
147Sensors and Materials, Vol. 33, No. 1 (2021) 147–169
MYU Tokyo

S & M 2442

*Corresponding author: e-mail: yumu@yumulab.org
https://doi.org/10.18494/SAM.2021.2986

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

BluMoon: Bluetooth Low Energy Emulator for Software Testing

Tsubasa Yumura,1,2* Kunio Akashi,1,2 Tomoya Inoue,1,2 and Yasuo Tan1,2

1National Institute of Information and Communication Technology, 2-12 Asahidai, Nomi, Ishikawa 923-1211, Japan
2Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

(Received July 21, 2020; accepted November 9, 2020)

Keywords:	 Bluetooth Low Energy, network virtualization, wireless network, network emulation

	 In software system testing using Bluetooth Low Energy (BLE), it is necessary to evaluate
the system, including the wireless communication. However, it is difficult to build a test
environment for testing with physical machines because of installation costs. This problem
can be solved by emulation to reproduce BLE communication on computers; however, a BLE
emulator is required. In this paper, we propose a BLE emulator called BluMoon for testing
software systems using BLE. We impose the following requirements on the BLE emulator:
(1) calculating the received signal strength for each frame and (2) imitating radio interference.
To satisfy these requirements, we devised a software-implemented BLE controller with a host
controller interface as a boundary and devised a data format called the BluMoon frame for
sending and receiving data frame by frame. We designed and implemented BluMoon, and
performed functional and performance evaluation as well as a comparative experiment with a
physical environment. The results revealed that it is possible to implement a BLE emulator that
meets the aforementioned requirements.

1.	 Introduction

	 Devices connected to a network are not limited to personal computers (PCs) and mobile
phones; home appliances, wearable devices, and various other devices also communicate with
peripherals and servers. Bluetooth Low Energy (BLE)(1) is one of the most commonly used
wireless communication protocols for the connection of devices. This protocol is a short-range
wireless communication standard that is suitable for installation in embedded devices owing to
its low power consumption. It is also used as a beacon for positioning indoors when the Global
Positioning System (GPS) cannot be used.
	 The development of a system using BLE involves the challenge of handling wireless
communication. Because BLE involves wireless communication using radio waves, its behavior
changes depending on the position of the transceiver and surrounding environment. For
example, the received signal strength (RSS) used for proximity detection changes depending on
the distance between the transmitter and the receiver. The RSS is also affected by reflection,
shielding, and diffraction by surrounding objects, walls, and the ground. The RSS thus

148	 Sensors and Materials, Vol. 33, No. 1 (2021)

fluctuates owing to subtle changes in the environment. Therefore, when using the RSS for an
application, it is necessary to consider this fluctuation. In addition, BLE transmitters other than
the target device may cause radio wave interference, resulting in loss of communication.
	 Typical software development is performed by confirming that the software behaves as
expected and by correcting defects. However, it is difficult to verify the behavior of systems
using BLE, as this requires physical devices to send and receive radio waves. To use physical
devices, time is required for installation. In addition, when changing the layout of transceivers
for testing, the equipment must be moved by people or machines. The problem of system
operation verification using BLE can be solved using a virtual environment built on a computer
for testing wireless communication. If the movement and communication of BLE devices can
be performed virtually with computers instead of physical BLE devices, the cost of equipment
and installation can be greatly reduced.
	 There are two methods for constructing a virtual wireless communication environment:
network simulation and network emulation. Network simulation is used for investigating
network characteristics, such as throughput and delay, by modeling and simulating network
traffic. NS-3(2) is a typical network simulator. However, simulators cannot be used for tests
that run applications the same way as for actual environments or for sending and receiving
frame-by-frame data to verify the operation of the system. Network emulation, in contrast, can
be used without impairing the network function from the viewpoint of the upper layer. The
virtual environment used for testing must run the same software as for physical devices, as the
development cost would increase if different software programs were written for the emulator
and physical device. It is also possible for different software programs to behave differently. In
this study, we adopt the emulator method to construct a virtual environment so that the same
software can be run as for physical devices.
	 The IEEE 802.11 emulation system NETorium(3) imitates wireless communication over a
wired network using a virtual network device. In NETorium, wireless frames are encapsulated
and transmitted via Ethernet. Wireless characteristics, such as delay and packet loss, are
injected as parameters, and radio wave interference is imitated by collision judgment by the
virtual network device upon the reception of each frame. In addition, the Linux operating
system (OS) can handle a virtual interface in the same way as an actual IEEE 802.11 device
and can execute the same software as an actual device. However, no BLE emulator exists
that can realize the same function as NETorium. Furthermore, it is difficult to develop a
BLE emulator by modifying the wireless emulators of other protocols. In BLE, the frame
transceiver called the controller has a state, and a state transition is performed according to the
stage of connection establishment with other devices. Frame transmission may be performed
autonomously. The characteristics of the BLE controller are different from those of IEEE
802.11 and other protocols. In this study, we design and implement a BLE emulator for testing
software systems, and impose several requirements on the proposed emulator. BLE applications
use the RSS for applications such as proximity detection. Because the RSS varies from frame
to frame, it is necessary to use an RSS that matches the given situation when receiving a
frame. Therefore, BLE communication must be emulated on a frame-by-frame basis, and the
RSS must be calculated for each frame. In addition, radio interference is a typical cause of

Sensors and Materials, Vol. 33, No. 1 (2021)	 149

inactivity in the field despite working well with small-scale verification. When testing a system
that communicates with a large number of devices, it is important to verify the availability of
connections according to the device layout and the number of installed devices. Therefore, it
is necessary to verify radio wave interference at the test stage in the virtual environment. The
following requirements are proposed for BLE emulators:
(1)	calculating the RSS for each frame and
(2)	imitating radio interference.
These requirements are used to design BluMoon, which aids software system development
using BLE emulation.
	 A workshop paper(4) and Japanese research report(5) were published regarding an initial
version of BluMoon. In the present paper, in addition to the summary of the previous papers,
we describe the design and implementation of BluMoon for calculating the RSS and simulating
radio wave interference. Furthermore, the results of performance evaluation and comparative
experiments with physical devices are provided.

2.	 BLE

	 Bluetooth is a standard for short-range wireless communication using the 2.4-GHz band,
and BLE is a low power consumption protocol adopted by Bluetooth version 4.0. Bluetooth
specifications including BLE are defined by the Bluetooth Special Interest Group. This
section describes the BLE specifications related to the design of BLE emulators, especially the
hierarchical structure and connection establishment.

2.1	 Layered architecture of Bluetooth

	 Bluetooth, including BLE, has a hierarchical structure consisting of an application, a host,
and a controller (Fig. 1). Applications using Bluetooth are located at the top layer and often use
host functions. The controller is responsible for the function of transmitting and receiving radio
waves for communication. Commands, notifications, and data are exchanged between the host
and the controller via the host controller interface (HCI).

