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 Over the past few decades, as the main tool of intelligent material transportation, automatic 
guided vehicles (AGVs) have been widely used in modern production systems, logistics, 
transportation, industry, and commerce to further improve productivity, reduce labor costs, raise 
energy efficiency, and enhance safety. Path planning is a key issue in the field of AGVs to ensure 
that they do not collide with obstacles during movement and reach the destination as fast as 
possible to complete the assigned task. We propose two different and crucial operating 
environments in this paper. More specifically, in a static environment, a multi-objective 
mathematical model is established with the shortest path and the maximum smoothness, and the 
improved Levy random quantum particle swarm optimization (LRQPSO) algorithm is used to 
solve the proposed model and screen the AGV’s driving path. In a dynamic environment, an 
inductive steering algorithm (ISA) that considers the movement of obstacles is proposed to make 
the AGV avoid obstacles rationally. By combining the steering characteristics of the two 
environments, AGV speed control rules are set and applied to the steering process in complex 
environments to ensure that the AGV can travel more smoothly and quickly. Simulation results 
show that the proposed method can ensure the obstacle avoidance and flexible steering of an 
AGV, and improve the driving speed and work efficiency in the two environments. In addition, 
compared with the conventional algorithm, the smoothness, operation speed, and work 
efficiency of the AGV are significantly increased using the improved LRQPSO algorithm and 
ISA. 

1. Introduction

 The extensive use of automatic guided vehicles (AGVs) in industrial warehouses has greatly 
improved the efficiency and accuracy of product circulation and distribution, and enhanced the 
flexibility of the production system. In addition, there is growing interest in AGV path planning 
to help improve the work efficiency and flexibility of foundations. Therefore, both accurate and 
effective path planning are a research focus in this paper. The path planning problem of how to 
avoid obstacles in the most rational way to complete tasks was proposed by Dorigo and 
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Gambardella(1) in the 1990s. Because the path optimization problem is NP-complete in nature, 
many heuristic algorithms of path planning have appeared successively over the past decade.(2)

 The environment map of the AGV workspace can be static or dynamic. Thus, the algorithm 
performance of the path planning problem in a static environment is lower than that of dynamic 
programming. In contrast, the obstacles in the AGV workspace move in real time, which makes 
the path planning problem in a dynamic environment more complicated. To achieve a reliable 
path, the AGV must have real-time access to environmental information and be able to make 
rapid changes to a previously planned path.(3) Compared with AGV models guided by an 
ultrasonic wave, laser, or magnetic tape, an AGV guided by a visual sensor has the advantages of 
a fast response, low cost, and the acquisition of a large amount of information. Visual guidance 
technology has been widely used in engineering because of its high information dimension and 
flexibility in guidance. Therefore, path planning of an AGV based on visual guidance has 
become an important research hotspot.
 With the proliferation of big data, the Internet, and artificial intelligence (AI), the AGV path 
planning problem can be formulated as a novel category of a constrained optimization problem. 
In addition, most scholars have studied the design optimization of AGV path planning 
algorithms, which can be further divided into traditional optimization algorithms and 
computational intelligent algorithms. The traditional optimization algorithms mainly include the 
A* algorithm,(4) D* algorithm,(5) artificial potential field algorithm,(6) unit decomposition 
method, and rapidly exploring random trees (RERT).(7) Path planning has been widely viewed as 
an NP-hard problem. With the increasing complexity and dynamics of environment maps, most 
traditional algorithms have the defects of a high solving cost, a large probability of trapping at 
local extrema, and low solving efficiency. To overcome these issues, many scholars have 
extensively studied the application of various intelligent optimization algorithms in the AGV 
path planning domain.(8) Intelligent solving algorithms primarily consist of the genetic algorithm 
(GA),(9) flower pollination algorithm (FPA),(10) grey Wolf optimization (GWO) algorithm,(11) 
imperialist competition algorithm (ICA),(12) teaching-learning-based optimization (TLBO) 
algorithm,(13) and particle swarm optimization (PSO) algorithm.(14) Compared with traditional 
solving algorithms, intelligent algorithms have better robustness in solving path planning 
problems.(15) Owing to its robustness, the GA has been widely used in numerous optimization 
fields, such as cloud manufacturing service combination optimization,(16) the travel agent 
problem, AGVs, and integrated scheduling of processing operations.(17)

