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	 Atrial fibrillation (AF) is the most common arrhythmia. Since AF can cause strokes 
if it lasts for a long time, it is important to detect AF in advance and receive treatment. 
Electrocardiography is usually used for AF diagnosis. Electrocardiography records the electrical 
activity of the patient’s heart to obtain an electrocardiogram (ECG), which usually consists of 
waves and a commentary on them. The onset of AF occurrence or its likelihood is judged by a 
comprehensive analysis of an ECG, which requires considerable prior knowledge and clinical 
experience. In this study, to make this process simpler, the output text of ECGs is analyzed by 
deep learning to predict the possibility of future AF. The proposed model represents words 
as vectors using FastText and extracts features using one-dimensional convolutional neural 
networks (CNNs). The model also combines features using global average pooling (GAP) and 
is trained to calculate the probability of developing AF. In an experiment, the model showed 
85.03% accuracy in predicting the presence or absence of AF. We thus demonstrated the 
possibility of predicting the occurrence of AF in advance using only text analysis without prior 
knowledge and clinical experience of AF.

1.	 Introduction

	 Atrial fibrillation (AF) is the most common persistent arrhythmia in which the heart beats 
irregularly.(1) The prevalence of AF is less than 1% for those under the age of 60, but it is 
known to increase rapidly after the age of 60.(2) Recently, the average age of AF patients has 
been gradually increasing as general health has improved. In addition, the treatment-related 
mortality rate has been reduced as a result of advances in treatment, although the prevalence of 
AF is expected to increase in the future.(3) The factors that induce AF are not only age but also 
hypertension, obesity, diabetes, excessive drinking, and smoking.(4)

	 Electrocardiography is usually used for AF diagnosis. An electrocardiograph is a device that 
records the electrical activity of a patient’s heart.(5) The electrocardiograph obtains the electrical 
activity state of a patient’s heart through analog waveform conversion and mechanically 
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analyzes these waveforms to automatically obtain an output text reading. The record extracted 
here is called an electrocardiogram (ECG). An ECG is composed of waves and an output 
text. The sensor of the electrocardiograph detects P, Q, R, S, and T waves. In particular, Q, 
R, and S waves (QRS) are the most characteristic waves, with higher amplitudes than P and 
T waves. In some studies, waves other than QRS are treated as noise and deleted, and the 
presence or absence of AF is determined by using QRS.(6) The output text of an ECG is the 
result of automatic analysis of these waves by the machine. The ECG’s output text includes not 
only the contents of the P, Q, R, S, and T waves, but also the patient’s condition through their 
interpretation. The clinician interprets the waves and output text of an ECG comprehensively to 
determine whether AF has occurred or the likelihood of its onset. However, in order to interpret 
the waves and the output text of the ECG, much prior knowledge and clinical experience of AF 
are required, and the interpretation requires a lot of time.
	 To avoid these difficulties, in this study, we attempt to predict the probability of AF in the 
future by automatically analyzing the output text of ECGs by a deep learning model. First, 
words appearing in the output text of ECGs are transformed into the input of a deep learning 
model using FastText, with words represented as vectors.(7) In order to represent the combined 
meaning using neighboring words, one-dimensional convolutional neural networks (CNNs), 
which show good performance in text processing, are used.(8,9) Then, global average pooling 
(GAP) is used to extract representative values ​​of the combined features through the CNNs.(10,11) 
Finally, the probability of AF is predicted through a softmax layer. Through this process, the 
proposed model can predict the probability of AF in the future by analyzing only the output text 
of the ECG without prior knowledge of AF.
	 Section 2 explains text classification by deep learning, which is performed in this study. 
Section 3 gives the background knowledge of AF, Sect. 4 explains the output text of ECGs and 
the preprocessing, and Sect. 5 describes the structure of the proposed model. Section 6 outlines 
the parameters and environments used in the experiment, shows the results of the experiment, 
and discusses the results. Finally, Sect. 7 provides a summary of this study and the direction of 
future works.

