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Simulating the behavior of micromachined structures is essential to understand or 
predict their properties. Since the different effects influencing the behavior of the 
rnicrostructures must be simulated with special simulation tools, these tools are coupled. 
As an example, the simulation of the deflection of a surface-rnicromachined polysilicon 
cantilever driven by electrostatic forces is presented in this paper. The calculated overall 
deflection of the cantilever is compared with experimental results. The contour of the 
cantilever during deflection due to the applied electrostatic field can be precisely predicted 
by the simulation. On the other hand, the vibration of a piezoelectrically driven quartz 
resonator oscillating in air is simulated. Exact knowledge of the velocity field of the 
surrounding air is important in order to improve the performance of such a quartz 
resonator, if it is used as a noncontact profile sensor. In this work, the FEM program 
FIDAP is used for hydrodynamic simulations and the FEM program ANSYS is applied for 
electrostatic, piezoelectric and mechanical $imtilations. Problems with simple geometry 
are simulated and the results are compared with the analytical solutions so the calculations 
can be verified. An alternative to the comparison with analytically solvable models is 
comparing the simulated behavior of the microstructures with experimental results. The 
described method of modeling microsystems and their dependence on external fields 
suggests a possible way to understand the properties of microsensors in order to improve 
their selectivity and sensitivity by coupling simulation tools and using them instead of 
experiments. 
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1. Introduction

In order to improve the shape of microactuators or the sensitivity and selectivity of 
microsensors, the effects governing the behavior of the microstructures must be under­
stood. Since the size of these microstructures generally does not allow a close-up look at 
the interactions leading to this behavior, other methods are necessary to investigate the 
microstructures. Numerical simulation of the behavior of the microstructures is a possibil­
ity. In contrast to Korvink et a[.(ll where a special toolbox for the simulation of integrated 
micro-electromechanical systems is described, the approach presented in this paper uses 
finite-element (FE) simulation tools that are commercially available. It is not necessary to 
examine the behavior of the applied simulation tool since this is well known. The overall 
accuracy of the coupled simulation depends directly on the accuracy of the single simula­

tion tool which is also well known. Therefore it is not the aim of this paper to deal with the 

numerical behavior of the simulation tools used. Those tools are specialized to simulate 
one specific effect. This requires that several tools are to be coupled. Hence, the 
simulation tools can be used instead of experiments. Verification of the simulation is 
possible by comparison with experimental results. However, for the development of the 
coupled simulation routines, another method of verification must be utilized. The calcula­
tion of analytically solvable models with a fairly simple geometry offers a comparison with 
the results of the numerical simulation. Two examples for such simulations are presented: 
the deflection of a cantilever under the influence of an electrostatic field and the air 
damping effects on oscillating quartz sensors. 

In this work, the behavior of an electrostatically driven surface-micromachined 
polysilicon cantilever is simulated. A cantilever as shown in Fig. 1 has a thickness of 1 µm, 
and its width and length are 21.5 µm and 114 µm, respectively. The cantilever is 2 µm

above the silicon substrate. The simulation of this cantilever follows the suggestions made 

Fig. 1. SEM micrograph of a surface-micromachined polysilicon cantilever. 
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by Sheerer et at.<2J The applied routines are verified by comparing the analytical solution of 
a conducting sphere over an infinite surface with the results of the simulation of this 
problem. Using this model, the parameters of the mesh used for the FEM model can be 
optimized. The coupling between the electrostatic and the elastomechanic simulation and 
the movement of the mesh used for the electrostatic simulations constitute a main part of 
the work. Experimental results obtained for the deflection of a cantilever like the one 
shown in Fig. 1 under the influence of a voltage applied between the cantilever and the 
substrate are compared with the deflection results from the simulation. 

On the other hand, the physical effects occurring on oscillating structures are of special 
interest. The properties of extensional-mode and tuning-fork quartz resonators, presented 
as noncontact profile sensors by Glithner<3> and Weinmann and co-workers,<4,

5J are exam­
ined more closely in this work. The extensional-mode quartz resonator oscillates with a 
frequency of approximately 1 MHz, its tip has a cross-sectional area of about 80 µm x 120 
µm and it is about 1.3 mm long. An SEM micrograph of this resonator is shown in Fig. 2. 

