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	 The Internet of Things (IoT) needs complex sensor networks. The increasing number of 
sensors and their networks underlines the importance of network security. Traditional digital 
signature schemes validate signatures from each node of networks, which need huge resources 
for storage and computation. To reduce the resources needed for security, a new scheme with a 
proxy signature is proposed. If an IoT application adopts the scheme and assigns its signing 
rights to the underlying nodes, the storage of their public keys is no longer necessary as the 
application trusts the signing rights. The development of computing technology introduces many 
risks to cryptographic schemes with a traditional digital signature, and a system with improved 
security at the quantum-resistant level is required. We propose a scheme with lattice-based 
cryptography using the bonsai-tree technique for a security system. The new scheme effectively 
protects the system from a chosen static message attack in the standard model. In the new 
scheme, an IoT application securely recognizes its honest nodes in the underlying sensor 
networks at a low storage cost, even in quantum computing.

1.	 Introduction

	 A sensor network is essential in the perceptual recognition layer of the IoT. The security of 
sensor networks depends on IoT applications distinguishing whether data is submitted from 
honest or malicious nodes. A conventional digital signature requires IoT applications to validate 
signatures and data in a node. This requires all IoT applications to record all the public keys of 
the honest nodes in the underlying sensor networks, leading to huge storage and searching costs. 
A proxy signature scheme is a suitable alternative for solving the problems arising from using 
conventional schemes. A proxy signature scheme is designed for the social requirement of 
assigning signatures. When the original signer temporarily permits a colleague, i.e., a proxy 
signer, the right to use their signature, the proxy signer can sign on behalf of the original signer 
in a proxy signature scheme. The theory of this concept was proposed by Mambo et al.(1) They 
categorized proxy signature schemes into full delegation, partial delegation, and delegation by a 
warrant scheme. The scheme then developed rapidly owing to increasing demand. Proxy 
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signature schemes require security systems that usually employ the factoring problem (FP) and 
the discrete logarithmic problem (DLP).(2–5) However, the polynomial-time quantum algorithms 
of quantum computing make existing security systems less secure. Thus, a proxy signature 
scheme that defends against attack by quantum computers is worth developing. As a new proxy 
signature scheme, a lattice-based cryptosystem is attracting increasing interest owing to its 
quantum resistance.(6) Kawachi et al. proposed multibit encryption for lattice problems.(7) Regev 
studied a new worst case of a case problem learning with error and built secured public 
encryption under a chosen-plaintext attack.(8) Goldreich et al. proposed the first lattice-based 
signature,(9) although it was not effective for ensuring security. In response, Gentry et al. 
designed a Gaussian sampling algorithm for hard uniform random lattices and proposed a 
lattice-based signature scheme based on the random oracle model.(10) Cash et al. designed a 
lattice-based signature scheme to protect against static chosen-message attack (EU-SCMA) 
based on the standard model.(11) There have been other studies on lattice-based cryptographic 
schemes,(12,13) some of which are worth reviewing and developing further. Jiang et al. proposed a 
proxy scheme of a new lattice-based signature by using the technique of bonsai trees.(14) 
However, their scheme was designed and analyzed for a random oracle model, which is not 
secure enough in general. In response, we propose in this paper a new scheme that eliminates the 
flaws of previous schemes. This scheme is for a secured proxy signature in the standard model.

2.	 Theoretical Background

2.1	 Notations

	 We use ℤ, ℤ+, ℕ, and ℝ for the sets of integers, positive integers, natural numbers, and all real 
numbers, respectively. For k ∈ ℤ+, [k] denotes the set {x | 1 ≤ x ≤ k}. Here, column vectors are 
written in bold lower case (e.g., x) and matrices in bold upper case (e.g., X). A matrix X is 
identified with the set {xi} of its column vectors. X1||X2 presents the ordered concatenation of 
sets X1 and X2. For a vector x ∈ ℤn, ||x||p represents its lp norm and p is omitted if p = 2. Similarly, 
the lp norm of a matrix X = {x1, …, xn}. is defined by maxi∈[n]||xi||. The standard big O notation 
and negl(·) (for a negligible function) are used for any polynomial function poly(·). For a 
sufficiently large n ∈ ℕ, negl(n) < 1/poly(n). PPT means probabilistic polynomial time.

