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 A dynamic-parameter speed controller based on a generalized regression neural network 
(GRNN) was developed for a field-oriented controlled (FOC) permanent magnet synchronous 
motor (PMSM) drive. The decoupled FOC PMSM drive was established using the current 
and voltage of the stator. The designed time-varying-parameters speed controller replaced the 
conventional fixed-parameters speed controller to adapt to drastic load variations and serious 
interference. A GRNN was utilized to develop the time-varying-parameters speed controller, 
and the smooth curve of the pattern layer was adjusted using the firefly algorithm (FA). Hall 
effect current sensors were used as an electromagnetic sensing element to detect the stator 
current from the PMSM. The MATLAB/Simulink© toolbox was used to establish the simulation 
scheme, and all the control algorithms were realized using a TI DSP 6713-and-F2812 control 
card. Simulation and experimental results under load changes confirmed the effectiveness of the 
proposed approach.

1. Introduction

 Compared with induction motors, permanent magnet synchronous motors (PMSMs) 
have the advantages of a high efficiency, high power factor, high power density, and small 
volume.(1) PMSMs are widely used in electric vehicles, rail transportation, elevators, medical 
equipment, home appliances, processing machines, marine electric propulsion, and injection 
molding machines.(2,3) According to AC motor field-oriented control theory,(4) by performing 
a coordinate transformation, the complicated PMSM mathematical model can be divided into 
torque-current and flux-current components. Both components are orthogonal and controllable, 
and the maximum torque-to-current ratio is achieved. The conventional speed controller of 
a field-oriented controlled (FOC) PMSM drive is designed with fixed parameters, and its 
performance is easily deteriorated by drastic load changes and serious interference. Speed 
control with dynamic parameters has been widely applied to FOC PMSM drives, such as 
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dynamic-parameter design using an optimal control or robust control approach,(5–7) dynamic-
parameter adjustment using a neural network or fuzzy logic control,(8–11) dynamic-parameter 
determination by a cerebellar-like model,(12) and dynamic-parameter identification from a 
linear parameter-varying scheme.(13) In this study, the speed controller of an FOC PMSM was 
designed with dynamic parameters to adapt to drastic load changes and serious interference. In 
the proposed dynamic-parameter FOC PMSM drive, a generalized regression neural network 
(GRNN)-based speed controller was utilized to predict the control parameters (proportional and 
integral gains) for FOC PMSM dynamic speed control. The smooth curve of the pattern layer 
of GRNN as a nonlinear mapping of the desired speeds and control parameters was adjusted 
using the firefly algorithm (FA). The trained GRNN-based proportional-integral (P-I) controller 
can predict suitable proportional and integral gains to overcome the trial-and-error design 
of P-I gains, and also can minimize overshoot, improve transient responses, and eliminate 
steady-state errors. In addition, the pole placement was used to design d-axis and q-axis stator 
current controllers based on the decoupled PMSM mathematical model. In the stator current 
measurement, the stator current was obtained from a PMSM using Hall effect current sensors. 
In controller design, the GRNN-based dynamic-parameter speed controller has the advantages 
of a low computing cost, suitability for dynamic control, and the use of a small number of 
training datasets to achieve the approximate nonlinear mapping characteristic.(13,14) 
 This paper comprises six sections. Section 1 presents the research motivation, background, 
and literature review on the dynamic-parameter speed controller of FOC PMSM drives. 
Section 2 describes the proposed decoupled FOC PMSM drive. Section 3 discusses the GRNN 
dynamic-parameter controller scheme and design procedure. Section 4 details the pattern layer 
smooth curve adaptation using the FA. Sections 5 and 6 cover the experimental setup and 
results, discussion, and conclusion.