Fig. 1.	 (Color online) Layered structure of Bluetooth.

150	 Sensors and Materials, Vol. 33, No. 1 (2021)

	 To facilitate application development, the host provides various profiles and protocols, such
as the Generic Access Profile (GAP), Attribute Protocol (ATT), Generic Attribute Profile (GATT),
Security Manager Protocol (SMP), and Logical Link Control and Adaptation Protocol (L2CAP).
	 The controller sends and receives radio waves to communicate with other controllers.
There are several types of controllers. BLE uses the Low Energy (LE) controller. There is
another controller called the Basic Rate/Enhanced Data Rate (BR/EDR) controller, which is
generally called Classic Bluetooth. BR/EDR and LE are major Bluetooth standards, and most
commercially available controllers are implemented with dual stacks that support both BR/EDR
and LE. In this paper, BLE controller or controller refers to an LE controller. There are three
types of HCI communication methods: HCI commands that send commands from the host to
the controller, HCI events that send responses and notifications from the controller to the host,
and HCI data that send and receive data bidirectionally. These are sent and received in the HCI
frame format.

2.2	 State machine of BLE controller

	 BLE devices have two roles, namely, central and peripheral. Figure 2 illustrates the sequence
of establishing a connection between a central and a peripheral. The BLE controller takes one

Fig. 2.	 (Color online) Sequence diagram of HCI command, HCI event, and BLE frame until connection
establishment.

Sensors and Materials, Vol. 33, No. 1 (2021)	 151

of five states: standby, advertising, scanning, initiating, and connection (Fig. 3). A central
device takes the following state transition until a connection is established: standby, scanning,
initiating, and connection. A peripheral terminal takes the following transition states until a
connection is established: standby, advertising, and connection. Standby is the initial state after
turning on the controller.
	 Advertising is the state of regularly sending advertising packets, and the transition to
advertising is performed by LE Set Advertising Enable, an HCI command. Scanning is the
state of waiting for surrounding advertising packets. When receiving an advertising packet, LE
Advertising Report, an HCI event, is sent from the controller to the host. Transition to scanning
is performed by LE Set Scan Enable, an HCI command. Initiating is the state of being ready
to establish a connection and waiting for surrounding advertising packets from peripherals.
Transition to initiating is performed by LE Create Connection, an HCI event.
	 Connection is the state in which a connection is established between a central and a
peripheral. The central device transitions to the connection state when it receives an advertising
packet in the initiating state. At this time, the central device sends a connection request. When
the peripheral receives this connection request, it transitions to the connection state. In the
connection state, devices can send and receive data with each other. When the connection is
terminated, the controller returns to the standby state. In this paper, we call a data frame (e.g.,
advertising packets) exchanged between controllers connection requests and data transmission
a BLE frame. Figure 4 presents the structure of the BLE frame. Notably, advertising packets
are also used for information dissemination. There are standards, such as iBeacon(6) and
Eddystone,(7) that aim to utilize advertising packets for indoor positioning and information
transmission.

3.	 Related Works

3.1	 BLE simulators and emulators

	 This subsection describes existing simulators and emulators used for testing networks
and applications related to BLE. Table 1 shows the compliance status of these simulators
and emulators with requirements listed in Sect. 1. In addition, Fig. 5 indicates whether the
simulators and emulators execute the BLE application, host, controller, and communication
virtually or physically. BluMoon proposed in this paper is designed to emulate the controller
and communication so that these requirements are satisfied.

Fig. 3.	 (Color onl ine) State d iagram of BLE
controller.

Fig. 4.	 (Color online) Data format of BLE frame.

152	 Sensors and Materials, Vol. 33, No. 1 (2021)

	 Network simulators are often used to simulate communications, including BLE. A typical
example is NS-3. However, network simulators simulate network traffic to investigate
throughput and delay, and are thus not appropriate for application testing.

Table 1
Adaptation status of existing emulation and simulation method to requirements of BLE emulator in this paper:
executing running code required for emulator, calculating RSS for each frame described as requirement 1 in
Introduction, and imitating radio interference described as requirement 2 in Introduction.

Executing
running code Calculating RSS Imitating radio

interference
Network simulator(2) *2 ✔ ✔
Btvirt(8) ✔
Android Emulator(9) ✔
Wear OS Emulator(9) ✔
iOS Emulator(10)*1 *3

Peripheral Simulator(11,12) ✔
BluMoon (our proposal) ✔ ✔ ✔
*1Limited in iOS version 5
*2Enable if using Direct Code Execution. Details are described in Sect. 3.3
*3Executing binary built for simulator from same source code as for physical devices

Fig. 5.	 (Color online) Comparison of simulation targets of existing emulation/simulation methods.

Sensors and Materials, Vol. 33, No. 1 (2021)	 153

	 Btvirt is an open source software program included in the tools provided by the Linux
Bluetooth stack BlueZ.(8) Btvirt behaves as a virtual Bluetooth controller. It sends and receives
HCI frames via the UNIX domain socket, accepts HCI commands, and returns appropriate HCI
events. Btvirt can be handled in the same way as a physical controller connected via Universal
Serial Bus (USB) or Universal Asynchronous Receiver/Transmitter (UART). However, btvirt
does not have a function to communicate with other devices. Therefore, it cannot be used for
system tests that involve communication.
	 In mobile application development, it is common to use the emulator or simulator included
in the development environment. For Android, there are many emulators that are included in the
development environment Android Studio,(9) as well as other emulators created by third parties.
Because these emulators do not have a function for imitating Bluetooth, the Bluetooth operation
test is performed with physical devices. Notably, the emulator of Wear OS,(13) an Android-based
OS for wristwatch-type devices, can be used as a BLE peripheral. The Wear OS emulator has
the function of establishing a connection with a physical Android smartphone or the Android
emulator. When pairing with a physical Android smartphone, it should be connected to a PC
running a Wear OS emulator with a USB cable. For iOS, the iOS simulator is included in the
development environment Xcode.(14) The iOS simulator runs a binary that is built for a simulator
on MacOS, and the binary is built from the same source code as that of the physical iOS device.
	 When running an application that uses Bluetooth on an iOS simulator, the simulator can use
the Bluetooth controller on the computer. By preparing the physical device for the peripheral
device, the iOS simulator can verify the operation using BLE communication. However, this
function has been discontinued in the iOS version 5 simulator and has not been implemented in
the later version.(10) The BLE emulator discussed above provides a test environment tailored to
specific OSs and devices, and thus cannot be used for general BLE testing.
	 There are also smartphone applications that imitate the behavior of peripheral devices for
the BLE central application test. In this paper, we call these applications peripheral simulators.
BLE Peripheral Simulator(11) is an Android application for testing the features of Web
Bluetooth. It imitates the behavior of three types of sensor devices: battery, heart rate monitor,
and thermometer. Similarly, LightBlue Explorer(12) can launch various peripheral devices as
virtual peripherals. Peripheral simulators play the role of peripheral devices using a physical
smartphone. These simulators do not emulate BLE communication but transmit physical radio
waves with a physical device. Therefore, we cannot use peripheral simulators for BLE system
testing using emulation.