2.2	 Lattice

	 Let ℝm be a Euclidean space of m dimensions. An integer lattice in ℝm is included in the 
following set: 

	 1
1

( )b b b
n

n i i i
i

x xζ
=

  ,⋅ ⋅ ⋅, = | ∈ 
  
∑  ，	 (1)

where the integral combinations of n linearly independent vectors are b1, ..., bn in ℤm (m ≥ n), and 
integers n and m are the rank and dimension of the lattice, respectively. The lattice is fully 
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ranked if m = n. The sequence of vectors b1, ..., bn is lattice-based, and these vectors are the base 
column vectors of matrix B = [b1, ...,bn]. The set in Eq. (1) is rewritten as the compact set 

	 ζ(B) = {Bx | x ∈ ℤn},	 (2)

where Bx is the matrix-vector product. There are an infinite number of forms of the same lattice. 
	 This paper includes a discussion on a certain family of integer lattices studied by Ajtai.(6) 
When n ≥ 1 and modulus q ≥ 2, where n and q are integers, the dimension n becomes the main 
cryptographic security parameter. All other parameters are implicitly expressed as a function of 
n. Then, an m-dimensional lattice is defined as

	 { }( ) 0mod .A x Axm mq⊥Λ = ∈ | = ⊆ 
.	 (3)

	 Any y in the subgroup n
q  is generated by the column vectors of A. Then, the lattice Λ┴(A) is 

defined as 

	 { }( ) mod ( )y A Ax y A xmx q⊥ ⊥Λ = ∈ | = = Λ + ，,	 (4)

where x m∈  is an arbitrary solution of Ax = y mod q.(4)

	 For a constant C > 1 and m ≥ Cnlogq, the columns of a random A n m
q
×∈  generate all of n

q , 
except when 2−Ω(n) = negl(n). Therefore, a uniform A is assumed to generate n

q .(8)

	 In the security proofs of our proxy signature, we need the hardness assumption for the short 
integer solution (SIS) problem. A SISq,β problem in an l2 norm is solved with a uniformly random 
matrix A ∈ A n m

q
×∈  for any m = poly(n). Then, a nonzero integer vector v ∈ ℤm is found in ||v|| ≤ β 

and Av = 0 mod q, that is, v ∈ Λ┴(A). The advantageousness of an algorithm S for solving SISq,β 
is defined as its probability of finding a correct answer and is denoted by ( )

qSISAdv S
β,

. Obtaining 
a solution of the SIS is as difficult as approximating the shortest vector problem, one of the 
lattice problems. 

2.3	 Gaussian measures of lattices

	 The Gaussian measures of lattices satisfy the solution proposed by Gentry et al.(14) The 
Gaussian function at c ∈ ℝm centered on ℝ with s > 0 is defined as 

	
2

2( ) expm
s s

ρ ,
 || − ||

∀ ∈ , = −π .  
 

 c
x cx x 	 (5)

Here, s and c are 1 and 0, respectively. 
	 For c ∈ ℝm, s > 0, and Λ of an n-dimensional lattice, the discrete Gaussian distribution over Λ 
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is defined as 

	
( )

( )
( )

s
s

s
D

ρ
ρ

,
Λ, ,

,
∀ ∈Λ, =

Λ
c

c
c

x
x x .	 (6)

	 The denominator in Eq. (6) is a normalization factor. The probability DΛ,s,c(x) is related to 
ρs,c(x). The discrete Gaussian distribution over the coset of lattices is defined similarly except for 
the support set Λ + y, which is Λy

┴(A) in this study.
	 Several definitions from previous studies on discrete Gaussians over lattices are summarized 
as follows.
	 Lemma 1: When S is a basis of Λ┴(A) for A n m

q
×∈  whose columns generate n

q , y n
q∈  is 

arbitrary, and s ≥ |||| || ( log )s nω≥ ⋅S|| ∙ ω(|| || ( log )s nω≥ ⋅S ), the following hold. 
(1)	Lemma 1.1:(15) 

( )
Pr [ ] negl( )

Ay
x x

s
D s m n

⊥Λ ,
← || ||> ⋅ ≤[||x|| > s ∙ 

( )
Pr [ ] negl( )

Ay
x x

s
D s m n

⊥Λ ,
← || ||> ⋅ ≤] ≤ negl(n).