2.	 Related Works

	 The prediction of AF occurrence using ECG texts can be regarded as a text classification 
problem; such problems have attracted much attention in the field of natural language 
processing. Models based on recurrent neural networks (RNNs), such as long short-term 
memory (LSTM) networks, which show good performance for sequential data, have mainly 
been used in the text classification problem. However, models based on CNNs, which are much 
faster and have high accuracy, have recently been widely used.(8,9,12)

	 Kim(8) used multichannel CNNs for text classification. Words appearing in sentences were 
represented as vectors using pretrained Word2Vec from Google News. Word2Vec is a word 
embedding technique that learns by using information from nearby words to represent the 
meaning of a word as a vector.(13,14) These vectors are input to CNNs with filters of various 
sizes. Global max pooling (GMP) is used to extract the largest value among the output of the 
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features from each CNN. Three features extracted from GMP are concatenated to one feature, 
are input to the fully connected layer by applying a dropout, and are finally input to the softmax 
layer.
	 Zhou et al.(12) used a CNN and LSTM for text classification. Words appearing in sentences 
were represented as vectors using pretrained Word2Vec from Google News. Vectors converted 
through Word2Vec were input to a single CNN with filter size 3, and features extracted from 
the CNN were input to the LSTM. Zhou et al. did not use pooling for features extracted from 
a CNN. This is because when applying pooling, the sequential information of features is lost. 
Among the values obtained from LSTM, the last hidden state with all the information of the 
sentence is finally input to the softmax layer.

3.	 AF

	 AF is the most common arrhythmia, with the higher the age, the higher its prevalence. AF 
is classified by the European Society of Cardiology into the following five types, depending on 
the duration and pattern of expression: first diagnosed AF, paroxysmal AF, persistent AF, long-
standing persistent AF, and permanent AF.(15) First diagnosed AF refers to the first case of AF 
diagnosis, regardless of AF-related symptoms, duration, or severity. Paroxysmal AF refers to 
a case of conversion to a normal heartbeat without special treatment within 48 h. Paroxysmal 
AF can sometimes last up to 7 days. However, this is rarely converted to a normal heartbeat 
without treatment after 48 h. Persistent AF refers to a case that lasts more than 7 days. This may 
be converted to a normal heartbeat by a drug or direct current cardioversion. Long-standing 
persistent AF refers to AF that lasts more than a year when the use of a rhythm-control strategy 
is decided. Permanent AF refers to cases where the patient’s condition does not improve despite 
treatment and management. AF initially exhibits the form of paroxysmal AF, but it progresses 
to persistent AF and permanent AF over time, and AF is known to be difficult to cure if it has 
progressed for a long time.(15,16)

	 Symptoms of AF include cardiac hyperactivity, fainting, dizziness, shortness of breath, and 
chest pain caused by an irregular pulse, but some patients may not have these symptoms.(17) AF 
can cause systemic embolism due to atrial expansion and atrial thrombi, and stroke can occur, 
especially if a thrombus blocks the brain blood vessels.(18) The risk of stroke is 4–5 times higher 
in AF patients than in normal people.(19) The closing of blood vessels in the brain due to blood 
clots is called ischemic stroke. The five major Trial of Org 10172 in Acute Stroke Treatment 
(TOAST) classifications are used when considering the cause of ischemic stroke.(20) These 
are large-artery atherosclerosis, small vessel occlusion, cardioembolism, other determined 
etiology, and undetermined etiology. In particular, cardioembolism due to AF is one of the 
causes of ischemic stroke, which makes it very difficult to treat when cerebral infarction occurs. 
Therefore, it is very important to detect AF in advance to reduce the above risk.