3.2	 Network virtualization of Bluetooth

	 BluMoon performs BLE communication emulation frame by frame. For this purpose,
we consider virtualization that places a BLE frame on another protocol. The virtualization
of Bluetooth communication has been studied from various perspectives. For performing
Bluetooth communication between devices in remote areas, several methods have been
proposed for transmitting and receiving by encapsulating Bluetooth data. UbiPAN(15) makes
it possible to communicate with devices in remote areas via Bluetooth by installing gateways

154	 Sensors and Materials, Vol. 33, No. 1 (2021)

as a bridge. Tsuda et al. (16) proposed a method to transfer HCI messages by incorporating this
gateway function into a terminal, and Okada and Suzuki(17) extended this method to support
BLE. In these methods, the frames are encapsulated, transferred, and then restored to the
Bluetooth wireless frame. The transmitted frame does not contain the characteristic information
of wireless communication, such as the RSS indicator (RSSI), and is thus insufficient for use in
our BLE emulation.
	 BlueMonarch(18) uses emulation for Bluetooth testing and is an emulator that imitates
Bluetooth OBject EXchange (OBEX) file transmission using service discovery protocol (SDP)
communication that does not need to establish pairing. BlueMonarch is used for the evaluation
of content distribution systems and imitates Bluetooth using another Bluetooth protocol. It does
not use communication protocols other than Bluetooth and thus differs from the emulation of
our research.
	 There are also emulators that use software defined radio (SDR) to Bluetooth testing.
Wang et al.(19) proposed to perform upper layer protocol emulation with SDR. Liu et al.(20)
proposed Bluetooth signal emulation performed with field-programmable gate array (FPGA)
controlled SDR. These proposed methods can accurately reproduce Bluetooth communication
by using SDR. However, our purpose is software testing. In particular, we are targeting running
large amounts of application-level software. The methods using SDR have a bottleneck in the
installation cost of SDR, and it is difficult to scale the test environment. Our method ensures
scalability by using a network emulator that uses Ethernet communication for the computer
cluster.

3.3	 Wireless network emulators other than Bluetooth

	 There are many wireless network emulators for wireless network protocols other than
Bluetooth. Some wireless network emulators are implemented by software, while others are
implemented by dedicated hardware. The software-based wireless network emulator QOMET(21)
injects the characteristics of wireless communication into wired network communication.
QOMET was designed assuming IEEE 802.11 emulation. On the basis of QOMET, a wireless
network emulation testbed QOMB,(22) an IEEE 802.15.4 emulator,(23) and a dynamic network
emulation tool DynamiQ(24) have also been proposed. Another emulator for IEEE 802.11 is
Meteor.(25) NETorium, a large-scale software-based wireless network emulator, imitates frame
collisions using a system called Asteroid. It uses mac80211_hwsim(26) as a virtual interface for
emulation.
	 Tazaki et al.(27) proposed Direct Code Execution (DCE), a framework for executing the
Linux running code using network simulator NS-3. DCE does not support BLE, but using
the DCE concept to imitate BLE communication is an option. However, DCE has some
disadvantages. The first is that processing is concentrated on NS-3. It may prevent scalability.
This was mentioned in their paper. Second concerns mobility. BLE is used in smartphones and
wearable devices, which move with the user and RSS changes. Therefore, it must be possible for
the position of the node in the virtual environment to be changed. Because it is assumed that the
operation is performed while viewing the result, the node position must be able to be changed

Sensors and Materials, Vol. 33, No. 1 (2021)	 155

at any timing during the execution of the emulation. However, NS-3 only supports predefined
node movements. Therefore, DCE cannot flexibly specify the node position during simulation.
The last is about clock. DCE uses a simulated clock to synchronize communication, and the
code is executed according to it. However, in the system test including BLE communication,
we would like to confirm the operation of the entire system in a wall clock, not in a simulated
clock. From these, we did not adopt the concept of DCE, but designed with another architecture
described in the next section.
	 In addition, there are hardware-based wireless emulators that use a FPGA(28) and commercial
products, such as Network Emulator II.(29) Hardware-based wireless emulators can inject
wireless characteristics with high accuracy; however, it is difficult to build a test environment
using many devices owing to the required hardware.

4.	 Design Policy of BluMoon

	 In this section, we propose a method of meeting the requirements of the BLE emulator, as
described in Sect. 1, and present design policies.

4.1	 Emulation of controller divided by HCI

	 As an emulator, BluMoon must run the same software for physical devices. As described in
Sect. 2, in Bluetooth, the host and controller are connected via an HCI. If the behavior of the
controller connected to the lower layer of the HCI is emulated, the software for physical devices
can also be run on the emulator. The emulated controller can be handled from the host layer via
the HCI in the same way as a physical controller. In this paper, we call this emulated controller
the BluMoon controller (BM-CTL).
	 Another option is to emulate including the host layer. However, because the host contains
many profiles, it is difficult to implement an emulator that imitates the function of the host. The
HCI-bounded method proposed in this paper can use the actual software as the host. Therefore,
it is possible to reduce the mounting and easy to follow the Bluetooth specification version.

4.2	 Emulation of frame-by-frame communication

	 To realize the emulation of frame-by-frame communication, the BM-CTL sends and receives
data corresponding to BLE frames. We refer to these transmission and reception data as the
BluMoon frame (BM-FRM). The BM-FRM format is illustrated in Fig. 6. The BM-FRM
stores the actual BLE frame of the BLE specification format. In addition, it stores three types
of metadata (channel, TxPower, and location) that are used to calculate the RSS and imitate
interference.

Fig. 6.	 (Color online) Format of BM-FRM.

156	 Sensors and Materials, Vol. 33, No. 1 (2021)

4.3	 Calculation of RSS

	 Receiving the BLE frame, the BLE controller calculates the RSS for each frame and
passes it to the host. The RSS has the characteristic of being attenuated according to distance.
Considering the simplest model, the radio propagation loss in free space, L(d), can be
represented by

	 10
4() 20 log dL d
λ
π =−  

 
,	 (1)

where λ is the wavelength and d is the distance between the transmitter and the receiver.
Because the received radio wave intensity in a real environment is affected by various factors,
such as reflection and diffraction, it is not simple enough to be imitated by free space radio
wave propagation loss. However, calculation by detailed modeling requires time and effort
for setting conditions and for calculation. BluMoon calculates the RSS from the original
transmission power, free space radio wave propagation loss, and additive white Gaussian noise
(AWGN) δ.