(2)	Lemma 1.2:(16) 
( )

Pr [ 0] negl( )
A

x x
s

D n
⊥Λ ,

← = ≤[x = 0] ≤ negl(n). 

(3)	Corollary 1.1:(8) A set of O(m2) with independent samples from 
( )Ay s

D ⊥Λ ,
 contains a set of m 

linearly independent vectors, except with the probability of negl(n). 
(4)	Proposition 1.1:(14) When x m sD ,←



, the marginal distribution y Ax n
q= ∈  becomes uniform 

up to the statistical distance of negl(n). The conditional distribution of x with y is defined as 

( )Ay s
D ⊥Λ ,

, from which a PPT algorithm SamplePre(S,A,y,s) is generated.  

(5)	Theorem 1.1:(14) A PPT algorithm SampleD(S,A,c,s) generates a sample algorithm from 

( ) ,Ay s c
D ⊥Λ ,

.  

	 Thus, SampleD(S,A,c,s), a Gaussian sampling algorithm, is an important tool in lattice-based 
cryptographic systems. Peikert improved its performance so that we can adopt the new algorithm 
in our scheme.(17)

2.4	 Algorithm for lattice-based cryptographic system

	 The trapdoor in lattice-based cryptographic systems has a “short basis”. There are useful 
algorithms for lattice-based cryptographic systems. 
	 Proposition 1:(18) For a constant C > 1, the PPT algorithm GenBasis(1n,1m,q) outputs 
A n m

q
×∈  and S m m×∈  for poly(n) ≥ m ≥ Cnlogq as follows.  

•	 The distribution of A within a statistical distance of uniform negl(n) 
•	 S: a basis of Λ┴(A). 
•	   ( log )S L O n q≤ = 

. 
	 Lemma 2:(10) The deterministic polynomial-time algorithm ExtBasis with the following 
properties is explained as follows: The columns of an arbitrary A n m

q
×∈  generate the entire 

group n
q , an arbitrary S ∈ S m m×∈  of Λ┴(A), and 



A n m
q
×∈ . Here, ExtBasis( )BS A A A, =  outputs 

S of ( ) m m⊥ +′Λ ⊆ A  such as  ′ =   S S . The same holds for any permutated columns of A′. 
	 The algorithm of ExtBasis can extend the lattice and its basis to an arbitrarily high dimension 
with no quality loss of the basis. 
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	 Lemma 3:(10) The PPT algorithm RandBasis(S,s) is based on S of a lattice Λ of m dimensions 
and a parameter  ( log )Ss nω≥ ⋅  . It yields a basis S' of Λ such as S s m′ ≤ ⋅  . For two bases 
S0 and S1 of the same lattice with the condition  

0 1max{ } ( log )s nω≥ ⋅  S S , RandBasis(S0,s) 
and (S1,s) are within the statistical distance negl(n). 

2.5	 Shortest non-prefix set

	 The security proof of our proxy signature requires a special set P that is also briefly 
introduced in Ref. (10). To improve the readability, we define it as the shortest non-prefix (SNP) 
set and give its properties in this subsection.
	 Definition 1: For a list that consists of distinct strings u1, ..., uQ ∈ {0,1}k, the SNP P is a non-
empty set of strings p ∈ {0,1}≤k in which p is the shortest string. No ui has p as a prefix in the 
string.
	 Figure 1 is an example of an SNP. In the string “101001”, the first three bits “101” are the 
prefix. As “1011” does not match the first four bits of “101001”, it is judged as a non-prefix of the 
string. If the last bit of “1011” is removed, “101” becomes a prefix of the string, which implies 
that “1011” is the SNP. 
	 A string space {0,1}k can be linked with a k+1-depth full binary tree in which each edge is 
labeled by 0 or 1. Figure 2 exhibits an example for k = 3. Each path from the root to a leaf node 
specifies a string {0,1}k. For example, if u1 = “101”, the corresponding node of u1 is µ (Fig. 3). 
The SNP set of {u1} is P = {a, b, c}. 
	 A list of distinct strings in an SNP set can be generated efficiently by running the algorithm 
proposed in Ref. 5. A simple example of the SNP set for u = “101” and π = “010” is shown in 
Fig. 4. The following theorem gives an upper bound for the size of the SNP set depending on the 
algorithm.
	 Theorem 1: For a string list μ(1), μ(2), ..., μ(Q) ∈ {0,1}k, the size of the SNP set P is at most 
(k − 1) ∙ Q + 1. 