The simulations of the hydrodynamic field are performed with the FEM program 
FIDAP, while the simulation of the piezoelectric movement of the resonator is carried out 
with the FEM program ANSYS. The coupling of these two simulations is described in this 
work. 

The time-dependent hydrodynamic simulations are verified by comparing the analyti­
cal solution of a sphere oscillating in air with the results obtained from the simulation of 
this problem. Before introducing these simulations, some techniques used for the simula­
tions are presented. 

Fig. 2. SEM micrograph of an extensional-mode quartz resonator. 
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2. Theoretical

Hydrodynamic and electrostatic fields are the subject of the investigations discussed in 
this paper and are introduced in the following sections. In addition, piezoelectric and 
elastomechanical effects must be considered in order to perform the simulation. They 
describe the movement of the microstructure itself and need not be considered in this 
theoretical introduction. 

2.1 Electrostatics 

If an electrical voltage is applied between a polysilicon cantilever and its substrate, the 
nature of the force governing the movement of the cantilever will be electrostatic. The 
cantilever moves down to the substrate until the overall force is zero, which means that the 
reaction force of the cantilever must be equal to the electrostatic force acting on its surface. 

Coulomb's law allows the calculation of the force F12 acting on charge q1, if the vector 
r12 represents the distance and the direction from charge q2 to charge q1: 

(1) 

where 9J represents the dielectric constant. If conducting bodies are held at different 
potentials, forces will act on them due to charge transfer. Since the number and the location 
of the charges are not known in advance, the usual way of solving such problems is the 
introduction of the electric potential <p and its gradient, the electric field E, between the 
bodies and the solution of the Poisson equation 

1 
11<p = --p,

£0 
(2) 

which is one of the equations governing electrostatic problems. In this equation p 
represepts the charge density. If the electric field is known, the electric surface density of 
charges on the surface of the bodies is 

s = EoE, 

and the area force density f can be calculated by 

1 
f = -sE.

2 

The overall force is obtained by integration. 

(3) 

(4)
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2.2 Hydrodynamics 
The hydrodynamic effects influencing oscillating microstructures can be described by 

the Navier-Stokes equation for incompressible fluids. 

Jv ( v2 ) 1 r, 
-+ grad - - (v x rotv) = k - -grad(p) - -rotrotv
dt 2 p p 

(5) 

In this case, v designates the velocity vector, p the density and r, the viscosity of the fluid, 
while the pressure is symbolized by p, and body forces such as gravitational forces by k. 
The forces F acting on boundaries can be derived from the stress tensor er using 

• ( ov; Jvk) 
F = -cm = pn; - er ;knk = pn; - 'T/ dXk + dX; n,, (6) 

where n represents the vector normal to the boundary. In incompressible fluids, only 
transverse waves can be generated. The wavelength o of a wave oscillating with a 
frequency m c�n be described by 

(7) 

which is also the depth of penetration for these waves. The expansion of the flow is caused 
by the movement of a body displacing the fluid. Following the arguments of Landau and 
Lifschitz,<6l this flow will penetrate into the fluid to a distance corresponding to the size of 
the body. 

3. Techniques of Modeling

3.1 Modeling electrostatic problems 

Electrostatic problems that are to be handled numerically can be solved, for example, 
with the FEM program ANSYS. <7l Using the correspondence between the Poisson equation 
(see eq. (2)) gqveming the electrostatics and the Poisson equation describing the phenom­
ena of heat cop_duction, the potential lines and the electric field surrounding conducting 
structures can be simulated. Therefore, the surrounding space is divided into nodes and 
thermal bricklike elements. The infinite space is represented by nodes which are far away. 
The nodes on the surface of the structure and for the infinite space are assigned the values 
of the given pptential. The FEM program ANSYS generates a system of differential 
equations following the Poisson equation (see eq. (2)) given by the chosen nodes and 
elements, and �ttempts to solve it. The solution is a system of potential areas surrounding 
the structure. 

