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	 In this paper, a high-speed and high-current pulse width modulation (PWM) driver for high-
power infrared light-emitting diodes (LEDs) is proposed. High-power infrared LEDs have 
been widely used in applications of distance measurements, in which the LEDs must be driven 
by a pulse-current driver. The pulse-current driver must have a high pulse current (about 1 A 
or more) and achieve high-speed PWM (a pulse width of about 200 ns or less). Because the 
traditional PWM drivers cannot meet the requirements for testing the performance of high-
power and high-speed infrared LEDs, a prototype high-speed and high-current PWM driver is 
built to overcome this problem. Experimental results verify the performance and the feasibility 
of the proposed PWM driver for high-power infrared LEDs. 

1.	 Introduction

	 Nowadays, mobile phones, tablets, liquid crystal display (LCD) TVs, and cars use infrared 
light-emitting diodes (LEDs).(1,2) With the increasing range of application of 3D sensing 
technology, the demand for high-power and high-current infrared LEDs is also increasing. The 
advent of the high-power infrared LEDs has opened up new application areas, especially 3D 
sensing of mobile phones and distance detection of cars. These applications are mainly driven 
by pulse currents to generate continuous pulse optical signals.(3–5) When such a pulse light 
signal comes in contact with a target, data in the form of continuous pulses are produced, which 
are processed and calculated by a receiver, as shown in Fig. 1. As the measurement distance of 
the object increases, the required pulse current of the high-power infrared LEDs also increases.
(6–8) Therefore, the phase width modulation (PWM) drivers used with high-power infrared 
LEDs must have sufficient capacity to provide high-current and high-speed pulses. 
	 The driving methods currently used with direct-drive circuits for infrared LEDs can be 
divided into two types: direct-drive circuits with a DC power supply and those with a signal 
generator.(9–11) However, the two driving methods cannot meet the high-current and high-speed 
time requirements of high-power infrared LEDs. The two types of driving circuits are described 
in detail as follows:
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1.	 Direct-drive circuit with a DC power supply
	 A direct-drive circuit with a DC power supply uses a current-limited resistor in series with 
the high-power infrared LEDs to limit the highest pulse current flowing through the LEDs, as 
shown in Fig. 2.(12) The advantage of the driving circuit is that the amplitude of the pulse current 
can easily provide a specific current value (1 to 5 A). The disadvantage of the driving circuit is 
that the pulse width of the pulse current cannot be adjusted to less than 200 ns. This results in 
long rising and falling times of the pulse current, as shown in Fig. 3. 
2.	 Direct-drive circuit with a signal generator
	 A direct-drive circuit with a signal generator uses a 50 ohms current-limited resistor in series 
with the high-power infrared LEDs to limit the highest pulse current flowing through the LEDs, 
as shown in Fig. 4.(13,14) The advantage of the driving circuit is that the pulse-width time of the 
PWM can be adjusted to as small as 100 ns. The disadvantage of the signal generator is that it 
can only provide a small current (about 200 mA), as shown in Fig. 5.
	 To overcome the above disadvantages, a high-speed and high-current PWM driver is 
proposed, as shown in Fig. 6. The advantages of the proposed driver will be detailed in the next 
section. 

2.	 Proposed High-speed and High-current PWM Driver

	 The proposed high-current and high-speed PWM driver can overcome the disadvantages 
of the direct-drive circuit with a DC power supply or a signal generator. The high-current and 
high-speed PWM driver has the advantages of both a DC supply and a signal generator, which 
can meet the testing requirements of infrared LEDs. This PWM driver can easily adjust the 
amplitude of the supply current and the pulse width to meet the requirements of infrared LEDs. 
The operational modes of the high-current and high-speed PWM driver over one switching 
cycle can be divided into two modes as follows:
<Operational mode 1>
	 When the switch (Mp) is turned on, the energy stored in the snubber capacitor (Cs) will be 
charged. The current (is) flowing through the switch (Mp) is divided into three paths. The first 
path is Vs → R → high-power infrared LEDs → Mp → Vs, the second path is Vs → Cs → high-

Fig. 1.	 (Color online) Schematic illustration of distance detection. 
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power infrared LEDs → Mp → Vs, and the third path is Vs → Rs → Ls → Mp → Vs. During this 
interval, the snubber inductor (Ls) is charged and the infrared LEDs are instantly switched on. 
The equivalent circuit is shown in Fig. 7(a).

Fig. 2.	 (Color online) Direct-drive circuit with DC 
power supply.

Fig. 3.	 (Color online) Long rising and falling times 
of the pulse current for a direct-drive circuit with a 
DC power supply.

Fig. 4.	 (Color online) Direct-drive circuit with a 
signal generator.

Fig. 5.	 (Color online) Maximum current (200 mA) 
provided by a direct-drive circuit with a signal 
generator.