Fig. 1.	 Example of SNP. Fig. 2.	 Full binary tree corresponding to {0,1}3.

Fig. 3.	 SNP set of {u1 = “101”}. Fig. 4.	 SNP set of {u1 = “101”, π = “101”}.
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3.	 Proxy Signature Scheme

3.1	 Syntax

	 A proxy signature consists of seven efficient algorithms, PS = (InstGen(∙), KeyGen(∙), Sign(·), 
Verify(·), ProxcyKeyGen(·), ProxySign(·), ProxyVerify(·)), which stand for instance generation, 
key generation, signing, verifying, proxy key generation, proxy signing, and proxy signature 
verifying, respectively.
(1)	params ← InstGen(1n): Using a security parameter n，this algorithm generates the global 

parameter params to set up the proxy signature system; params will be a default input for the 
other algorithms. 

(2)	(pk,sk) ← KeyGen(∙): This algorithm generates a key pair (pk,sk) for a client that is invoked 
by this algorithm. 

(3)	σ1 ← Sign(pk,sk,m): If a client decides to sign a message m directly, the algorithm will be 
executed with the client’s key pair (pk,sk) as input. After that, a signature σ1 is returned.

(4)	b ← Verify(pk,m,σ1): Upon input m, the public key of the original signer pk, and the 
corresponding signature σ1, this algorithm returns b = 1 if the signature is valid and b = 0 
otherwise.

(5) sk12 ← ProxcyKeyGen(pk1,sk1,pk2): This algorithm is executed by the original signer. It 
requests the original signer’s key pair (pk1,sk1) and the public key pk2 of the proxy as the 
input, and it outputs a proxy secret key sk12.

(6)	σ2 ← ProxyVerify(pk1,pk2,sk2,sk12,m): If the proxy signer wishes to sign m on behalf of the 
original signer, the signer invokes the algorithm with the original signer’s public key pk1, his/
her own key pair (pk2, sk2), and the proxy secret key sk12. The algorithm returns a 
corresponding proxy signature σ2.

(7)	b ← ProxyVerify(pk1,pk2,m,σ2): The algorithm is executed by a verifier. Upon the input of 
the original signer’s and proxy signer’s public keys pk1, pk2, respectively, the message m, and 
its corresponding proxy signature σ2, this algorithm returns b = 1 if the signature is valid and 
b = 0 otherwise.

	 The correctness of the proxy signature scheme states that any signature generated by Sign(·) 
or ProxySign(·) should pass the check of the corresponding verification algorithm Verify(·) or 
ProxyVerify(·), respectively 
	 On the other side, the security of a signature is defined by an experiment (also called a game), 
in which there is existential unforgeability under a static chosen-message attack (EU-SCMA). 
The experiment was carried out as follows for the adversary F and the challenger C.
(1)	F outputs query messages µ1,…, µ0 for Q and sends the list to C. 
(2)	C performs the key generation procedure to obtain (pk,sk) ← Gen(∙) and generates the 

signature σi ← Sign(μi,sk) for i ∈ [Q]. Then, F is given pk, σi (i ∈ [Q]).
(3)	F outputs an attempted forgery (μ*,σ*).
	 The advantage ( )EU SCMA

PSAdv F−  of F is defined as the probability of accepting Ver(pk,μ*,σ*) 
and μ* ≠ μi when i ∈ Q. The probability is calculated for all uniform randomnesses in the 
experiment. A proxy signature scheme is secure if ( )EU SCMA

PSAdv F−  = negl(n).
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	 Note that the EU-SCMA is weaker than existential unforgeability under adaptive chosen-
message attacks that adaptively choose the message µi with pk given to F.