	 10
4 20 log dRSS TxPower δ
λ
π = − + 

 
	 (2)

AWGN δ is generated by randomizing the probability density function P(δ) of the normal
distribution with mean 0 and standard deviation σ.

	
2

22

1() exp
22

P δδ
σσ

 
= −  π  

	 (3)

TxPower for calculating the RSS is included in the BM-FRM header. The distance d is obtained
from the positions of the transmitter and receiver. The position of the node is generated outside
the controller and sent to each BM-CTL. We refer to the data that describe the location of all
nodes as location information (LC-INF) and refer to the module that creates LC-INF as the
location generator (LC-GEN). The transmitter position is included in the BM-FRM header
when transmitting. The BM-CTL of each receiver records its own position and uses it when
calculating the RSS. There are several ways to implement the LC-GEN. One is a scenario-
based method that determines the location information in advance, and another is a multi-agent
simulator method that moves on the basis of the rule possessed by each node.

4.4	 Occurrence of radio interference

	 BLE divides the band from 2.400 to 2.480 GHz into 0.002 GHz and configures 40 channels
that do not overlap. If a BLE frame is transmitted on the same channel from a different node,

Sensors and Materials, Vol. 33, No. 1 (2021)	 157

the signal cannot be decoded and communication cannot be established. In this paper, this
phenomenon is called radio wave interference. BLE has a mechanism to avoid radio wave
interference by BLEs and other 2.4 GHz band communication systems. Advertisement uses
three channels (37, 38, 39) in a fixed manner; thus, radio wave interference is likely to occur.
Bluetooth version 4.2 specifies a frame transmission bit rate of 1 Mbps; in other words, it takes
200 μs to send a 200-bit frame. Radio interference occurs during the transmission of the frame.
However, because BluMoon transmits Ethernet frames, the time required for frame transmission
is much shorter than that for actual BLE transmission. The actual transmission time required
for BLE is then estimated, and a pseudo-transmission state is generated to imitate interference.
The design of this interference was proposed by Asteroid, which was included in the wireless
network emulator NETorium. Specifically, the time from receiving the BM-FRM is regarded
as the time required to receive the BLE frame. If another BM-FRM is received, it is considered
that interference has occurred.
	 The time required to receive a BLE frame is denoted trcv and is proportional to the length of
the frame. trcv is derived as

	 610rcv
Lt = .	 (4)

Here, L is the length of the BLE frame, that is, the length of the BM-FRM body. This method of
simulating radio wave interference is explained in Fig. 7.
	 Figure 7 illustrates the flow of time when two BM-FRMs are received sequentially. In Fig.
7(a), there is no interference, while in Fig. 7(b), there is interference. In each subfigure, a circle
indicates the time at which the BM-FRM is received; these are referred to as t0 and t1. trcv,
which is the time required to receive a BLE frame, is described in detail above. In the figure,
the first frame is blue and the second frame is red, and they are independent. If another BM-
FRM is not received before trcv elapses from the time of receiving the BM-FRM, it is considered
that there is no radio wave interference, and the BM-FRM is accepted [Fig. 7(a)]. However, if
another BM-FRM is received within the trcv time from the time of receiving the BM-FRM, it is

Fig. 7.	 (Color online) Explanation of radio interference emulation in BluMoon. t0 and t1 indicate the arrival time
of the BM-FRM, and trcv indicates the time required for receiving the entire BLE frame. (a) If another BM-FRM is
not received before trcv elapses from the time of receiving the BM-FRM, it is considered that no radio interference
has occurred, and the BM-FRM is accepted. (b) When another BM-FRM is received, it is considered that radio
interference has occurred, and both BM-FRMs are discarded.

(a)

(b)

158	 Sensors and Materials, Vol. 33, No. 1 (2021)

considered that radio wave interference has occurred, and both BM-FRMs are discarded [Fig.
7(b)].
	 Note that another method for simulating radio wave interference is to generate packet
loss with an arbitrary probability. However, in the BLE use case, the surrounding radio wave
conditions change markedly. It is more versatile to generate radio wave interference depending
on the given situation than to generate packet loss with a fixed probability. It is possible to
change the situation by frequently updating the probability of packet loss. However, in this case,
an additional mechanism is necessary to collect the surrounding radio wave environment and
calculate the packet loss probability. Because BluMoon emulates on a frame-by-frame basis, it
is possible to use the received frames to imitate radio interference without collecting additional
information. Therefore, we use the proposed method in this study.

5.	 Design and Implementation of BluMoon

	 In this section, we describe the specific software design and implementation of BluMoon to
realize the design policy presented in Sect. 4. In this study, we implement BluMoon as software
running on Linux.

5.1	 Overview

	 BluMoon consists of the BM-CTL and LC-GEN. The BM-CTL emulates the behavior of the
controller, while the LC-GEN generates the location information of each device and sends it to
all BM-CTLs. We designed the BM-CTL by dividing it into the following three modules:
•	 BluMoon HCI transceiver (BM-HCI)
•	 BluMoon manager (BM-MGR)
•	 BluMoon connector (BM-CNC)
The design of dividing a module into functional units simplifies the implementation, in turn
making it easier to follow the Bluetooth standard update. For example, the BM-HCI can be
modified to follow updates to the HCI. Similarly, the BM-CNC can be modified to follow
updates to the link layer. The LC-INF is required for the calculation of the RSS. The LC-GEN
generates the LC-INF and transfers it to each BM-CTL. These configurations are summarized
in Fig. 8.

5.2	 BM-HCI

	 The BM-HCI has the function of transmitting and receiving HCI frames with the host layer.
When receiving HCI data or HCI commands from the host, the BM-HCI transfers the contents
to the BM-MGR. When receiving an HCI event generation or data transmission command from
the BM-MGR, the BM-HCI transmits the HCI event or data to the host. Figure 9 illustrates the
relationship between the BM-HCI and BlueZ, which is a Bluetooth stack for Linux. BlueZ acts
as a host on Linux. In BlueZ, some drivers are connected to BlueZ Core, which has the core
functions of the host.