ANSYS offers several tools enabling the user to interpret the results in more detail. 
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Most important for the present case is the calculation of the gradient of the potential lines 
resulting in the electrostatic field. Using eqs. (3) and (4), the surface density of the charges 
and the forces acting on the surface are obtained. 

3.2 Modeling hydrodynamic problems 

In this paper, hydrodynamic problems are handled by the FEM program FIDAP. The 

easiest way to provide the mesh for this program is to use the mesh generator of ANSYS. 

The advantage gained by this is that afterwards the mesh can also be used in ANSYS. This 
is required for the coupling of the simulation tools. 

The mesh is provided in a similar way as for electrostatic simulations. The velocities of 
the fluid are given as boundary conditions. The FIDAP solver attempts to solve the 
con-esponding system of differential equations, i.e., the Navier-Stokes equation (5). As a 
solution, the fluid velocity field is presented. Using eq. (6) the forces acting on the moving 

surface are obtained. 

The incorporation of time dependence, when the quartz is interacting with the sur­
rounding air, is achieved by a subroutine providing the velocity at surface nodes at certain 
times. These velocities can also be read from external files, i.e. ASCII files.<81 

3.3 Movement of mesh 

The displacement of the microstructure is part of the investigation. This displ�cement 

results in deformation of the mesh used for the simulation. To modify the mesh according 

to the changed conditions it must be moved. The mesh movement can be calculated by 
replacing the edges of the thermal elements used for the electrostatic simulation with line 
elements. The change of elements is achieved by writing an ANSYS routine that selects 
each thermal element, replaces its edges by line elements and deletes the selected thermal 
element. Generally, it is not necessary to change the entire thermal mesh into a mesh with 
line elements, but only a small region around the moving structure. These line elements are 

treated as interconnected beams. Hence, the movement of the nodes on the surface, which 

is introduced as a boundary condition in the following structural analysis of the mesh of 
line elements, leads to movement of the nodes in the surrounding space, while the 
outermost nodes of this mesh-movement simulation are kept in place. This method only 
uses tools available in the FEM program. In this way, a mesh adapted to the movement of 
the microstructure is created. 

By incorporating thermal expansion of each of the beams and setting a defined 

temperature at each beam, a mesh-optimizing routine can be created. This routine is able 

to adapt the positions of the nodes according to local en-ors occurring during the thermal or 
electrostatic simulation. 

After the mesh-movement routine, the new calculated node positions are assigned to 
the mesh used for the thermal or electrostatic simulation. 

3.4 Coupling different simulation tools 

Using the results of a simulation routine to create boundary conditions for a second 

simulation routine is the aim of coupling different simulation tools in our case. The 
coupling can be done on a simple level if the nodes and the elements of the coupled meshes 
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are basically the same, for instance, as in the coupling between the mesh-movement routine 

and the thermal analysis. The coordinates of the nodes and the characteristics of the 

elements are stored in files, preferably ASCII coded. Results of the first simulation routine 

are then stored, i. e., the new nodal coordinates are stored in the corresponding file, and can 

be read by the second routine. 

The incorporation of surface forces is slightly more complicated since the easiest way 

to handle them is by applying surface elements, which usually are not necessary for the 

simulations in the first place. During the generation of the mesh, those surface elements are 
created and stored in a separate file. The normal of the surface of the elements must be 

defined as being in the same direction in every model. The surface forces in dimensions of 

pressure are stored together with their corresponding surface element number so that the 

second program is able to read the forces acting on each surface element. 

Different cases demand that different types of meshes be coupled. As an example, the 

structure of the mesh used for an elastomechanic simulation differs from that of the mesh 
applied during an electrostatic simulation. This means that the nodes defining the surface 
of the simulated microstructure are not the same in the two models. The FEM programs 

usually provide interpolation routines for such situations. The results of the first simula­

tion, i. e., the potential lines, are interpolated on the boundary nodes of the mesh necessary 

for the second simulation. In some cases, especially in time-dependent problems, this 

interpolation step can be very time consuming and it might be more convenient to drop the 

use of different meshes. 