 In view of the low efficiency of the PSO algorithm and the problem that path optimization 
algorithms often get trapped at local optima, we propose an improved Levy random quantum 
PSO (LRQPSO) algorithm and an induction steering algorithm (ISA) for static and dynamic 
environments, respectively. This paper not only considers the shortest path and maximum 
smoothness but also the speed limit to study AGV path planning. In particular, we apply the 
LRQPSO algorithm to successfully resolve the multi-objective mathematical model to generate 
the optimal path in a static environment. The ISA is applied to the steering behavior in static and 
dynamic environments to make the AGV performance more flexible. At the same time, in 
accordance with a kinematic model such as that of an automobile mobile robot, steering speed 
rules are formulated for an AGV to ensure its smooth and fast operation and improve work 
efficiency.
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2. Materials and Methods

 There have been many studies on intelligent algorithms to cope with the dynamic path 
optimization problem of AGVs. Algorithms include the bacterial potential field (BPF) algorithm, 
which combines the artificial potential field (APF) algorithm and the bacterial evolutionary 
algorithm (BEA),(18) which are broadly applied to deal with the static and dynamic path 
optimization problem for mobile robots. The BPF algorithm optimizes the coefficients of 
attraction and repulsion by employing the BEA and effectively avoids the shortcoming of 
trapping at local extrema of the traditional APF algorithm. Simulation experiments have proved 
that the BPF algorithm is valid in both static and dynamic environments, but its downside is the 
simple environment map and obstacle movement. In the solution of the optimization problem 
using the traditional GA, the mutation operator randomly generates a new gene to replace the 
original one with a certain probability, which results in the low probability of a better solution. 
To overcome this problem, Tuncer and Yildirim proposed a new mutation operator that 
determines the candidate point set in the free space in the neighborhood of the gene to be 
mutated, then replaces the original gene with a randomly selected point from the candidate point 
set for mutation, which is helpful for improving the probability of mutation to generate good 
solutions.(19) An improved GA based on the improved mutation operator has been proposed, 
which can solve the dynamic path planning problem of a mobile robot, proving the effectiveness 
of the improved strategy. However, the selection of the mutation point has no heuristic 
information, which leads to the low probability of a mutation generating good solutions. Zhu and 
Peng proposed a new mutation operator based on the mountain-climbing algorithm to effectively 
avoid the problem of the traditional GA of the solution for the path optimization problem.(20) The 
viewable algorithm is improved to model the environment map, which effectively improves the 
security of the planned path. To improve the GA optimization efficiency, the PSO algorithm was 
applied to refresh the population after each genetic operation. Simulations and experiments were 
also performed to evaluate the effectiveness of the modified GA in resolving the dynamic path 
planning problem of mobile robots. However, the disadvantages of the modified GA are a simple 
environment map, simple obstacle movement, and few dynamic obstacles. Das et al. proposed an 
improved gravity search algorithm (GSA) based on PSO, and solved the path planning problem 
of multiple mobile robots. Simulation-based and practical experiments proved the effectiveness 
of this algorithm. However, a disadvantage of the improved GSA is that the obstacles in the 
workspace are static.(21) An improved initial solution generation algorithm based on the visual 
space method was proposed, and a new mutation operator to avoid premature convergence was 
proposed, on the basis of which an improved GA was presented.(22) It was proven experimentally 
that the improved GA solved the static and dynamic path planning problems efficiently, although 
a disadvantage was that there could be only one dynamic obstacle in the dynamic environment. 
Li et al. proposed an algorithm based on the PSO algorithm and the Legendre pseudospectra 
method (LPM) called the PSO-LMP algorithm, which can be divided into the following two 
stages to solve the dynamic path planning problem. The first stage uses the advantages of the 
PSO algorithm to conduct a global search.(23) After reaching the termination conditions of the 
first stage, the algorithm enters the second stage of the search, which uses the LPM algorithm. A 
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simulation-based experiment proved the effectiveness of the PSO-LPM algorithm for solving the 
dynamic path planning problem. Liao et al. proposed an improved GWO algorithm and GA for 
solving the static path planning problem of an AGV, then designed a path smooth processing 
algorithm, and finally established a dynamic path planning model. Importantly, a simulation 
platform for AGV static and dynamic path planning was developed on the basis of the MATLAB 
GUI development tool. The application of the improved GA to solving a variety of AGV dynamic 
path planning problems under an environment map proved the effectiveness of the improved 
algorithm.(24) Alajmi and Almeshal optimized the trajectory of mobile robots by using the 
quantum particle swarm optimization (QPSO) algorithm, which has a high performance, 
enhances the ergodic property of the particle space, and improves the search ability.(25) 
 All the above algorithms demonstrated their applicability in the research field after 
improvement, and the performances of the algorithms themselves were also improved. However, 
many path planning solutions ignored the motion state caused by the mechanical properties of 
robots. Owing to the limitations of moving robots, they usually move at a low speed during 
operation, making it difficult to improve work efficiency.