Sensors and Materials, Vol. 33, No. 1 (2021)	 159

	 The driver is a Virtual Host Controller Interface (VHCI) driver for connecting to a virtual
controller, and a UART driver and USB driver for connecting to the actual device. There are
several types of drivers. The UART and USB drivers connect to controllers with their protocols,
while the VHCI driver connects to a virtual controller. Because the difference in the controller
device is absorbed by the driver, the upper layer from BlueZ Core can handle the controller
without depending on the device. Virtual controllers connected to the VHCI driver can be
controlled by software for the actual devices. The VHCI driver sends and receives HCI frames
via the UNIX domain socket /dev/vhci. To act as a virtual controller for the BM-CTL, it is
necessary to launch a socket server that waits for VHCI sockets. We implemented the VHCI
socket interface in the BM-HCI by extending btvirt, which is a reference implementation of
a virtual controller communicating with BlueZ. The BM-HCI converts the format of the HCI
frame received from the VHCI socket interface and passes it to the BM-MGR. When receiving
the HCI event generation and data transmission commands from the BM-MGR, the BM-HCI
sends the HCI frame corresponding to the command to BlueZ via the VHCI socket interface.

5.3	 BM-MGR

	 The BM-MGR manages the entire BluMoon controller for sending and receiving. The
BM-MGR manages the five states (Fig. 3) of standby, advertising, scanning, initiating, and
connection. In addition, it controls the transmission of the BM-FRM and the receiving slot.
The BM-MGR creates a BM-FRM by adding metadata of the channel and TxPower to the
BLE frame format (Fig. 4) and passes it to the BM-CNC. In the advertising state, the BM-
MGR has a timer and transmits at regular intervals. The BLE controller can receive the BLE
frame of the specified channel during standby, and it often sleeps to reduce power consumption
during standby. The BM-MGR is responsible for specifying the standby channel and switching
between waking up and sleeping. The BM-MGR collates the channel described in the received
BM-FRM metadata with the standby channel of the BM-CTL. If they match, the BM-FRM is
accepted; otherwise, the BM-FRM is discarded.

Fig. 9.	 (Color online) Architecture of BlueZ (Linux
Bluetooth stack) and BM-HCI. These are connected
with the UNIX domain socket /dev/vhci.

Fig. 8.	 (Color online) Design overview of BluMoon.

160	 Sensors and Materials, Vol. 33, No. 1 (2021)

5.4	 BM-CNC

	 The BM-CNC is responsible for the actual transmission and reception of the BM-FRM. The
BM-CNC encapsulates the BM-FRM by Generic Network Virtualization Encapsulation (Geneve),
stores it in a User Datagram Protocol (UDP) segment (Fig. 10), and broadcasts it to an Internet
Protocol (IP) network. The BLE frame, channel, and TxPower for creating the BM-FRM are
included in the transmission command from the BM-MGR. The BM-CNC holds the location of
its own ID described in the LC-INF sent from the LC-GEN. When the BR-FRM is transmitted,
the BM-CNC describe the location into the BM-FRM header.
	 The receiving BM-CNC analyzes the received BM-FRM, determines the radio wave
interference, and calculates the received radio wave intensity. These details are as described in
Sect. 4. The BM-CNC adds the RSSI to the received BLE frame and passes it to the BM-MGR.

5.5	 LC-GEN

	 The LC-GEN generates LC-INF and broadcasts it periodically. The LC-INF comprises data
that contain the node IDs and the two-dimensional coordinates of all nodes. Figure 11 displays
the JSON data format of LC-INF. There are several ways to implement LC-GEN: one method
that follows the predetermined position and time scenario, and another method that uses a multi-
agent simulator. In this paper, we implement the LC-GEN as a Python script that sends LC-INF
according to the predetermined scenario.

6.	 Evaluation

6.1	 Functional evaluation

	 We verified whether the proposed BluMoon met the functional requirements of the BLE
emulator for software testing. There are many HCI commands and events in the Bluetooth
standard. In this study, we implemented six HCI commands and three HCI events, as displayed
in Table 2. As a result, it was possible to respond to all five states (Fig. 3) of the LE controller
presented in Sect. 2. This indicated that the minimum requirements were met. We omitted the
implementation related to encryption and communication parameter settings; however, these can
be supported by future implementations. Figure 12 presents the execution result of hciconfig,

Fig. 10.	 (Color online) BM-FRM encapsulated in
Geneve and stored as UDP segment.

Fig. 11.	 Example of LC-INF that describes two-
dimensional coordinate of node ID 1–4.

Sensors and Materials, Vol. 33, No. 1 (2021)	 161

which is a command tool for Linux included in BlueZ. Hciconfig verifies the status of the
controllers connected by the HCI and control startup and shutdown. The BM-CTL implemented
as BluMoon is also displayed by hciconfig and controlled similarly to other controllers. The
BM-CTL can be controlled using not only hciconfig, but also programming languages such as
C and Node.js. In this way, the emulated BM-CTL can be handled as a Bluetooth controller via
the HCI.

6.2	 Performance evaluation

	 To evaluate the BluMoon resource consumption, we measured the central processing unit
(CPU) usage during BluMoon execution. The CPU usage was measured at the time of sending
and receiving advertisements. We used Group P nodes of the network testbed StarBED(30) for
measurement. Each node was connected with 10-Gigabit Ethernet via network switches. Table
3 displays a list of equipment and software used for measurement. In measurement at sending,
HCI commands that set and started advertisement were executed. In measurement at receiving,
the Node.js script created using noble(31) was executed. Figure 13 presents the measurement
results of the CPU usage when sending advertisements. The figure displays the CPU usage
according to the number of advertisement transmissions per unit time. Because the BM-HCI,
BM-MGR, and BM-CNC were executed as individual processes, the CPU usage is shown for
each process.
	 The CPU usage rates of the BM-MGR and BM-CNC increased as the advertising interval
decreased; that is, the transmission frame per unit time increased. In contrast, the BM-HCI
only sent the HCI command (LE Set Advertise Enable) at the start of the advertisement and

Table 2
List of HCI commands and events we implemented in this paper.
Type Name
Command LE Set Advertising Parameter
Command LE Set Advertising Data
Command LE Set Advertising Enable
Command LE Set Scan Parameters
Command LE Set Scan Enable
Command LE Create Connection
Event Command Complete
Event LE Advertising Report
Event LE Connection Complete

Fig. 12.	 Result of hciconfig command execution.

162	 Sensors and Materials, Vol. 33, No. 1 (2021)

did not use the CPU during the advertisement transmission. According to the specifications of
Bluetooth version 4.2, the minimum advertisement interval was set to 20 ms. In other words,
the maximum number of transmission frames per second was 50. Within the specifications, it
was possible to execute transmission with low CPU consumption.
	 Figure 14 presents the measurement results of the CPU usage when receiving advertisements.
The figure displays the CPU usage based on the number of received advertisements per unit
time. Unlike the case of sending advertisements, the HCI event was generated and sent to the
host at every instance of advertisement reception. Therefore, the CPU usage rate increased
according to the advertisement reception number for all three processes: BM-HCI, BM-
MGR, and BM-CNC. According to the specifications, there is no upper limit on the number of
received advertisements. However, the number of advertisement transmitters that exist in the
surrounding area is limited in practice. The class of Bluetooth is determined by the maximum
radio wave output. Class 1 devices, which have the highest maximum radio wave output, have
a reach of approximately 100 m. When advertisement transmitters are arranged every meter
in an area of 100 × 100 m2, there are approximately 10000 advertisement transmitters. If these
advertisement transmitters send an advertisement every 1.28 s, which is the default specification
value, the receiver receives 7812.5 advertisements per second. Within this range, it is possible to
receive advertisements with the practical consumption of CPU resources.