4. Verification

4.1 Electrostatic simulation of a moving structure 

In order to verify the approach comprising electrostatic simulations and movement of 

the mesh, a conducting sphere over a conducting infinite plane is simulated. The space 

around the sphere is divided into bricklike elements. "Infinite space" is represented by 

nodes on a hemisphere over the surface which are assigned the same potential as the plane. 
The distance of these "infinite" nodes from the sphere is far enough if moving these nodes 
has no influence on the calculated results. The nodes representing the two electrodes -

"infinite space" plus the surface and the sphere -will be held at fixed potentials during the 

simulation. The capacitance of this system of conductors is obtained using eq. (3). 

Therefore, the area between neighboring nodes on the surface of the sphere is multiplied by 
the dielectric constant and the electric field divided by the applied voltage. The overall 

capacitance is obtained by summation over all surface elements of the sphere. The force 
acting on the sphere can be calculated in a similar manner using eq. (4). 

The radius of the simulated sphere is 1 µm, while its height above the surface varies 

between 4 µm and 6 µm. These are nearly equal to the dimensions of the cantilever 

presented later. The sphere is moved from its uppermost position towards the surface using 

the mesh-movement routine described above. 

Calculated capacitances and forces of such simulations with different meshes are 

shown in Fig. 3 and Fig. 4: It can be seen that the results depend strongly on the position of 
the nodes. In contrast, the corresponding error is rather independent of the mesh move-
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Fig. 3. Capacitance of a conducting sphere over an infinite conducting surface as a function of the 
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Fig. 4. Force on a conducting sphere over an infinite conducting surface as a function of the height 

of the sphere. The parameter is the distance of the innermost nodes from the surface of the sphere. 

The distances are 0 0.15 µm, + 0.02 µm and x 0.04 µm, while the line represents the analytical result. 
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ment. This means that the qualitative behavior of the microstructure can be represented 
fairly well. 

In order to obtain an analytical solution of the problem, the electric field is calculated 
using the method of conformal transformations. Snow calculated the capacitance C of a 
conducting sphere over an infinite conducting area.<9l If a voltage U is applied between the 
surface and the sphere, the energy W of this system of conductors is expressed by 

w = !_ cu
2

• 

2 (8) 

The force acting on the sphere is obtained by differentiation of the energy. Figure 3 shows 
the capacitance of this system of conductors and Fig. 4 shows the force acting on the 
sphere. 

4.2 Hydrodynamic simulations

A sphere with a radius R = 50 µm oscillating in air can be simulated with the FEM 
program FIDAP. Therefore, the surrounding space is represented by a cubic mesh of nodes 
and bricklike elements. Infinite space is described by nodes at a great distance. In this 
analysis, the movement of the sphere is represented by time-dependent velocities at the 
nodes representing the surface of the sphere. <9J The force acting on the surface is obtained 
using eq. (6). The overall force is calculated by integration. The problem involved in this 
method is the size of the mesh and the distance between the nodes since the number of 
nodes and elements is restricted due to the capacity of the computer. An example of such 
a mesh is shown in Fig. 5. The forces are obtained using eq. (6). In the following, the 
forces obtained by simulation with different kinds of meshes are compared with the 
analytical result. The force acting on this sphere oscillating with a frequency of 1 MHz is 
shown in Fig. 6 with respect to time. 

Following the argument of Landau and Lifschitz,<6l the force acting on a sphere with a 
radius R oscillating sinusoidally with a velocity u and frequency co in air can be calculated 
as 

F = 6n11R(1+ R)u+3nR2 �2T/P(1+ 2R)du
.

o co 98 dt 
(9) 

Table 1 shows the difference in the phase between simulated and analytically calcu­
lated forces acting on the surface, when the innermost nodes are defined at different 
distances from the surface of the sphere. The simulated and the analytically calculated 
forces are in phase if the innermost node is closer than 2.2 µm to the surface of the sphere.
This is the penetration depth of transverse waves in air at this frequency. 

The amplitude of the force depends strongly on the size of the mesh. In Table 2, the size 
of the outermost edge of the mesh is varied from 200 µm to 800 µm. The best simulated
results can be obtained when the size of the mesh is about 400 µm which means that the
distance of the outermost nodes from the surface of the sphere is about 150 µm. This is
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Table 1 
Difference of phase between tbe force obtained from tbe simulation and the analytically calculated 
force as a function of tbe distance from the innermost node to the surface of the sphere. 