Fig. 6.	 (Color online) Proposed high-speed and high-current PWM driver.
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<Operational mode 2>
	 When the switch (Mp) is turned off, the energy stored in the snubber inductor (Ls) will be 
discharged. The discharged current (iLs) of the snubber inductor (Ls) flows through two paths. 
One is Rs → Ls → D → R → Rs and the other is Rs → Ls → D → Cs → Rs. During this interval, 
the high-power infrared LEDs are instantly switched off. The equivalent circuit is shown in Fig. 
7(b). The operational modes of the proposed high-current and high-speed PWM driver over one 
switching cycle are thus completed.

3.	 Experimental Results

	 Figure 8 shows the testing platform of high-power infrared LEDs. It consists of a set of 
control software, a DC power supply, a signal generator, an oscilloscope, a photometric detector, 
and a high-current and high-speed PWM driver. The control software and the testing platform 
of the high-power infrared LEDs are shown in Fig. 9. To verify that the rising and falling times 
of light-emitting signals that are the same as the pulse widths can be obtained from the proposed 
high-current and high-speed PWM driver, a Newport 818-BB-21 photometric detector is used to 
measure high-power infrared LEDs.
	 Figure 10 shows a comparison between the rising- and falling-time waveforms of the 
proposed high-current and high-speed PWM driver and the direct-drive circuit with a DC 
power supply. It can be seen that the proposed PWM driver has short rising and falling times. 
Figures 11 and 12 show a comparison between the rising- and falling-time waveforms of the 
light-emitting signals of the high-power infrared LEDs under different pulse widths and pulse 
currents from the proposed PWM driver, respectively. The pulse current from 1 to 5 A is 
provided, and the pulse widths are 100, 120, 140, 160, 180, and 200 ns. It can be seen that by 
providing suitable pulse widths for the high-power infrared LEDs, a rising time of less than 
30 ns and a falling time of less than 10 ns can be obtained. Tables 1 and 2 show the rising and 

Fig. 7.	 (Color online) Equivalent circuits of the proposed high-current and high-speed PWM driver.

(a) (b)
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 Fig. 8.	 (Color online) Testing platform of high-power infrared LEDs.

Fig. 9.	 (Color online) Testing platform of high-power infrared LEDs: (a) interface of the control software and (b) 
photograph of the experimental setup.

(a) (b)

Fig. 10.	 (Color online) Comparison between the rising- and falling-time waveforms of the proposed high-current 
and high-speed PWM driver and the direct-drive circuit with a DC power supply.
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Fig. 11.	 (Color online) Comparison between the rising- and falling-time waveforms of the light-emitting signals 
of the high-power infrared LEDs under the same currents and different pulse widths. (a) Pulse current = 5 A, pulse 
width = 100 ns. (b) Pulse current = 5 A, pulse width = 120 ns. (c) Pulse current = 5 A, pulse width = 140 ns. (d) 
Pulse current = 5 A, pulse width = 160 ns. (e) Pulse current = 5 A, pulse width = 180 ns. (f) Pulse current = 5 A, 
pulse width = 200 ns. 

(a) (b)

(c) (d)

(e) (f)
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Fig. 12.	 (Color online) Comparison between the rising- and falling-time waveforms of the light-emitting signals 
of the high-power infrared LEDs under the same pulse widths and different pulse currents. (a) Pulse current = 1 A, 
pulse width =100 ns. (b) Pulse current = 2 A, pulse width = 100 ns. (c) Pulse current = 3 A, pulse width = 100 ns. (d) 
Pulse current = 4 A, pulse width = 100 ns. (e) Pulse current = 5 A, pulse width = 100 ns.

(a) (b)

(c) (d)

(e)
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falling times of the light-emitting signals for the high-power infrared LEDs when the proposed 
PWM driver provides different pulse widths and different pulse currents, respectively. 

4.	 Conclusions

	 In this study, a high-speed and high-current PWM driver for high-power infrared LEDs 
has been built and implemented. The PWM driver has the advantages of both a DC supply and 
a signal generator, enabling it to meet the testing requirements of high-power infrared LEDs. 
The high-current and high-speed PWM driver can easily adjust the amplitude of the supplied 
current and the time of the pulse width to meet the testing requirements. From the measurement 
results, it can be seen that the proposed PWM driver can provide short rising and falling times 
of the pulse width of less than 30 ns for the rising time and less than 10 ns for the falling time, 
as required for high-power infrared LEDs. Therefore, the proposed PWM driver is suitable for 
meeting the requirements of high-power infrared LEDs.
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Table 2
Rising and falling times under the same pulse widths and different pulse currents.
Pulse width (ns) Pulse current (A) Rising time (ns) Falling time (ns)
100 1 A 16.96 3.020
100 2 A 22.80 3.466
100 3 A 22.60 4.466
100 4 A 22.55 5.599
100 5 A 22.80 6.999

Table 1
Rising and falling times under the same pulse currents and different pulse widths.
Pulse current (A) Pulse width (ns) Rising time (ns) Falling time (ns)
5 100 22.80 6.999
5 120 23.20 7.074
5 140 23.37 7.049
5 160 23.13 7.066
5 180 23.00 7.149
5 200 23.15 6.941
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