6.3	 RSS

	 To verify whether BluMoon design requirement 1 was met, we measured the RSS depending
on the distance. A transmitter and a receiver were installed to send and receive advertising

Fig. 14.	 (Color on l ine) CPU usage rate when
receiving advertising packets. The format of the graph
is the same as that of Fig. 13.

Fig. 13.	 (Color online) CPU usage when sending
advertising packets. The horizontal axis displays
the number of advertisements sent per second. The
vertical axis represents the CPU utilization. Values
are calculated for each process of the BM-HCI, BM-
MGR, and BM-CNC.

Table 3
Measurement environment.
Chassis Dell PowerEdge R430
CPU Intel Xeon E5-2683 v4 (2.1GHz, 16cores) x2
Memory 384 GB
OS Ubuntu 16.04 Server AMD64
Bluetooth Stack BlueZ 5.43

Sensors and Materials, Vol. 33, No. 1 (2021)	 163

packets, respectively, and the RSSI was recorded while changing the distance between the
transmitter and the receiver. We measured the RSSI at a transceiver distance of 0.1–30 m,
measuring 10 s at each position. The measurement was performed in both the physical and
BluMoon emulated environments, and the physical environment was measured in two cases:
indoor and outdoor. For the physical environment, we used Raspberry Pi 3 Model B as a
transceiver [Fig. 15(a)]. The outdoor measurement was performed in an empty field [Fig. 15(b)],
while the indoor measurement was performed in an indoor corridor with a glass wall [Fig.
15(c)].
	 The measurement results are presented in Fig. 16, which displays the measured value and
its logarithmic approximation. Similarly to the physical environment, the BluMoon emulation
measurement results also exhibited the characteristics of radio waves, which attenuate
according to the distance. The value of BluMoon was approximately halfway between the
physical indoor and outdoor measurements. This indicates that the measured values of BluMoon
were not unrealistic compared with the physical environment. Note that the results were only for
the case of applying the free space radio wave attenuation formula in BluMoon. The radio wave
attenuation calculation model used by BluMoon is not limited to this; that is, BluMoon can use
other models.

6.4	 Radio interference

	 To verify whether design requirement 2 of BluMoon was satisfied, we measured the
reception rate with radio wave interference. To measure the reception rate, the number of
received advertising packets transmitted from the transmitter was counted. The advertisement
interval of the transmitter was set to 20 ms, which is the shortest interval defined by the
Bluetooth 4.2 standard. Ideally, the receiver receives 50 advertising packets per second. Using
this as the denominator, the reception rate was calculated from the number of receptions. In
addition to the transmitter, up to four interferers were installed. Similarly to the transmitter,
these interferers transmitted an advertising packet at 20 ms intervals. The advertising frame

Fig. 16. (Color online) Measurement results of
RSSI according to distance. The horizontal axis is
logarithmic. The points are measured values, and the
lines are their logarithmic approximations.

Fig. 15.	 (Color online) Physical environment of
RSSI measurement. (a) Configuration of transmitter
and receiver. (b) Outdoor environment. (c) Indoor
environment.

164	 Sensors and Materials, Vol. 33, No. 1 (2021)

Fig. 18.	 (Color online) Relationship between Tadv,
Tai, and Td in advertising packet transmission.

length is 376 bits. The physical environment was in a steel warehouse that was largely
shielded from other radio waves, and Raspberry Pi 3 Model B was used for the transceiver
and interferers (Fig. 17). We performed measurements in both the physical environment and
the BluMoon emulation environment and compared the results with theoretical values. The
theoretical values were derived as follows. When an advertising packet of a certain length was
transmitted, the probability of colliding with the advertising packet of one interferometer was

	 0
 2 adv

ai d

TP
T T

=
+

.	 (5)

Here, Tadv is the time required to transmit the advertising packet and can be derived from
Eq. (4). Tai is the advertising interval time between sending one advertising packet and the
next advertising packet. Td is the advertising delay, which is a random waiting time inserted
after every advertisement transmission. The advertisement delay is used to avoid collisions of
advertising packets of the same interval. The advertisement delay is different for each packet
transmission, and we set its average value to Td for use in deriving the theoretical value of the
collision probability. The relationship between these variables is illustrated in Fig. 18. Tadv, Tai,
and Td have the same values for the transmitter and interferer. When there are N interferers, the
probability PN of colliding with the advertising packet of at least one interferer is the same as
that of the complementary event of not colliding with any advertising packet of the interferers.
Thus, PN can be derived as

	 ()01 1 N
NP P= − − 	 (6)

21 1
N

adv

ai d

T
T T

 
= − − + 

.	 (7)

	 In this experiment, the advertising frame length is 376 bits. Since the bit rate of BLE is
1 Mbps, Tadv, which is the time required to send one advertising frame, is 0.376 ms. The
minimum and maximum intervals are set as the advertising parameters. We both set it to 20 ms
in this experiment. Therefore, Tai is 20 ms and Td is 0 ms.

Fig. 17.	 (Color online) Physical environment of
reception rate measurement.

Sensors and Materials, Vol. 33, No. 1 (2021)	 165

	 The measurement results are presented in Fig. 19. Similarly to the theoretical values and
physical environment, BluMoon also demonstrated the tendency in which the reception rate
decreased as the number of interfering devices increased. The correlation function between the
BluMoon measurement and the theoretical value was 0.9799, which indicates that our proposed
method successfully imitated radio wave interference. In addition, the correlation between the
physical environment measurement and the theoretical value was 0.9241, which was lower than
that between the BluMoon measurement and the theoretical value.
	 The condition of the above experiment is that Tadv, Tai, and Td have the same value for the
transmitter and interferer. In the real environment, the value may differ for each interferer.
The BluMoon judges interference by monitoring the simultaneous reception of frames in
consideration of the frame length. Therefore, the usefulness of our method does not depend on
the advertising interval.
	 In order to demonstrate this, we conducted additional experiments with interferers with
different advertising intervals. We performed the experiment with 30 interferers and set their
advertising interval to 100, 250, and 1000 ms. These three values are used in Android OS.
	 In order to compare with the experimental results, we derived the following theoretical
formulas. The theoretical value is derived as follows. Let Tai and Td of the n-th interferer be
Tai[n] and Td[n], respectively. NP′ , which is a probability of colliding with the advertising packet
of the n-th interferer, is

	 []0
 2

[] []
adv

ai d

TP n
T n T n

=
+

′ .	 (8)

When there are N interferers with different advertising intervals, the probability NP′ of colliding
with the advertising packet can be derived as

	 ()0
1

[]1 1
N

N
n

P nP
=

′ = − ′−∏ .	 (9)

Equation (9) is a general equation for the probability of collision with N interferences. When all
interferences have the same advertising interval, Eq. (9) can be simplified to Eq. (7).

