV movements through a regional control and dispersion protocol to avoid collisions.(18) 
Nishi et al. considered path planning for obstacle avoidance under AGV acceleration or 
deceleration conditions, established a continuous-time model, and proposed a heuristic algorithm 
based on column generation.(19) Duan et al. proposed an operator for finely tuning paths to make 
path fragments shorter and avoid obstacles, and realized dynamic path planning based on a 
GA.(20) Ahmed et al. proposed a collision prediction method based on vertex attributes and real 
time location information combined with graph theory, established a MIP model, and proposed 
an improved particle swarm optimization (PSO) algorithm suitable for optimizing collision 
avoidance decisions of multi-AGV systems.(21) Hu et al. established a MIP model by analyzing 
the obstacles between sections and nodes and proposed an induced ant colony particle swarm 
algorithm. In the state transition rules of the algorithm, inducer factors were added to guide 
AGVs to avoid obstacles.(22) Miao et al. proposed a two-stage path planning algorithm based on 
ant swarm optimization and game theory for multi-agent path planning. To avoid collision 
between multiple AGVs, a dynamic obstacle avoidance model involving multiple agents was 
constructed using game theory. (23) Also, the virtual action method was used to solve the 
selection problem of multi-Nash equilibrium. The above studies avoided path obstacles by 
designing and adjusting AGV driving routes or taking waiting measures. However, the 
integration of the ACA and PSO, the path, and the waiting time were simultaneously optimized. 
However, most of the path planning studies for obstacle avoidance focused on manufacturing 
systems.

2.2	 IACA

	 The ACA was first proposed by the Italian scholars Dorigo and Gambardella to achieve the 
global optimal solution by simulating the intelligent behavior of an ant colony and cooperative 
food-seeking.(24) Also, the ACA was characterized by a distributed calculation, heuristic search, 
and information-based positive feedback, and had strong robustness and other advantages. Over 
the past decade, a large number of studies on the ACA have been performed by scholars at home 
and abroad, and it has been widely applied to solve travel agent, routing, workpiece sequencing, 
vehicle transportation scheduling, graph coloring, and AGV path planning problems.

3.	 Grid Method-based Problem Formulation

	 Most moving environment trajectories of AGVs are modeled as a grid map, topology map, or 
feature map, in which the grid method is widely used in AGV models because it is easy to 
implement, store, analyze, and express in the modeling process. Therefore, we adopt the grid 
method to model the path planning of multiple AGVs.
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	 The working environment of multiple AGVs is assumed as follows: the working interval of 
each AGV is defined as a finite region on a two-dimensional plane, denoted as ℜ, where 
stationary obstacles with a constant size are uniformly distributed, and the AGV moves among 
grids. More specifically, 0 corresponds to white grids, 1 corresponds to black grids, i.e., obstacle 
grids are not feasible, and each grid is an l l×  square. The detailed grid model is shown in Fig. 2, 
in which the grids are numbered from left to right and from top to bottom with serial numbers 1, 
2, 3,..., m, ..., Mu to distinguish the location of each grid. From left to right is the positive direction 
of the X-axis, and from bottom to top is the positive direction of the Y-axis. The grid in row i and 
column j is denoted as G(i, j), the ordinal number is m, and the relation between grid number m 
and coordinate G(i, j) is expressed as 

	 mod[( 1) ] 1,
10 [( 1) ],

u

u

i m M
j floor m M
= − ÷ +

 = − − ÷
	 (1)

where the function floor defines rounding down, the function mod is used to calculate the 
remainder, and Mu is the total number of grids.
	 According to the research scope specified in Sect. 1, the proposed overall path-planning 
algorithm consists of two stages, i.e., global path planning and local collision avoidance 
planning, as shown in Fig. 3. Based on the static obstacle information provided by the global 
perception module, the IACA-ADPA is adopted to determine an unexplored path. The initial 
global optimization path of unknown dynamic obstacles is also considered. Then, the AGV 
follows the globally optimized path and moves on the basis of the sensing results. The motion 
information of the dynamic obstacle in the scroll window is detected. According to the predicted 
motion trajectory of the dynamic obstacle, it is judged whether the AGV will collide with it, and 
then a corresponding collision avoidance strategy is adopted to reach the destination safely and 
ensure better path planning.