3. Problem Formulation and Modeling

3.1 Problem formulation

 In a workspace, the AGV moves from the source point to the destination point to complete 
the transportation task. It is necessary that the AGV can avoid static obstacles while moving, and 
the moving path meets the requirements of multi-objective constraints, i.e., the shortest path and 
the minimum sum of the steering angles. Assuming that the environmental information of the 
AGV workspace is known, the AGV workspace is defined as the physical space represented by R 
× R, the obstacle mapping in the workspace has an obstacle space Cobs, and the free space 
without collision and movement between the AGV and the obstacles is denoted as Cfree. First, the 
multi-objective function model is established for spatial searches, and then the most promising 
solution is applied to the proposed optimization model. Finally, the Pareto solution set that 
conforms to the best constraint path is screened. To complete the task of AGV movement, two 
objective constraints must be met: one is the shortest moving path and the other is the maximum 
smoothness of the path, namely, the minimum sum of the steering angles. The results when these 
two factors are regarded as the target constraints are as follows: the shorter the path, the shorter 
the moving time and the faster the AGV can reach the destination point. On the other hand, a 
smoother path can reduce the mechanical wear of the AGV shaft wheels and decrease energy 
consumption. The shortest path objective function is
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where ( )1 1 11 ( ), ( , ), ( , )i i i i i in ta P x y P x y+ + +Φ , n(ta), Pi(xi, yi), and Pi+1(xi+1, yi+1) define the shortest 
path objective function, the total number of the steering angles, and the coordinates of the initial 
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point and destination, respectively. The maximum smoothness objective function is defined as 
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3.2 Multi-objective optimization of Pareto optimal solution

 The path planning solution in this paper also involves two factors, the shortest path and the 
maximum smoothness, so it can be defined as a multi-objective problem (MOP). For further 
details of the MOP model, including the Pareto disaggregation, the Pareto optimal solutions as 
well as the solution set, and the non-inferior solution, please refer to the literature.(22) Using the 
proposed LRQPSO algorithm to solve the MOP model will produce multiple non-inferior 
solutions due to the lack of direction of the attributed particle movement. However, the AGV 
must be able to choose a path to move at any time. To reduce the effect of the randomness of 
people’s movement on the LRQPSO algorithm, the Pareto solution set is evaluated in detail. A 
promising method proposed in the literature is introduced to describe the crowding distance 
between non-inferior solutions,(23) and the crowding distance Li is defined as
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Here, i is the total number of non-inferior solutions, parameters max
nf  and min

nf  describe the 
maximum and minimum values in the Pareto solution set for the nth objective function, 
respectively, and N is the total number of objective functions. The larger the crowding distance, 
the lower the probability of crowding among individuals, indicating that the better the diversity 
of the population, the greater the probability that the population will be retained during 
screening.