3.2	 Our construction

	 Without loss of generality, the original signer is called Alice and the proxy signer Bob. The 
proxy signature involves the following seven PPT algorithms: PS = (InstGen(∙), KeyGen(∙), 
Sign(·), Verify(·), ProxcyKeyGen(·), ProxySign(·), ProxyVerify(·)).
(1)	InstGen(1n): Upon input n, this procedure computes q = poly(n), the dimension of lattices m = 

O(nlogq), and  ( log )L O n q= . Let h(∙): {0,1}n×m →{0,1}m
 and H(∙): {0,1}* →{0,1}k be two 

cryptographic hash functions.  ( log )s L qω= ⋅  is the Gaussian parameter. Matrices 
( )B b n m
i q

×∈  are sampled uniformly at random for i ∈ [k], b ∈ {0,1}. For j ∈ [m], b ∈ {0,1} and 
( )c b n
j q∈  are uniformly chosen vectors. 

(2)	KeyGen(1n,1m,q) : This procedure runs GenBasis(1n,1m,q) to obtain the key pair (A,S), where 
A n m

q
×∈  is the public key, S m m×∈  is the private key, and  S L≤  ≤  S L≤  . Both the original signer 

Alice and the proxy signer Bob use this procedure to obtain their public–private key pairs. 
Alice and Bob hold (A,S) and (AB,SB), respectively.

(3)	Sign(A,S,m): Upon inputting the key pair (A,S) of Alice and a message m ∈ {0,1}*, the 
algorithm first computes u = H(m). Then, it chooses the matrix ( )B ib

i  for each bit of u and 
concatenates them as 1 ( )( )

1B B B kuu
k= ⋅⋅ ⋅  .

(4)	ProxcyKeyGen(A,S,AB): Using the public and private keys of Alice, this algorithm first 
computes θ = h(AB). Then, it chooses a suitable vector ( )c b

j  from the system parameters based 
on each bit of θ and concatenates the vectors as 1( ) ( )

1 cC c m
m

θ θ⋅ ⋅ ⋅=   . After that, it runs the 
algorithm ExtBasis(S,A||C) to obtain the temporary short basis S and executes the algorithm 
RandBasis(S,s) to uniformly randomize S as Sδ. Finally, Alice sends the proxy signing key Sδ 
to Bob. Bob can verify the validity of the key with the equation (A||C) ∙ Sδ = 0 mod q.

(5)	ProxcySign(A,AB,SB,Sδ,m) For m ∈ {0,1}*, u = H(m) is computed. Then, matrix ( )B ib
i  is 

chosen for each bit of u and the matrices are concatenated as 1 ( )( )
1B B B kuu

k= ⋅⋅ ⋅  . Similarly, 
1( ) ( )

1 cC c m
m

θ θ⋅ ⋅ ⋅=   , where θ = h(AB). After that, the algorithm ExtBasis(Sδ, A||C||B) obtains 
a short basis S1 of the lattice Λ┴(A||C||B). Then, the algorithm ExtBasis(SB,AB||B)computes 
S2 of the lattice Λ┴(AB||B). Finally, it computes 

	 e δ← SampleD(S1,(A||C||B),0,s),	 (7)

	 e ← SampleD(S2,AB||B, 0, s),	 (8)

	 to output (m,eδ,e) as the proxy signature. 
(6)	Verify(A,AB,m,eδ,e): If ||eδ|| ≤ s ( 2)e s m kδ ≤ +   and ||e|| ≤ s ( 1)e s m k≤ +  , the process moves to the 

next step, and returns 0 otherwise. It computes u = H(m), θ = h(AB), and matrices 
1 ( )( )

1B B kuu
k⋅ ⋅ ⋅  , 1( ) ( )

1 cC c m
m

θ θ⋅ ⋅ ⋅=   . Then if the two equalities (A||C||B) ∙ eδ = 0 mod q, 
(AB||B) ∙ e = 0 mod q hold, the process returns 1 to accept the proxy signature, otherwise it 
returns 0.

	 One can easily check that a signature generated according to ProxySign(·) will be accepted by 
Verify(·) in the sense that the latter returns 1. Consequently, the above scheme is correct.
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4.	 Security Proofs

	 Previous proxy signature schemes were built in the uniform random oracle model, which is 
an idealized cryptographic setting that permits all parties to access a uniform random function. 
The protocols in this model are secured with a cryptographic hash function that is efficient and 
computable and replaces the uniform random function. However, this process is not practical. 
Thus, the security of the new scheme in the standard model needs to be proved under EU-
SCMA. 