4.	 Dataset

	 The ECG dataset used in this study was collected by Hallym University Chuncheon Sacred 
Heart Hospital(21) from February 2010 to October 2019. This dataset mainly consists of a record 
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of patients with a history of hospitalization for acute ischemic stroke. The number of output 
texts of the ECG dataset is 10359, with 5846 AF cases and 4513 normal cases. To predict the 
probability of AF in the future, AF patients are assigned a label of 0 regardless of whether or 
not AF has actually occurred, and a label of 1 is given to normal patients.
	 Figure 1 shows an ECG generated by electrocardiography. The waves in Fig. 1 show the 
electrical activity of the patient’s heart as graphs, and the output text above shows the result 
of interpreting the waves automatically by electrocardiography. If AF appears explicitly in the 
output text, it can be concluded that the patient has AF, but there are cases where AF does not 
appear in the output text despite the onset of AF in the patient.

4.1	 Data preprocessing

	 ECG output text is generated by the electrocardiography, so there are many duplicated 
expressions that can cause overfitting during the training. Therefore, in this study, we eliminate 
all but one of the duplicate expressions, convert uppercase letters to lowercase letters, and place 
spaces before and after special characters such as punctuation marks. Also, the words ‘Atrial’, 
‘Fibrillation’, and ‘Flutter’, which can determine AF reliably, are removed from the sentences 
in order to make it possible to learn AF even when the words do not appear. Lastly, ‘Abnormal 
electrocardiography’ and ‘Normal electrocardiography’ appearing in the last part of the output 
text of the ECG are common to all texts, so we remove them.	  
	 Table 1 shows examples of data preprocessing. The first example shows the result of not only 
deleting ‘Atrial fibrillation’ and ‘Abnormal electrocardiography’ but also converting uppercase 

Fig. 1.	 (Color online) Example of wave and output text in ECG.
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letters to lowercase letters. The second example shows the result of removing ‘Abnormal 
electrocardiography’ and converting uppercase letters to lowercase letters. After removing 
duplicates, there are a total of 3543 texts, of which 2055 have label 0 and 1488 have label 1.

5.	 Methodology
		
	 Figure 2 is a schematic of the methodology proposed in this paper, which is conducted 
in the order of data collection, preprocessing, FastText, CNN, GAP, and softmax. Words are 
represented as vectors through FastText after preprocessing the output text of the ECG. These 
word vectors are input to the CNN and several feature maps are generated. After that, GAP is 
used for various feature maps. Finally, the probability of AF in the future is calculated in the 
softmax layer.

5.1	 FastText

	 In the field of natural language processing, word embedding is used to represent the 
meanings of words. Word embedding converts a word into a meaningful dense vector using 
surrounding words so that the computer can understand the language of human beings.(13) This 
is based on the assumption that words appearing in a similar context have similar meanings, 
which is called the distributional hypothesis. Through word embedding, words can be 
vectorized to measure the similarity between them. In this paper, FastText, which is an extended 
model of Word2Vec, is used as the word embedding method.(7)

	 Word2Vec maximizes the inner product value of the vector corresponding to the central 
word and the vectors corresponding to the surrounding words while sliding the corpus by 
increments equal to the window size. At the same time, the Word2Vec model is continuously 
updated to minimize the inner product value with the vectors corresponding to words that do 
not belong to the window slide.(13,14) Word2Vec has good performance, but it has limitations 
because it involves word-based learning. The limitations of this method are that it does not 
reflect the morphological characteristics of the language, cannot solve the out-of-vocabulary 
problem, and it is difficult to represent meaning-appropriate embedding values for rare words.(7)

	 FastText is a word embedding technique designed to partially address these limitations.(7) 
FastText has a similar mechanism to Word2Vec, but Word2Vec learns a word unit, while 

Table 1
Example of data preprocessing.
Preprocessing Name AF Text
Before A 0 Atrial fibrillation Low Voltage QRS Right bundle branch block 

Abnormal electrocardiography
low voltage qrs right bundle branch blockAfter A 0

Before B 1
Sinus tachycardia with frequent premature ventricular complexes Left 

ventricular hypertrophy with repolarization abnormality Abnormal 
electrocardiography

sinus tachycardia with frequent premature ventricular complexes left 
ventricular hypertrophy with repolarization abnormality