Fig. 2.	 (Color online) Environment model of the grid method.



2684	 Sensors and Materials, Vol. 33, No. 8 (2021)

4.	 Global Path Planning based on IACA-ADPA

	 Ants leave behind substances called pheromones in their path and sense them as they move, 
which instruct them of the direction in which they need to go. Therefore, the collective behavior 
of an ant colony composed of a large number of ants shows a positive feedback phenomenon: the 
shorter a path is, the more ants have passed along the path, the greater the pheromone strength 
left behind, and the greater the probability that subsequent arrivals will choose the path. It is 
through this information exchange that individual ants choose the shortest path and search for 
food. An ACA is an optimization algorithm that simulates the behavior of an ant colony.

4.1	 ACA-based mathematical model

	 During the movement, ant k will determine the next direction in which to proceed according 
to the pheromone concentration along each path. Here, we denote the set of ants as ( )K k K∈  and 
the scale of the grid diagram as u uM M∗ . At time t, ant k will transfer from position i to position 
j, and the corresponding transfer probability is defined as

	

( ) ( )
;   if ,

( ) ( )( )

0; otherwise,
i

ij ij
ik ij ijij

j A

t t
j A

t tp t

α β
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Fig. 3.	 (Color online) Two-stage solution based on IACA-ADPA.
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where ( )ij tγ  is the residual pheromone concentration at time t for path ,i j , ( )ij tη  is the local 
heuristic function of visibility (defined as 1 / ijd ), α and β respectively express the influence 
weights of ( )ij tτ  and ( )ij tη  on the overall metastasis probability, and Ai represents the feasible 
region node (obtained after removing the obstacle node and the set of taboo points). 
	 The pheromone will evaporate over time, with ς representing the evaporated remnant of the 
pheromone. After Δt time units, the ant colony will complete a circular movement. At this time, 
the pheromone concentration on each path will be adjusted according to the following global 
adjustment criterion:

	
1

( ) ( )
m

k
ij ij ij

k
t t tγ ς γ γ

=
+ ∆ = ⋅ + ∆∑ ,	 (3)

where k
ijγ∆  defines the pheromone concentration on path ,i j  for the kth ant in this circulation. 

In this paper, the following ant cycle calculation model based on global information is adopted to 
update information:

	
/ ; if ant  across the path , in this circulation,

( )
0; otherwise,

kk
ij

Q L k i j
tγ

∆ = 


	 (4)

where Q is a constant that defines the pheromone concentration and Lk is the path length of ant k 
in this circulation. More specifically, the traditional ACA (TACA) involves initialization, 
construction of the state transition probability, modification of the Tabu table, updating of 
pheromones, and the iteration cycle.

4.2	 Proposed IACA-ADPA process

	 Although the TACA faces disadvantages such as low convergence speed, being easily trapped 
at a local optimal solution, and search stagnation, it has significant advantages (e.g., an excellent 
distributed mechanism, robustness, and easy combination with other algorithms) in achieving 
the global optimal solution. To improve the effectiveness and practicability of the existing ACA 
approach, it is vital to find the optimal path when ants avoid obstacles and fall into concave 
obstacles, as addressed by the IACA-ADPA approach proposed in this paper. The proposed 
approach has two sub-approaches as follows. One novel sub-approach is that the dynamic 
parameter adaptive adjustment strategy is adopted to improve α and β, instead of using fixed 
values in the TACA solution.(25) After each generation of ant optimization, the dynamic 
parameters α and β are further updated to expand the global search space to avoid falling into a 
local optimum. The other sub-approach is to update the adaptive adjustment volatility coefficient 
ς accordingly after several iterations. When the number of iterations exceeds a certain value and 
the optimal path remains unchanged, the volatility coefficient is updated to increase the global 
search range so that the optimal solution can be achieved in the proposed IACA-ADPA approach.
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(1) Adjusting the dynamic parameters α and β
	 Acquiring exact environmental information improves the performance of the existing ACA. 
Therefore, it is crucial to find how to extract the environmental information. More specifically, 
the dynamic parameters α and β will directly affect the randomness of the ant’s path. Therefore, 
the ant colony will fall into a local optimum when α is too large or too small. On the other hand, 
the larger the value of β, the greater the probability the ants will choose a path closer to the 
target. Therefore, the minimum values of α and β are set in the initial stage, where the global 
search capability for the AGVs is increased to improve the efficiency of the global optimal 
solution. When the number of iterations reaches a given constant Θ, the dynamic parameters α 
and β are updated using Eqs. (5) and (6), respectively, which improves and even accelerates the 
convergence performance of the proposed IACA-ADPA. In Eqs. (5) and (6), min 1α =  and 