4.1	 Adversary types

	 In practical scenarios there are three types of adversaries against a proxy signature scheme. 
(1)	The first type of adversary only obtains the public keys of the original and proxy signers. 
(2)	The second type of adversary holds the public keys of the original and proxy signers and 

knows the proxy signer’s private key. 
(3)	The third type of adversary possesses the public keys of the original and proxy signers and 

the private key of the original signer. 
	 As the first type of adversary is less dangerous than the second and third types, it can be 
proved that the scheme is secure under the attack of the last two adversaries. 

4.2	 Security against second type of adversary

	 The second type of adversary knows the private key of the proxy signer. Thus, we have the 
following theorem.
	 Theorem 2: When the second type of adversary F is a PPT EU-SCMA of the proxy signature 
scheme PS, F makes Q queries with advantage ( )EU SCMA

PSAdv F− . Then, a PPT algorithm S uses F 
as a subroutine whose advantage for solving SISq,β is 

	
,

-( ) ( ) / (( 1) 1) ( )
q

F EU SCMA
PSSISAdv S Adv F k Q negl n

β
≥ − ⋅ + − ,	 (9)

where ( 2)k mβ σ= + .
	 Proof. By assuming that F is an adversary that tries an EU-SCMA on PS, a reduction S is 
constructed against the attack SISq,β. S accepts the input m' = (2k + 3)m (uniformly random) and 
independent samples from n

q  of a matrix n m
q

′×∈A , parsing A as 

	 (0) (1) (0) (1) (0) (1)(0) (1)
1 1 1 1D A C C C C U U U Um m k k= ⋅⋅ ⋅ ⋅ ⋅ ⋅ ,          	 (10)

where ( )C b n
i qZ∈  n

q  and ( )A U n mb
qj
×∈,   for i ∈ [m], j ∈ [k], b ∈ {0,1}. 

	 The reduction S simulates the static chosen-message attack F as follows. 
(1) Query

F sends Q messages u1, ..., uQ ∈ {0,1}k to S (without loss of generality with the assumption of 
ui = H(mi) for simplicity). 
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(2) System Generation
a.	 S generates the SNP set P for u1, ..., uQ. According to the conclusion in Theorem 1, the size of 

the set is upper-bounded by ||P|| ≤ (k − 1) ∙ Q + 1. 
b.	 S runs the algorithm GenBasis(1n,1m,q) to obtain AB, SB and treats them as the key pair of the 

proxy signer. Then, S extracts A from D and lets A act as the public key of the original signer. 
c.	 S extracts ( )C b

i  when i ∈ [k], b ∈ {0,1}. It sets the matrices for the system parameters. 
d.	 S chooses a uniformly random element p ∈ P with t = |p|. For i ∈ [t], S sets (0)pB Ui

i i=  and runs 
the algorithm GenBasis(1n,1m,q) to obtain the matrix 1 pB i

i
−  and the corresponding short basis 

of Λ┴( 1( )pB i
i
−⊥Λ ). For j ∈ {t + 1, ..., k}, b ∈ {0,1}, we have ( ) ( )B Ub b

j j= . 
	 S sends the following to the adversary F: a system parameter ( )

1{ }
mb

i i=C , ( )
1

{ }
kb

j j=
B , the key pair 

of the proxy signer (AB, SB), and the public key of the original signer. 
(3) Query Answer 
a.	 For each message u designed in the query step (the symbol i of ui

 is omitted for simplicity), S 
generates the matrix 1 ( )( )

1
uuB B B k

k= ⋅⋅ ⋅   for each bit of u. In the same way, it builds the 
matrix 1( ) ( )

1C C C m
m

θ θ= ⋅ ⋅ ⋅   for each bit of θ = h(AB). Since p is not the prefix of u queried in 
the previous step, there exists at least one bit (the ith bit) of u that is different from p. As a 
result, 1 pB i

i
−  is chosen in the signing process and the short basis of Λ┴( 1( )pB i

i
−⊥Λ ) becomes S. 