2. Decoupled FOC PMSM Drive 

 The stator winding of a PMSM is three-phase, symmetrical, and distributed. Suppose the 
permanent magnets are surface-mounted on the rotor without damper winding, and the magnet 
axis of the rotor permanent magnets is co-located with the d-axis of the rotor shaft. The stator 
dynamic matrix equation of a PMSM in the synchronous reference coordinate frame is given 
by(15)
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where p = d/dt is a differential operator; e
dsi  and e

qsi  are the d-axis and q-axis stator currents, e
dsv  

and e
qsv  are the d-axis and q-axis stator voltages, Rs and Ls are the resistance and inductance 

of the stator, respectively; λF is the equivalent rotor magnet flux produced by the permanent 
magnets of the rotor; and ωe is the speed of the synchronous reference coordinate frame.
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 Under an FOC PMSM condition, the first row of Eq. (1) shows that the second term on the 
right side is a coupling component in relation to the q-axis stator current. Also, the second row 
of Eq. (1) shows that the first and fourth terms on the right side are the coupling components 
in relation to the d-axis stator current and equivalent rotor magnet flux, respectively. These 
coupling components allow the definition of the d-axis and q-axis stator voltage feed-forward 
compensations as
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 Thus, the linear control of the d-axis and q-axis stator current loops is achieved, and the 
voltage commands of the d-axis and q-axis stator current control loops are obtained from
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where dsv′  and qsv′  are the outputs of the d-axis and q-axis stator current controllers, respectively.
 The generated electromagnetic torque of a PMSM is derived as

  ( 2) e
e F qsT P iλ= , (4)

where P is the motor pole number. Equation (4) shows that the equivalent rotor magnet flux 
λF and q-axis stator current e

qsi  are orthogonal. The electromagnetic torque of a PMSM is 
dominated by e

qsi , and the maximum torque-to-current ratio can be achieved. The mechanical 
equation of the motor is acquired as

 e m rm m rm LT J p B Tω ω= + + , (5)

where Jm and Bm are the inertia and viscous friction coefficients of the motor, respectively; TL 
is the load torque; ωrm = (2/P)ωr is the mechanical speed of the motor shaft; and ωr is the rotor 
electric speed of the PMSM.
 From the first rows of Eqs. (1) and (2), and from the second rows of Eqs. (1) and (2), the 
plants of the d-axis stator current control loop and the q-axis stator current control loop are 
respectively derived as
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 Because the stator current control loop is dominated by the electrical time constant and the 
speed control loop is dominated by the mechanical time constant, the bandwidth of the inner 
q-axis stator current control loop is much higher than that of the outer speed control loop; hence, 
in this study, the closed-loop gain of the q-axis stator current loop can be set as unity. Through 
Eq. (5), the plant of the speed control loop is derived as

 _
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 The whole linear control block diagram of the proposed FOC PMSM drive is displayed in Fig. 1. 
In the upper control block, the parameters Kpq, Kiq are the proportional and integral gains of the 
q-axis stator current controller; and Kps, Kis are the proportional and integral gains of the speed 
controller, respectively. In the lower control block, Kpd, Kid are the proportional and integral 
gains of the d-axis stator current controller, respectively. The d-axis stator current command is 
set as 0 because of the permanent magnet of the rotor.

3. Dynamic-parameter Speed Controller Based on GRNN

 Artificial intelligence has been widely used in smart control fields. Machine learning 
algorithms, which are applied to perception, decision-making, and feedback control, are used 
in artificial intelligence applications.(16,17) Decision-making can further improve the ability of 
prediction, diagnosis, and judgment, by collecting a large amount of data and using machine 
learning algorithms for data estimation and prediction. Machine learning with optimization 
algorithms uses searched datasets to establish an adaptive training model to perform the 
prediction function. In this study, a GRNN machine learning algorithm was implemented 

Fig. 1. Block diagram of linear control FOC PMSM drive.
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to estimate the proportional and integral gains (Kps, Kis) for the dynamic-parameter speed 
controller; the GRNN consists of an input layer, pattern layer, summation layer, and output 
layer, as shown in Fig. 2. 

3.1 Input layer

 In the input layer of the proposed GRNN model, the input dataset is X = ωrm. The input 
dataset is normalized as follows:

 n
max

XX
X

= , Xn ∈ [0, 1],  (9)

where Xmax is the maximum value of X, n = 1, 2, ..., N, and N is the number of training datasets. 
The normalized training database was adjusted by the P-I speed controller based on the 
conventional FOC PM drive, which is shown in Fig. 3. Here, the X-axis is the proportional gain 
parameter (Kps), the Y-axis is the integral gain parameter (Kis), and the Z-axis is the mechanical 
speed (ωrm).

3.2 Pattern layer

 The number of pattern layers depends on the number of training objects. The pattern layer 
is nonlinear and can be approximated by a Gaussian function (Fig. 4). The more complex the 
training objects, the larger the number of pattern layers, and the more computations required. 