min 4β =  are the initial values of α and β, NI  is the current iteration number, as well as max 4α =  
and max 9β =  are selected as the maximum and minimum values of α and β, respectively.
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(2) Adjusting the dynamic parameter ς
	 The pheromone volatile element ς  plays a crucial role in global path planning for the proposed 
IACA-ADPA approach. When ς  is large, the former search path is more likely to be selected 
again, and the positive feedback of information plays a dominant role. However, considering the 
above factors at the initial stage of the iterations, a large ς  helps to improve the positive feedback 
of the pheromone to make up for the lower convergence speed of the dynamic parameters α and 
β. When the total number of iterations reaches a certain value Θ, Eq. (7) is adopted to reduce ς  
and make up for the shortcoming of the global search. The initial value of 0 0.9ς =  is set. The 
detailed process of the proposed IACA-ADPA approach is shown in Algorithm 1.

	 0
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5.	 Local Path Planning based on Scroll Window

	 When motorized obstacles occur in the grid environment labeled as u uM M∗ , it is assumed 
that AGVs spend some time Δt to move from the original grid i to the next target grid j, simulate 
the scroll window accurately under the moving path, and predict the moving trajectory of the 
AGVs and dynamic obstacles in the next scroll window. Therefore, the above problem description 
is converted to predict whether the trajectory intersects with an obstacle to judge the state of the 
collision. The method used to solve the problem is presented as follows. First, if there is no 
collision between the AGV and the obstacle in time unit Δt, the AGV will continue to move to 
the next target grid according to the original planned route. Then, if the two entities are predicted 
to undergo a side collision, the AGV will wait for time Δt before reaching the predicted collision 
point and then proceed along the original planned route. Next, if the two entities are predicted to 
collide head-on, the white grid for the moving path will be planned by regarding the grid at the 
predicted collision point as the local target point, then using the proposed PSO approach for local 
path planning.(26)

	 Under a more complicated grid environment, some local target points cannot be reached, as 
shown in Fig. 4. When the AGV moves to point A, the scroll window proceeds according to the 

Algorithm 1
Proposed IACA-ADPA.
Initialization: Construct the environment model, generate the grid diagram with the known obstacles, and set the 
grid sequence number, starting point, and ending point.
Select the next node according to the transition state probability using Eq. (2).
Move from the current node to the next node using Eq. (3).
Update α, β, and ς [Eqs. (5)–(7)].
Storage path: Store the search path and path length of the current ant k;

Pheromone update: If the ant is trapped in a concave obstacle and a deadlock occurs, the amount of pheromone 
on the path is set to zero. When a concave obstacle is encountered but deadlock does not occur, the amount of 
pheromone is gradually reduced. Otherwise, the global amount of pheromone is updated using Eqs. (3) and (4). 

Termination condition: When the number of iterations is greater than the given number of iterations IN (max), the 
program ends and the optimal solution is achieved.

Fig. 4.	 (Color online) Case of local target points that are not reachable.
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original path and detects a dynamic obstacle at point gi. Therefore, the general method cannot be 
used to plan the path when the local target is unreachable. To solve this problem, we propose the 
following two solutions. One sub-solution is that the AGV no longer looks for a local sub-goal 
node in the dynamic obstacle environment. Instead, the grid where the collision point is 
predicted by the scroll window is temporarily set as a static obstacle. The other sub-solution is to 
plan a new global path to replace the original path.