Using the “undirected growth” property of bonsai trees, the short basis of Λ┴(A||C||B) can be 
computed. Thus, S obtains a short ea with (A||C||B) ∙ eδ = 0 mod q.

b.	 For similar reasons, S obtains a short e with (AB||B) ∙ e = 0 mod q because the short basis of 
Λ┴(AB) is already known. 

c.	 S sends all of {u, eδ, e} to F. 
(4) Forgery
a.	 After F verifies the validity of signatures, it produces and sends a forgery (u*,( )u e eδ

∗ ∗ ∗, ,,e*) to S. F 
can always forge e* as it holds the private key of the proxy signer. Furthermore, 

( 2)e k mδ σ∗ ≤ +  , ( 1)e k mσ∗ ≤ +  .
b.	 If p is not a prefix u*, the process stops. Otherwise, the following is obtained:

	 1 1 ( )( ) ( )( )
1 1( ) 0moduuA C C B B ekm

m k qθ θ
δ

∗∗ ∗⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =      	 (11)

or

	 1 ( )( ) ( ) (0) (0) (0)
1 1 2( ) 0moduA C C U U U U ekm

m t k qθ θ
δ

∗ ∗⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = .         	 (12)

	 Thus, by inserting zeros into eδ ∗
, S generates nonzero m′∈v , so Dv = 0 mod q. As  

||v|| = ||eδ ∗
|| ≤ σ ( 2)v e k mδ σ∗= ≤ +    , this is a solution for SISq,β. 

	 According to Definition 2, there is only one element as the prefix for u*. Since ||P|| ≤ 
(k − 1) ∙ Q + 1 and p is a uniformly random element in P, the probability that p is the prefix of u* 
is at least 1/((k − 1) ∙ Q + 1). If F wins the EU-SCMA game with a probability of  ( )EU SCMA

PSAdv F−  
− negl(n), S solves SISq,β with a probability of
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[ ]

( )(
,

-

-

( ) ( ) ( ) 1 / (( 1) 1)

( ) / 1 1) ( ).

q
F EU SCMA

PSSIS

EU SCMA
PS

Adv S Adv F negl n k Q

Adv F k Q negl n

β
 ≥ − ⋅ − ⋅ + 

= − ⋅ + −
	 (13)

	 Consequently, if a PPT adversary F attacks PS with non-negligible advantage, the SIS 
problem can be solved with a non-negligible probability within a polynomial time. Thus, 
according to the hardness assumption of the SIS problem, no such adversary F exists.

4.2	 Security against third type of adversary

	 The third type of adversary possesses the private key of the original signer. For such a 
scenario, we have the following theorem.
	 Theorem 3: When F is a PPT EU-SCMA adversary of our proxy signature scheme PS that 
creates Q queries with advantage ( )EU SCMA

PSAdv F− , a PPT algorithm using F is possible as a 
subroutine, whose advantage for solving is 

	
,

-( ) ( ) / (( 1) 1) ( )
q

F EU SCMA
PSSISAdv S Adv F k Q negl n

β
≥ − ⋅ + − ,	 (14)

where ( 1)k mβ σ= + .
	 Proving Theorem 3 is similar to proving Theorem 2. The difference is that the original signer 
does not know the secret key of the proxy signer (which is SB in the description of the scheme), 
so that it is intractable for an adversary to generate the second part of a signature under the SIS 
assumption. 

5.	 Conclusion

	 With the further development and increasing use of the IoT, the security of the underlying 
sensor networks is of significant concern. To grant IoT applications the ability to securely 
recognize their underlying nodes in sensor networks even of quantum computing, we proposed a 
lattice-based proxy signature scheme. The proxy signature was proved to be existentially 
unforgeable against static chosen-message attack based on the standard model. In this scheme, 
an IoT application uses its key pair to assign its signing rights to the underlying nodes and later 
checks the signatures generated by the nodes. In all steps, the IoT application does not need to 
restore any public key of the underlying nodes, which reduces the storage cost required in a 
system of traditional digital signatures. The new proxy signature is appropriate for sensor 
networks and IoT applications. The results of this study will help enhance the performance of the 
current scheme and find other solutions to authentication in IoT systems.
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