Fig. 2. Dynamic-parameter design based on GRNN.
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The Gaussian function is given by

 0.5[( )/ ]k kX P
kH e σ− −= , (10)

where Xk is the input of the Gaussian function, Pk is the training database of the GRNN, and σ 
is the smoothing parameter, which can be adjusted by the optimization algorithm.

3.3 Summation layer

 The summation layer consists of two operations. The first is to accumulate all the neurons 
in the pattern layer, which is the sum of the probabilities and is given by Eq. (11). The other 
is to multiply each layer of the datasets by the output of the training dataset and then sum the 
product, as expressed by Eq. (12),
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where Yk,i is the output of the training database and i is the index of the datasets.

3.4 Output layer

 By dividing Eq. (12) by Eq. (11) and normalizing the result, as given by Eq. (13), the output 
layer is obtained. In this study, the output layer provides the dynamic proportional gain 
parameter (Kps_dy) and the dynamic integral gain parameter (Kis_dy).

Fig. 3. (Color online) Normalized training database. Fig. 4. (C o l o r o n l i n e) G a u s s i a n f u n c t i o n 
distribution.
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In Eq. (13), Y = [Y1, Y2] = [Kps_dy, Kis_dy] and Ymax is the maximum of the training datasets.

4. Pattern Layer Smooth Curve Adaptation Using FA

 The FA is an intelligent cluster searching algorithm, which compared with other intelligent 
cluster searching algorithms, has the advantages of fewer adjustment parameters, easy 
implementation, and greater effectiveness at finding the global best solution.(18) The concepts of 
FA include the following: attraction is directly proportional to brightness, brightness decreases 
with increasing distance, and fireflies do not distinguish between genders. Initially, N fireflies 
are scattered in the interval [X, Y], defined by the user. A GRNN calculation is performed to 
acquire the initial brightness of each firefly. When the initial brightness is closer to the training 
datasets, a higher brightness is obtained. The firefly attractiveness is given by

 2
0 exp( )n nI I rγ= ⋅ − ⋅ ,  (14)

where I0 is the attractiveness at rn = 0, γ is the light absorption coefficient, and rn is the relative 
brightness of the fireflies. Parameters I0 = 1 and γ = 1 were used in this study, as recommended 
in the literature.(19,20)

 The attraction of a firefly is related to its own brightness and also to the relative brightness 
of neighboring fireflies. The attraction decreases as the distance increases. The relative 
brightness of fireflies is expressed as

 2 2
1 1n n n n nr D D D D− −= − = − , (15)

where Dn is the position of the target firefly, and Dn−1 is the position of any firefly. The 
phototaxis of the firefly is shown in Fig. 5.

Fig. 5. (Color online) Firefly phototaxis.
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 If there is no brighter firefly, the target firefly will move randomly, as expressed by

  [ , ] 1 [ , ] 1[ ,0] 1[0, ] n X  Y n X  Y n X n YD D D Dε α ε α− − −= + ⋅ ⋅ + ⋅ ⋅ , (16)

where ε is the accuracy determined by the user; in this research, ε = 10−3, and α ∈ [0, 1] is a 
random number. 
 The normalized smooth parameter optimization of the pattern layer using FA is shown in 
Fig. 6. Here, the X-axis is the smooth parameter σ, the Y-axis is the number of iterations n, and 
the Z-axis is the error Δe. The flow chart of the FA is shown in Fig. 7.

Fig. 6. (Color online) Normalized smooth parameter optimization of the pattern layer.

Fig. 7. Flow chart of proposed pattern layer smooth curve adaption using FA.
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 A block diagram of the proposed dynamic-parameters speed controller design for FOC 
PMSM drives is shown in Fig. 8. The drive includes a dynamic-parameter speed controller, 
d-axis and q-axis stator current controllers, d-axis and q-axis stator voltage decoupling, 
coordinate transformation between the synchronous and stationary reference frames (2e 2 3e ⇒ 3, 
2e 2 3e ⇐ 3), and a GRNN dynamic-parameter design scheme. In this study, the P-I controllers for 
the d-axis and q-axis stator current control loops were designed according to the pole placement. 
The dynamic-parameter speed controller was designed using the GRNN, and the pattern layer 
smooth curve was adjusted using the FA. Here, the three-phase currents (ias, ibs, ics) were 
obtained from the PMSM using Hall-effect current sensors (red dashed line in Fig. 8).