3.3 Velocity planning in complex environments

 The structure of the AGV is similar to that of a universal vehicle. AGV guidance methods 
include electromagnetic induction guidance, laser guidance, and visual guidance. Owing to the 
rapid development and maturation of AGV technology, various types of CCD cameras and 
sensors can be deployed on AGVs. The on-board computer set in the AGV analyzes the path 
environment in complex environments, determines the current position, and moves to the next 
step. We can achieve the following attributes: the four wheels can roll and rotate without sliding, 
and the fixed rear wheels are parallel to the body. The front wheels can rotate freely. Figure 1 
depicts the structure of the steering process in detail. The two wheels must be parallel or satisfy 
the Ackerman steering geometry. 
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 The motion model of the AGV is as follows:

 

sin ,
cos ,
tan ,

sin cos ,                                
s.t. 

sin( ) cos( ) cos ,

x v a
y v a

va
L

x v a y a
y x a y a La

θ

θ θ θ

=
 =

 =

= −
 = + − + −

 (4)

where x and y are the horizontal and vertical velocity components, respectively, θ is the steering 
wheel angle, a is the angle between the vehicle body and the X axis, and L is the wheelbase. 
According to the above constraints, the direction of motion of the AGV is parallel to the vehicle 
body direction, and there is a minimum radius limiting the speed. The motion constraints of 
AGV steering are as follows:
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where k, R, vmax, u, g, vi, and m are the curvature, turning radius, maximum steering speed, 
static friction coefficient, gravitational acceleration, running velocity, and vehicle mass, 
respectively.

4. Path Planning in Static Environment

4.1 Prior PSO algorithm

 The prior PSO algorithm, inspired by the social behavior of bird foraging, is a randomized 
optimized intelligent technology for simulating the self-cognition, cooperation, and information 

Fig. 1. Detailed architecture of AGV.



Sensors and Materials, Vol. 33, No. 6 (2021) 2005

exchange among individuals with the goal of finding the optimal solution. Assuming that the search 
space of each particle lies in the population of Θ, the position presentation vector and the velocity 
measure vector of the ith particle are respectively expressed as loci = (loci(1), loci(2), …, loci(n)) 
and veli = (veli(1), veli(2), …, veli(n)), where n is the dimension of the search space. The ith 
particle velocity and position can be updated from time t to time t + 1 in any dimension d 
(d = 1, 2, …, n) as 
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where α is the inertial coefficient, β and γ are the individual learning factor and social learning 
factor, respectively, and parameters λ1 and λ2 are random numbers in the range [0, 1].

4.2 Improved LRQPSO

 The formulated LRQPSO algorithm applies the idea of quantum motion to particle search 
behavior, and its speed and position state are updated using Eq. (7). It was previously shown that 
the introduction of Levy flight into the PSO approach can make the search escape from local 
optima and improve the algorithm performance.(14,15) An orderly particle search that does not 
repeat itself can efficiently reduce the waste of the search process. The random learning 
mechanism of particles can enhance the categories of the defined population paradigm and 
prevent premature convergence, which is similar to the mutation in the GA. This learning 
mechanism enables particles to search in an optimal orientation after optimization and ensures 
the ability to generate global optimal solutions. The proposed algorithm can avoid higher 
computation complexity to some extent. Therefore, the improved algorithm is defined as the 
LRQPSO approach with its state update given by Eq. (7). Algorithm 1 describes the pseudocode 
of the proposed LRQPSO algorithm.

 

( )( )

( ) 1

1 1 2 2 3 3

1 1 2 2 3 3

1

( ) ( ) . ( )
( 1) ,

1( ) ( )( 1) Levy . ( ) ln ,

1 ( ),

max0.5 0.5 ,
max

Levy .
i

i g r
id

id gid i best id

M

best g
i

i
i

i

c r p t c r p t c r p t
vel t

c r c r c r

loc t p tloc t w m loc t
u

m p t
M

gen iterw
gen

β

β

λβ
γ

=

⋅ + ⋅ +
+ =

+ +

−+ = −

=

−
= + ×

∼

∑  (7)



2006 Sensors and Materials, Vol. 33, No. 6 (2021)

5. Path Planning in Dynamic Environment

 AGVs moving along the planning path in a static environment can be calculated as above. 
However, when there are multiple AGVs in the same environment that is changing dynamically, 
static path planning cannot achieve feasibility in many cases. In such a case, secondary path 
planning based on the ISA approach is carried out, as discussed in this section. Importantly, time 
delay theory is commonly used as a metric constraint so that multiple AGVs avoid each other. 
Although this method can ensure the avoidance of a small number of AGVs, the calculation will 
not be able to handle a larger number of AGVs because of the nonideal solution effect. Toward 
this end, we propose a novel method to avoid collision in a dynamic environment that uses 
current induction technology, namely, the ISA approach, to generate several non-intersecting 
curves uniformly at the induction starting point, calculate the curvature of each curve, and select 
the curve with the least curvature and no collision as the driving path. The main features of this 
algorithm are that the smaller the curvature, the smaller the turning radius, which leads to the 
shorter path and the greater smoothness. 