After B 1
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FastText learns by considering a word and its subwords. A subword in FastText is the n-gram 
of letters in one word, and the number of separate subwords depends on the value of n that is 
set. For example, if n is set to 5 for the word ‘speaking’, FastText learns by separating it into 
‘speak’, ‘peaki’, ‘eakin’, and ‘aking’. In addition, by learning not only subwords but also word 
units, the word ‘speaking’ is represented in vectors similar to subwords. Considering this point, 
morphologically similar words are represented as similar vectors, which enables FastText to 
cope better with out-of-vocabulary problems than Word2Vec. In addition, FastText has a large 
number of words that can be referenced by considering subwords, so embedding values of rare 
words are represented more appropriately with Word2Vec.(7)

	 In this study, we use a pretrained model of FastText called BioWordVec.(22) BioWordVec is a 
model that learns the texts of biomedical databases PubMed and MIMIC-III with FastText.

5.2	  CNNs
	
	 CNNs perform well not only in image processing but also in text processing.(8,9) When 
applying a CNN to text, the CNN’s inputs use values in which each word is represented as a 
vector. That is, if the number of words in one sentence is N and the number of dimensions in 
which each word is represented as a vector is M, the size of the CNN’s input value is N × M. A 
one-dimensional CNN uses all the vector values in each row and can create combined meanings 
of different numbers of words by varying the filter size. At this time, the filter size is used 
together with the stride that serves to slide the filter. If the stride is 1 and the filter size is n, the 
combined meaning is extracted by an n-gram method defined in computational linguistics.(9) 
Thus, the feature extracted from the CNN is called the feature map, and the size of the feature 
map is as follows.

	
         1 Number of words filter sizefeaturemap

Stride
− = −  

	 (1)

Fig. 2.	 Schematization of research methodology.
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	 As in Eq. (1), the size of the feature map depends on the filter size and stride. However, in 
the case of using a CNN in this way, information at the edge of the input value is lost. To solve 
this problem, there is a technique called padding, which fills the edges with zeros, enabling the 
information at the edge to be preserved. The size of the feature map including padding is as 
follows.

	
       2    1padding

Number of words filter size Pfeaturemap
Stride

− + × = −  
	 (2)

	 In Eq. (2), P is the width of the padding, and the size of the feature map is equal to the 
number of words regardless of the filter size when the stride is 1. Through this process, one 
feature map is extracted. However, using only one feature map does not help significantly 
in improving the performance because the amount of learning is insufficient. To solve this 
problem, we use multiple filters, which increases the amount of learning using multiple CNNs. 
As a result, the final feature map has a size of feature mappadding × number of filters.
	 Figure 3 shows an example of a one-dimensional CNN to which padding, a filter size of 
three, a stride of one, and four filters are applied. The parameters of the CNN used in this study 
will be covered in detail in Sect. 6.

5.3	 Prediction of AF

	 In general, the values extracted from a CNN derive its output through a fully connected layer 
to optimize the parameters. However, if a fully connected layer is used, a long time is required 
for learning, which can cause overfitting.(10,11) To address this problem, we use GAP instead 
of a fully connected layer. GAP is a technique that derives the average value from all feature 
maps extracted from a CNN. GAP can avoid overfitting because there is no need to optimize 
the parameters owing to its simple calculation method.(10,11) The features extracted through 
GAP are finally entered into the softmax layer to predict the probability of AF occurrence. The 

Fig. 3.	 (Color online) Example of one-dimensional  CNNs.
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softmax is a layer that normalizes the input value to a value between 0 and 1 using the following 
formula.

	 ( )
( )1

exp
  

exp
i

i n
jj

z
P

z
=

=
∑

.	 (3)

	 In Eq. (3), zi is the value of the corresponding class and n is the total number of classes. The 
number of values output by softmax is equal to the number of classes to be classified, and the 
sum of these output values is always 1. In this study, since there are two classes to classify, 
the output values of softmax are the probability of AF occurring and the probability of no AF 
occurring. That is, according to the purpose of the study, the probability of AF occurring can be 
predicted through the softmax layer.