Fig. 19.	 (Color online) Measurement results of reception rate according to number of interferers.

166	 Sensors and Materials, Vol. 33, No. 1 (2021)

	 Table 4 shows a comparison between the experimental results and the theoretical values.
As in the previous experiment, the experimental results show that the reception rate decreases
as the number of interference frames increases. We speculate that the difference between the
theoretical value and the measured value is due to the accuracy of the time handled by the
software.
	 As described in the previous section, the physical environment of radio waves changes
owing to various factors, which causes interference fluctuations. Examining how BluMoon
emulation handles fluctuations of the physical environment is left for future work.

7.	 Discussion

7.1	 Radio propagation model

	 In this study, we used a simple model (i.e., free space radio wave propagation loss) to
calculate the RSS. Therefore, the environment imitated by BluMoon was an open space with
no objects around. However, this is the simplest example. In a physical space, there are various
objects, such as the ground, walls, and furniture. Because radio waves reflect from these and
take multiple routes, the received radio field intensity fluctuates.(32) By replacing the radio wave
propagation model, it is possible to build an emulation environment closer to the physical space.
For example, the two-wave reflection model considers the reflected waves on the ground, and
the ray tracing method calculates the path from the position of the reflected object.

7.2	 Function to avoid interference

	 In this paper, interference in the BluMoon was evaluated by advertisement. With this
mechanism, it is possible to imitate not only advertisement but also communication interference
after the establishment of connection. The BLE communication standard has mechanisms to
avoid interference such as channel scanning and frequency hopping. However, the BluMoon has
not yet implemented these features. This is a future work for the BluMoon.

7.3	 Interference other than BLE

	 In the implementation in this paper, we dealt only with interference between BLEs.
However, in the actual environment, there are other 2.4 GHz band radio waves. The principle

Table 4
Measurement results of reception rate with different advertising intervals for interferers.

Number of
interferers
(100 ms)

Number of
interferers
(250 ms)

Number of
interferers
(1000 ms)

Reception rate
(theoretical value)

Reception rate
(measurement result

with BluMoon)
10 10 10 93.46666667 89.303247
5 5 20 95.84444444 93.4400238
5 20 5 94.15555556 90.3251575

20 5 5 90.42222222 84.383995

Sensors and Materials, Vol. 33, No. 1 (2021)	 167

of interference in BluMoon is to calculate collisions using the frequency band and reception
duration. With this information, it is possible to imitate interference with radio waves other than
BLE. Interference with other radio waves can be added by defining an interference frame and
transmitting it to the BluMoon receiver.
	 The interference frame requires two types of information: frequency band and duration. In
the current BluMoon, the frequency band uses a channel described in the header of BM-FRM,
and the duration is calculated from its frame length. However, such calculations cannot be made
for interference other than BLE. For example, in the case of Wi-Fi, the channel division method
and bit rate are different from BLE. The simplest implementation is to describe the frequency
band and duration directly in the interference frame.
	 There are also radio interference sources other than communication, such as microwave
ovens. They become white noise because they interfere over a wide area regardless of the
channel. BluMoon can handle such interference by describing that it interferes in the entire
band. The detailed design and implementation of interference with radio waves other than BLE
shall be future work.

7.4	 Deployment to other platforms

	 In this study, we used Linux and its Bluetooth stack BlueZ to realize our BluMoon concept.
The core idea of implementing a virtual controller and emulating with HCI as the interface is
applicable not only to Linux and BlueZ but also to other platforms. If the Bluetooth stack is an
open source, it can be rewritten to connect to a virtual controller instead of an actual controller.
By implementing a virtual controller with the functions introduced in this paper, a BLE
emulator can be developed on any platform.
	 For example, we consider deploying on Android. Versions of Android prior to 4.1 used
BlueZ, which is used in our study. However, from 4.2 to the present, another open source
Bluetooth stack called Fluoride(33) (formerly Bluedroid) has been used. By rewriting the part of
Flouride that is responsible for HCI and implementing a virtual controller, BLE communication
can be emulated in Android applications. However, running the Bluetooth emulator on an
actual Android device has few advantages. When running the BLE emulator, it will run on the
Android emulator. By developing an Android emulator that incorporates customized Fluoride, it
will be possible to check the BLE operation of Android applications. In that case, if the host OS
of the Android emulator is Linux, The BluMoon Controller we implemented can be utilized.

8.	 Conclusions

	 In this paper, we propose BluMoon, a BLE emulator, for software system testing. We
designed, implemented, and evaluated BluMoon. For its design, we imposed the following
requirements:
(1)	calculating the RSS for each frame and
(2)	simulating radio interference.
	 We proposed an emulator design that replaces the controller with the HCI as the boundary.
From the viewpoint of layers higher than the HCI, the emulator executes the same software as

168	 Sensors and Materials, Vol. 33, No. 1 (2021)

for physical BLE devices. To meet requirement 1, we proposed a design in which each controller
calculates the RSSI when receiving a BLE frame. The RSSI is derived by calculating the radio
wave attenuation from the distance between a transmitter and a receiver. To meet requirement 2,
we designed an interference simulation that discards frames if they arrive on the same channel
at the same time.
	 We implemented BluMoon based on this design and evaluated its effectiveness through
various measurement experiments. In the functional evaluation, we demonstrated that BluMoon
can be used in the same way as a physical BLE controller. In the performance evaluation, we
measured the CPU usage and demonstrated that BluMoon can be executed with reasonable
resource consumption. In the comparison experiment with physical environments, we
demonstrated that it is feasible to use our design to imitate the RSS and radio wave interference.
	 BluMoon can be used for testing various types of BLE applications, such as proximity
detection, sensor data collection, and stamp rally. Various testing methods and theories related
to software development have been developed in the field of software engineering. However, for
systems that are affected by physical space, testing methods are still evolving. In other research,
we used the BluMoon emulation results to reproduce the radio wave environment in a physical
box for testing with a physical mobile device.(34) In future work, we plan to further develop the
testing method of the system considering the surrounding environment.

Acknowledgments

	 We are grateful to the staff of NICT StarBED, the member of Tan and Lim laboratory, and
Dr. Yuuki Takano for supporting and discussing our research.