5.1	 AGVs	meeting	fixed	obstacles

 Because the network map of obstacles is not updated in a model with events at discrete times, 
the situation that goods (obstacles) or staff temporarily appear in the AGV workspace may occur. 
Toward this end, the proposed ISA approach is employed to ensure avoidance only if there is an 
AGV. There are two cases of unknown fixed obstacles in this paradigm, as shown in Fig. 2.
 It is necessary for a marked AGV to avoid collision or slip caused by instantaneous inertia. To 
reduce the probability of this occurring, the path smoothness, which has a similar definition to 
the curvature, is then selected as the basis for steering. The smaller the curvature, the greater the 
smoothness, resulting in shorter paths, smaller changes in velocity, and safer movement. The 
steering mode of Fig. 2(b) is an extension of that in Fig. 2(a). From the result fed back from the 
induction device, the AGV processor can generate multiple alternative routes, among which the 
collision-free path with the least curvature is selected. The first and second derivatives of the 
curve are continuous, the trajectory in the form of a curve is introduced into the coordinate 
system, and the curve equation is orthogonally decomposed. The trajectory equation is

Algorithm 1.
Pseudocode of the proposed LRQPSO algorithm.
Initialization: Q, max gen, c1, c2, c3 
Calculation	of	fitness	value: The particle form is transformed into the quantum particle form, and the Levy flight 
and particle random learning mechanism are introduced.
Iteration: The non-inferior solutions are stored in Q and compared with other non-inferior solutions to generate a 
new non-inferior solution set.
Computation of crowding distance: The non-inferior solution with the smallest crowding distance is eliminated 
and then a new non-inferior solution is introduced for cyclic calculation.
If the result satisfies the terminal condition, then
     output Gbest and fitness value
Else Return step 3
End
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 3 2
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Therefore, the curve equation can be further decomposed orthogonally to the following: 
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5.2 Multiple AGVs meeting in opposite directions

 When multiple AGVs move in opposite directions, both AGVi and AGVj determine the 
steering direction according to the distance between the center line of AGVi and the edge of 
AGVj after mutual inductance, which is assisted to complete the steering at half of the sensing 
distance. The movement mode of the AGV should satisfy the following constraints:
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Fig. 2. (Color online) Cases of AGV’s obstacle avoidance.

(a)

(b)
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5.3 Multiple AGVs meeting in the same direction

 In this case, multiple AGVs are driving in the same direction in the workspace. When they 
encounter unknown obstacles in front of them, two avoidance schemes are implemented to avoid 
collision, namely, overtaking or following. 

6. Results and Discussion

 In this section, multi-objective path optimization and algorithm performance evaluation are 
first performed in a static environment. In the experimental situation, how to avoid obstacles in 
a dynamic environment is described, the ISA and shortest distance algorithm (SDA) are then 
compared, and finally the acceleration and velocity changes of an AGV under the conditions of 
these two algorithms are finally given. The simulated AGV is used for path planning in a 
100 × 100 m warehouse with starting point S(5,10) and end point T(65,85), and there are six 
obstacles. First, the proposed LRQPSO algorithm can achieve the optimal solution in resolving 
the multi-objective model, and the solution set conforming to the constraint is generated as the 
initial path. Then, the LRQPSO algorithm is compared with the commonly used NSGA-II and 
SPEA2 algorithms, and further new paths are planned. Finally, the crowding distances of the 
three algorithms are calculated and compared to highlight the effectiveness of the proposed 
LRQPSO algorithm in solving the MOPs. The parameters used in the simulation are shown in 
Table 1.