6.	 Simulation Experiment and Analysis of Results

6.1	 Performance comparison of proposed joint path planning

	 To verify the effectiveness and feasibility of the proposed IACA-ADPA approach, a 
simulation experiment is carried out, and both the TACA(25) and the IACA(26) are regarded as 
baselines for comparison with the IACA-ADPA approach. MATLAB 2015b software is used as 
an experimental testbed in the Windows 7 operating system. The basic experimental parameters 
used to verify this algorithm are K = 100 ants, a maximum number of iterations of IN(max) = 150, 
a pheromone intensity of 1ρ = , and 10Θ = = 10, where Θ is based on the maximum number of 
iterations, the dynamically adjusted pheromone impact weight, heuristic weights, and ACA 
search characteristics. The proposed algorithm can find the shortest path of AGVs in a concave-
type obstacle in the environment, and the optimal solution converges after 40 generations, as 
shown in Fig. 5. In contrast, the proposed joint path planning algorithm with a concave-type 
obstacle only needs 20 generations to converge to the optimal solution, thus proving the 
feasibility and effectiveness of the algorithm.
	 To further evaluate the effectiveness of the proposed joint path planning algorithm for the 
AGV path planning, the working environment of the AGV is selected to be the same as that in 
Ref. 26, i.e., a 20 × 20 grid unit, and the proposed IACA-ADPA is compared with the TACA and 
the IACA. The simulation results are shown in Fig. 6. Although the TACA can search for the 

Fig. 6.	 (Color online) Comparison of different 
algorithms.

Fig. 5.	 (Color online) Effect of iteration number on 
path length for different algorithms.
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optimal path, the proposed IACA-ADPA is relatively stable and can find the optimal path after 
25 iterations, with a higher success rate in searching for the optimal value and a smaller number 
of inflection points.(26) Therefore, the proposed joint path planning algorithm is feasible for 
planning the path of mobile AGVs by incorporating global path planning and local path planning.

6.2	 Feasibility of joint IACA and scroll window

	 The feasibility of joint IACA and the scroll window is shown. Here, the operating 
environment of the simplified AGV is a 20 × 20 grid unit, and the starting grid and ending grid 
coordinates are initialized to (1, 19) and (19, 1), respectively. The parameter settings are the same 
as those of the IACA-ADPA approach in the static environment. In this experiment, it is assumed 
that the moving speed of the dynamic obstacle is consistent with the speed of the AGV. First, in 
the AGV operating environment, dynamic obstacles are ignored and static obstacles are studied. 
The IACA-ADPA approach first plans a globally optimal path to avoid all static obstacles and 
then performs local path planning based on the scroll window, as shown in Fig. 7. The AGV 
moves forward according to the planned global optimal path and performs local collision 
prediction and collision avoidance.

7.	 Conclusions

	 Although the TACA has achieved good results in path planning, it still has problems such as a 
low convergence speed and easily becoming trapped at local optima in a complex environment. 
Toward this end, an IACA-ADPA is proposed to improve the performance of the TACA and 
IACA. More specifically, first, adding such a strategy in an environment with static obstacles in 
the grid resolves the shortcoming that the TACA is prone to falling into local optima, which 
leads to the stagnation of the algorithm; second, in a static environment with dynamic obstacles, 
an IACA based on scroll window is proposed, which first obtains the static global optimal path 

Fig. 7.	 (Color online) Global path planning of proposed AGV.
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using the IACA-ADPA, then carries out the local rolling prediction and collision avoidance by 
using the principle of a scroll window according to the planned global optimal path, and finally 
obtains an optimal collision-free path with good adaptability to an environment with dynamic 
obstacles. In the future, AGV dynamic path planning, multi-AGV collaboration, and how to 
reduce the energy consumption of AGVs need to be further studied with the help of the joint path 
planning algorithm.
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