References

	 1	 Bluetooth: https://bluetooth.com (accessed July 2020).
	 2	 T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena: SIGCOMM Demonstration 14 (2008) 527.
	 3	 K. Akashi, T. Inoue, S. Yasuda, Y. Takano, and Y. Shinoda: NETorium: Proc. 12th Asian Internet Engineering

Conf. (2016) 25–32. https://doi.org/10.1145/3012695.3012699
	 4	 T. Yumura, K. Akashi, and T. Inoue: IPSJ SIG Technical Report Ubiquitous Computing System (UBI) 2017

(2017) 1–7 (in Japanese). http://id.nii.ac.jp/1001/00182996/
	 5	 T. Yumura, K. Akashi, and T. Inoue: 2018 IEEE Int. Conf. Pervasive Computing and Communications

Workshops (PerCom Workshops) (2018) 860–865. https://doi.org/10.1109/PERCOMW.2018.8480294
	 6	 Apple: Getting Started with iBeacon Version 1.0 (2014).
	 7	 Google: Eddystone format, https://developers.google.com/beacons/eddystone/ (accessed July 2020).
	 8	 BlueZ: http://www.bluez.org/ (accessed July 2020).
	 9	 Google: Android Studio, https://developer.android.com/studio/ (accessed July 2020).
	10	 Apple: Technical Note TN2295: Testing Core Bluetooth Applications in the iOS Simulator, https://developer.

apple.com/library/archive/technotes/tn2295/index.html (accessed July 2020).
	11	 BLE Peripheral Simulator: https://github.com/WebBluetoothCG/ble-test-peripheral-android/ (accessed July

2020).
	12	 LightBlue Explorer: https://itunes.apple.com/jp/app/lightblue-explorer/id557428110 (accessed July 2020).
	13	 Google: Wear OS by Google, https://wearos.google.com/ (accessed July 2020).
	14	 Apple: Xcode, https://developer.apple.com/xcode/ (accessed July 2020).
	15	 J. Albert, T. F. Bissyandé, Y.-D. Bromberg, S. Chaumette, and L. Réveillere: Ubipan: 2010 Int. Conf.

Complex, Intelligent and Software Intensive Systems (CISIS), IEEE (2010) 774–778. https://doi.org/10.1109/
CISIS.2010.167

Sensors and Materials, Vol. 33, No. 1 (2021)	 169

	16	 K. Tsuda, H. Suzuki, K. Asahi, and A. Watanabe: 2014 7th Int. Conf. Mobile Computing and Ubiquitous
Networking (ICMU) (2014) 78–79. https://doi.org/10.1109/ICMU.2014.6799065

	17	 M. Okada and H. Suzuki: Trans. Inf. Process. Soc. Jpn., Consum. Device Syst. (CDS) 8 (2018) 34 (in
Japanese). http://id.nii.ac.jp/1001/00189476/

	18	 T. Smith, S., Saroiu, and A. Wolman: Proc. 7th Int. Conf. Mobile Systems, Applications, and Services (2009)
41–54. https://doi.org/10.1145/1555816.1555822

	19	 C. Wang, Z. Shao, and M. Fujise: IEEE Int. Symp. Communications and Information Technology (ISCIT)
2004 2 (2004) 1118. https://doi.org/10.1109/ISCIT.2004.1413893

	20	 W. Liu, E. De Poorter, J. Hoebeke, E. Tanghe, W. Joseph, P. Willemen, M. Mehari , X. Jiao, and I. Moerman:
IEEE Trans. Wireless Commun. 16 (2017) 1755. https://doi.org/10.1109/TWC.2017.2654256

	21	 R.Beuran, J. Nakata, T. Okada, L. T. Nguyen, Y. Tan, and Y. Shinoda: Proc. Int. Conf. Advanced Information
Networking and Applications (AINA) (2008) 223–228. https://doi.org/10.1109/WAINA.2008.111

	22	 R. Beuran, L. T. Nguyen, T. Miyachi, J. Nakata, K. Chinen, Y. Tan, and Y. Shinoda: Global
Tele c om mu n ica t ion s C on f . , 2009, GLOBECOM 2009 (2009) 1–6. h t t p s: //do i .o rg /10.1109/
GLOCOM.2009.5426182

	23	 R. Beuran, J. Nakata, Y. Tan, and Y. Shinoda: IEICE Trans. Commun. 95 (2012) 2892. https://doi.org/10.1587/
transcom.E95.B.2892

	24	 R. Beuran, S. Yasuda, T. Inoue, Y. Takano, T. Miyachi, and Y. Shinoda: EAI Endorsed Trans. Self-Adaptive
Syst. 1 (2015) e1. https://doi.org/10.4108/icst.tridentcom.2015.259856

	25	 K. Akashi, T. Inoue, R. Beuran, and Y. Shinoda: IEICE Trans. B 98 (2015) 357 (in Japanese).
	26	 J. Mailnen: mac8011 hwsim, https://wireless.wiki.kernel.org/en/users/Drivers/mac80211_hwsim (accessed

July 2020).
	27	 H. Tazaki, F. Uarbani, E. Mancini, M. Lacage, D. Camara, T. Turletti, and W. Dabbous: Proc. 9th ACM Conf.

Emerging Networking Experiments and Technologies (2013) 217–228. https://doi.org/10.1145/2535372.2535374
	28	 H. Mano and S. Saruwatari: Trans. Inf. Process. Soc. Jpn. 55 (2014) 1541 (in Japanese). http://id.nii.

ac.jp/1001/00101161/
	29	 Ixia: Network Emulator II, https://www.ixiacom.com/products/network-emulator-ii/ (accessed July 2020).
	30	 T. Miyachi, T. Nakagawa, K.-I Chinen, S. Miwa, and Y. Shinoda: Int. Conf. Testbeds and Research

Infrastructures (Springer, 2011) 43–58.
	31	 Sandeep Mistry: noble, https://github.com/sandeepmistry/noble (accessed July 2020).
	32	 J. Neburka, Z. Tlamsa, V. Benes, L. Polak, O. Kaller, L. Bolecek, J. Sebesta, and T. Kratochvil:

Radioelektronika (RADIOELEKTRONIKA), 2016 26th Int. Conf. (2016) 121–125. https://doi.org/10.1109/
RADIOELEK.2016.7477344

	33	 Fluoride Bluetooth stack: https://android.googlesource.com/platform/system/bt/+/master#fluoride-bluetooth-
stack (accessed October 2020).

	34	 T. Yumura, M. Enomoto, K. Akashi, F. Hirose, T. Inoue, S. Uda, T. Miyachi, Y. Tan, and Y. Shinoda:
Proc. 2018 ACM Int. Joint Conf. and 2018 Int. Symp. Pervasive and Ubiquitous Computing and Wearable
Computers, ACM (2018) 476–479. https://doi.org/10.1145/3267305.3267568