6.	 Experiment

	 In this study, an ECG dataset is collected for the experiment, and preprocessing is performed 
on the data. Patients with AF are given a label of 0 regardless of whether or not AF has actually 
occurred. In addition, the text of the applicants who showed no AF occurring is given a label of 1. 
The entire data is divided in the ratio of training set:validation set:test set = 8:1:1 to conduct the 
experiment.

6.1	 Parameters of  CNN

	 Table 2 shows the hyperparameters of the CNN used in this study. By setting the filter 
size to 3 and the stride to 1, the combined meaning of three words is extracted by the n-gram 
method. A total of 256 filters are used to increase the amount of learning, and padding is used 
to prevent the loss of edge information. In addition, ReLU is used as the activation function of 
the one-dimensional CNN.

6.2	 Trigram of ECG dataset

	 Table 3 shows the eight trigrams with the highest frequency among the collected data, where 
Freq means frequency and Rate means the relative frequency. In Table 3, (‘left’, ‘ventricular’, 
‘hypertrophy’) appears with high frequency in both label 0 and label 1. Thus, some trigrams and 

Table 2
Parameters of CNN.
Description Hyperparameter
Filter size 3
Stride 1
Number of filters 256
Padding Used
Activation function ReLU
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words appear to a similar degree in both labels. On the other hand, the words ‘sinus’ and ‘rhythm’ 
appear frequently in the label 1 non-AF dataset. These words can be seen as characteristic 
words for expressing label 1. Trigrams that are concentrated only on one label can help with 
prediction, but the number of such trigrams is very limited.

6.3	 Prediction of AF onset

	 Table 4 shows the performance evaluation results for the model predicting the onset of AF. 
The numbers of test data in this experiment are 215 and 139 for labels 0 and 1, respectively. 
The results of the experiment shown in Table 4 are the average values of 10 experiments. The 
precision and recall values of labels 0 and 1 show significant differences because they do not 
have equal data distributions. In this experiment, the macro-averaged precision is 0.8473, the 
macro-averaged recall is 0.8637, the macro-averaged F1-score is 0.848, and the model accuracy 
is 85.03%.
	 Table 5 is the confusion matrix of Table 4. In Table 5, N is the total number of data, Actual 0 
and Actual 1 are the actual labels, and Predicted 0 and Predicted 1 are the labels predicted using 
the model. 

6.4	 Results and discussion 

	 In this study, in addition to the simple judgment of the presence or absence of AF, an objective is to 
calculate the probability of AF in the future. To this end, we aim to determine the probability of 
AF onset using the output of the softmax layer.
	 The six texts shown in Table 6 are comments often generated in an ECG. Texts No. 1 
and No. 2 are comments with ‘Atrial fibrillation’ deleted during data preprocessing, and the 
probability of AF is the probability that it occurs in the future. Text No. 3 is the text of a patient 
who was later identified as having AF, which was generated before AF appeared. Texts No. 4, No. 5, 
and No. 6 are the texts of patients determined to be normal.
	 Texts No. 1 and No. 2 have very high probabilities of AF of 99.75 and 97.3%, respectively, 
even though ‘Atrial fibrillation’ has been deleted. The ‘premature ventricular or aberrantly 
conducted’ and ‘right bundle branch block’ appearing in their texts are features that are highly 
likely to cause AF.(23–25) Text No. 3, which is a text generated before AF appeared, has a 50.91% 