6.1 Path planning in static environment

 In the LRQPSO algorithm, the particle position is formulated in the form of coordinates. The 
search essentially involves changes in the position caused by updating the particle velocity. The 
fitness values of the algorithm solutions are quantized as the sum of the shortest paths and the 
sum of the tangential values of the minimum steering angle, and the parallel search method is 
further adopted to find numerous Pareto front solutions. Then, the parameters of the NSGA-II 
algorithm are set as follows: the population size is 300, the maximum number of iterations is 
1000, the crossover probability is 0.8, the mutation probability is 0.2, and the number of 
outstanding individuals retained from the previous generation is six. This method also improves 

Table 1
Parameters used in simulation.
Symbol Description Value
max gen Maximum number of iterations 1000
M Population size 300
c1, c2, c3 Random learning factor 1.4995, 1.4995, 2
Q Size of external storage 5
R Sensing distance 4
vi Vehicle velocity 4 m/s
vmax Maximum steering velocity 0.2 m/s
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the effective convergence rate of the outstanding individuals, and the solution algorithm is better 
than the initial GA. In this paper, although the number of iterations of the algorithm and the 
population are larger, we can obtain a shorter path distance and minimum smoothness, and 
inverse inflection points never appear. Although the time complexity of the proposed LRQPSO 
algorithm is larger, the accuracy of the solution is greatly increased. The parameter settings and 
the computing environment of the SPEA2 algorithm are the same as those of the NSGA-II 
algorithm, and each algorithm is performed five times. The generated objective results are 
shown in Fig. 3, where PL is the path length and SA is the steering angle.

6.2 Path planning in dynamic environment

 A dynamic environment refers to a moving space with moving AGVs and staff in addition to 
known static obstacles. Because a sub-cycle dynamic steering algorithm is embedded into the 
LRQPSO algorithm, the dynamic steering algorithm is first employed when faced with dynamic 
obstacles, followed by the complete LRQPSO algorithm. AGVs and dynamic obstacles are 
mainly discussed here. When multiple AGVs meet, we adopt the proposed ISA and the SDA 
calculation path in the literature to avoid obstacles.(17) The moving distance, curvature, and other 
parameters for the ISA and SDA are shown in Table 2, where L is the moving distance, θ is the 
path curvature, a is the acceleration change, and b is the velocity change. As can be seen from 
Table 2, compared with the SDA, the proposed ISA has a shorter moving distance, a smoother 
path, and can provide a more secure and energy-saving operation mode.

Fig. 3. (Color online) Path and related information for LRQPSO, NSGA-II, and SPEA2 algorithms.

Table 2
Comparison of ISA- and SDA-related parameters.
Algorithm L θ a b 
SDA 4.81 0.11 (−0.37, 0.37) 0.35
ISA 4.18 0.21 (−0.30, 0.30) 0.05
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 To better understand the motion mechanism of the ISA and SDA, the variation in their 
relationships between acceleration/velocity and distance is used to explain the two algorithms. 
According to the motion formula of classical physics, the greater the acceleration, the greater the 
velocity change and the lower the stability of AGV motion. The ISA can better control the AGV’s 
moving acceleration, reduce the speed change, and make the AGV run more smoothly and 
quickly, as shown in Fig. 4.
 After determining the starting position, the ISA is superior to the SDA in terms of moving 
distance and path smoothness. It can be seen from Figs. 4 and 5 that the acceleration and velocity 
changes of the ISA algorithm are greater. The smaller the acceleration change, the less likely the 
cargo on the AGV will slip and the safer it will be at higher speeds.

7. Conclusions

 We have proposed a global path planning method for use in static and dynamic environments 
via a multi-objective optimization and speed control method. Comparison of the LRQPSO 
algorithm with the prior NSGA-II and SPEA2 algorithms shows that the former algorithm can 
obtain a higher-quality frontier solution when solving the application problem of the multi-
objective mathematical model in a static environment. The ISA proposed in this paper is applied 
to avoid obstacles in a dynamic environment, which can reduce the changes in the velocity and 
acceleration during AGV steering. Our results show that the proposed algorithm not only can 
make an AGV run more stably and more in line with actual work requirements, but also has 
good applicability to dynamic avoidance behavior.
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