5. Experimental Setup and Results

 A simulation scheme of the proposed system was established using the MATLAB/Simulink© 
toolbox. The implementation program was executed by a TI DSP 6713-and-F2812 control card 
and a voltage source inverter to actuate the PMSM. A standard three-phase, 220 V, 0.75 kW, 
Y-connected PMSM was used to confirm the effectiveness of the proposed dynamic-parameter 
speed controller for FOC PMSM drives based on a GRNN. In a running cycle, the sequence of 
speed commands was designed as follows: forward-direction acceleration from t = 0 s to t = 1 s; 
forward-direction steady-state running over 1 ≤ t ≤ 4 s; forward-direction braking to reach zero 
speed in the interval 4 ≤ t ≤ 5 s; reverse-direction acceleration from t = 5 s to t = 6 s; reverse-
direction steady-state running over 6 ≤ t ≤ 9 s; reverse-direction braking to reach zero speed in 
the interval 9 ≤ t ≤ 10 s. Furthermore, in the running cycle, the load changes were designed as 
follows: in the forward-direction steady-state running in the interval 1 ≤ t ≤ 4 s, a 2 N-m load 
was added from t = 1.5 s to t = 2 s, no load was added during 2 ≤ t ≤ 2.5 s, a 4 N-m load was 

Fig. 8. (Color online) Dynamic-parameter speed controller design for FOC PMSM drives based on a GRNN.



1954 Sensors and Materials, Vol. 33, No. 6 (2021)

added from t = 2.5 s to t = 3 s, and no load was added during 3 ≤ t ≤ 4 s; in the reverse-direction 
steady-state running in the interval 6 ≤ t ≤ 9 s, a 2 N-m load was added from t = 6.5 s to t = 7 s, 
no load was added during 7 ≤ t ≤ 7.5 s, a 4 N-m load was added from t = 7.5 s to t = 8 s, and no 
load was added during 8 ≤ t ≤ 9 s.
 The simulated and experimental results with steady-state load changes for a reversible 
steady-state speed command of 2000 rev/min are illustrated in Figs. 9 and 10, respectively. Each 
figure includes four responses: (a) the command (dashed line) and actual (solid line) rotor speed, 
(b) the torque, (c) the dynamic proportional gain parameter, and (d) the dynamic integral gain 
parameter.
 According to the results of the simulated and experimental tests under reversible operations 
and steady-state load change conditions, the developed dynamic-parameter speed controller 
based on a GRNN could accurately adjust the rotor speed (reversible steady-state command 
of 2000 rev/min) under steady-state load change conditions. Furthermore, the torque response 
confirmed that designed dynamic P-I parameters exactly adapt to the load alteration.

Fig. 10. (Color online) Experimental responses of the proposed dynamic-parameter speed controller FOC PMSM 
drive based on a GRNN with load changes for reversible steady-state speed command of 2000 rev/min: (a) rotor 
speed, (b) torque, (c) dynamic proportional gain parameter, and (d) dynamic integral gain parameter.

Fig. 9. (Color online) Simulated responses of the proposed dynamic-parameter speed controller FOC PMSM drive 
based on a GRNN with load changes for reversible steady-state speed command of 2000 rev/min: (a) rotor speed, (b) 
torque, (c) dynamic proportional gain parameter, and (d) dynamic integral gain parameter.

(a) (b) (c) (d)

(a) (b) (c) (d)
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6. Conclusions

 A dynamic-parameter speed controller based on a GRNN was developed for FOC PMSM 
drives. The decoupled FOC PMSM drive was established according to the current and voltage 
of the stator. The GRNN was used to design the speed controller with dynamic P-I gain 
parameters, and the pattern layer smooth curve was adjusted using the FA. The three-phase 
stator currents for implementing the dynamic-parameter speed controller for FOC PMSM 
drives were provided by Hall effect current sensors. The simulation and experimental results for 
different reversible steady-state speed commands under steady-state load changes confirmed the 
promising performance of the proposed dynamic-parameter speed controller for FOC PMSM 
drives.
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