Table 3
Trigram of ECG dataset.
Label 0 Freq Rate Label 1 Freq Rate
(‘t’, ‘wave’, ‘abnormality’) 1012 0.028375 (‘t’, ‘wave’, ‘abnormality’) 474 0.019169
(‘wave’, ‘abnormality’, ‘,’) 782 0.021926 (‘normal’, ‘sinus’, ‘rhythm’) 444 0.017956
(‘abnormality’, ‘,’, ‘consider’) 704 0.019739 (‘,’, ‘age’, ‘undetermined’) 443 0.017916
(‘st’, ‘and’, ‘t’) 624 0.017496 (‘left’, ‘ventricular’, ‘hypertrophy’) 443 0.017916
(‘and’, ‘t’, ‘wave’) 609 0.017076 (‘infarct’, ‘,’, ‘age’) 442 0.017875
(‘left’, ‘ventricular’, ‘hypertrophy’) 577 0.016178 (‘sinus’, ‘rhythm’, ‘with’) 341 0.013791
(‘infarct’, ‘,’, ‘age’) 546 0.015309 (‘wave’, ‘abnormality’, ‘,’) 337 0.013629
(‘,’, ‘age’, ‘undetermined’) 546 0.015309 (‘abnormality’, ‘,’, ‘consider’) 336 0.013588
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probability of AF, which is lower than those of texts No. 1 and No. 2. In addition, it can be seen 
that texts No. 4, No. 5, and No. 6, which are determined as normal, have a lower probability of 
AF than those of No. 1, No. 2, and No. 3.
	 In this study, the probability of AF in the future is predicted through a CNN by a method that 
uses information from adjacent words. However, a shortcoming of this study exists. Text No. 4 
was automatically generated as a result of the test for patients who did not have AF. However, 
the probability of AF occurrence of the text is not much different from the text of the patient 
with AF. This is because text No. 4 contains (‘t’, ‘wave’, ‘abnormality’), (‘wave’, ‘abnormality’, 
‘,’), and (‘abnormality’, ‘,’, ‘consider’), which appear frequently in label 0 as shown in Sect. 6.2. 
This can be seen as a shortcoming caused by using only the information of adjacent words. In 
order to compensate for this shortcoming, it is necessary to find a method of determining AF by 
using not only the information of adjacent words but also the entire sentence.

7.	 Conclusions

	 In this study, we attempted to predict the probability of AF by using texts automatically 
generated by an ECG. For the purpose of learning, classified texts were collected on the basis 
of the occurrence of AF. The model proposed in this study is composed of FastText, CNN, 
GAP, and a softmax layer. This model can predict the presence or absence of AF with an 

Table 4
Performance evaluation when judged by the presence or absence of AF.
Label Number of test data Precision Recall F1-score Accuracy
0 215 0.9436 0.8014 0.8667 85.03%1 139 0.7509 0.9259 0.8292

Table 5
Confusion matrix for the presence or absence of AF.
N = 354 Predicted 0 Predicted 1
Actual 0 172.3 42.7
Actual 1 10.3 128.7

Table 6
Prediction results for probability of future AF occurrence.

No. Text Label Probability of AF 
(%)

1 with premature ventricular or aberrantly conducted complexes junctional st 
depression , probably normal 0 99.75

2 low voltage qrs right bundle branch block 0 97.3

3 marked sinus bradycardia voltage criteria for left ventricular hypertrophy 
nonspecific st and t wave abnormality 0 50.91

4 normal sinus rhythm voltage criteria for left ventricular hypertrophy t wave 
abnormality, consider lateral ischemia prolonged qt 1 41.98

5 normal sinus rhythm left axis deviation minimal voltage criteria for left ventricular 
hypertrophy, may be normal variant inferior infarct , age undetermined 1 7.7

6 sinus tachycardia with frequent premature ventricular complexes left ventricular 
hypertrophy with repolarization abnormality 1 16.95
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accuracy of up to 85.03%. At the same time, the probability of future AF is given. The predicted 
probabilities calculated using this model can automatically be transmitted to specialists to 
enable a more accurate diagnosis. 
	 However, the output text of the ECG used in this study is automatically generated by a 
machine, so it lacks diversity. Therefore, in order to develop a more precise model, additional 
data that can be used together with existing data must be discovered. In addition, we hope to 
develop a model with higher performance by applying more diverse methodologies.
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