Table 2 

Distance of innermost node (µm) 

Difference of phase (rad) 

' 

2 

0 

4 

0.0857 

6 

0.1037 

Difference between the amplitude obtained in the simulation of the oscillating sphere and the , 
analytically calculated amplitude of tbis oscillation as a function of the size of the mesh. 

Length of the edge of the mesh (µm) 
Difference of amplitude of force (µN) 

200 

-2.6

400 

0.0 

500 

0.8 

600 

1.4 

800 

2.7 

roughly the size of the sphere, hence, following the arguments of Landau and Lifschitz<6l 

mentioned above, the behavior can be explained. Choosing the correct size of the mesh is 
quite difficult. The size of the niesh can be used as a free parameter to couple the 
experimental results with the simulation. 

It follows that this principle is applicable for rnicrostructures oscillating in air if the 
mesh is chosen according to the dimensions of the moving structure. Based on this 
experience, the characteristics of meshes used for the following hydrodynamic simulations 
are chosen: the innermost nodes will be closer to the surface than the penetration depth and 
the size of the mesh will be approximately the same as that of the oscillating structure. 

5. Simulation

5.1 Cantilever under influence of applied forces 
The simulation of the moving cantilever requires four different meshes. The space 

surrounding the cantilever is divided on the basis of experience obtained from the simula­
tion of the conducting sphere over a conducting infinite plane. This leads to the mesh for 
the simulation of the electrostatic field and the mesh for the mesh-movement routine. The 
cantilever itself is divided into structural elements simulating a material with the mechani­
cal properties of polysilicon. As mechanical constants, a density of 2300 kgm-3, Young's 
modulus of 170 GPa and a modulus of shear elasticity of 66 GPa were assumed.<10J Two 
layers of elements with Young's modulus five orders smaller form the fourth mesh. These 
two layers are added to the structural mesh and extend into the surrounding area in such a 
manner that the elastic behavior of these layers does not influence the behavior of the 
cantilever during simulation. These layers are used to couple the electric simulation with 
the structural simulation. The electric field at the surface, i. e., at provided surface 
elements, is obtained by the interpolation of the simulated potential of the electrostatic 
simulation on the outermost nodes of these two layers and resimulation of the potential 
lines in the mesh provided by these two layers. The resulting electric field at the surface 
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elements is used to calculate the forces acting on the cantilever. As mentioned above, 
during the structural simulation these elements are moved with the structure, but do not 
influence the results of the structural analysis. By interpolating this movement to the nodes 
on the surface of the cantilever and the nodes of the electrostatic mesh, the two introduced 
layers are also used for this interpolation; a mesh-displacement routine can be started as 
explained above. The resulting movement of the nodes is transferred to the mesh used for 
the electrostatic simulation. 

A diagram describing the coupling of the four simulation routines is shown in Fig. 7. 
The applied voltage is used as input into the simulation of the electrostatic field surround­
ing the cantilever. The field is interpolated on the two layers and the forces acting on the 
cantilever are thus obtained. The forces cause a deflection of the cantilever. The motion is 
used as input for the subsequent mesh-displacement routine. New nodal coordinates for 
the electrostatic mesh are the result of the mesh-displacement routine. The program 
continues running in this loop until the difference in the deflection of the nodes represent­
ing the cantilever between two iterations does not exceed a preset value. 

The simulation is carried out for a cantilever which is 114 µm long, 21.5 µm wide, 1 µm

thick and 2 µm above the ground. The resulting deflections, for the applied voltage of 1 V, 
are shown in Fig. 8. Figure 9 presents a comparison of experimental arid simulated results. 
The measured deflection is normalized by the height of the cantilever above ground. The 
simulated deflections of the cantilever agree within the error levels sketched in Fig. 9 with 
the measured deflections. As reported by Petersen,01l the cantilever is deflected down 
towards the substrate if the applied voltage exceeds a threshold value. A similar effect 
occurs in our model with voltages exceeding 18 V. With higher voltages, the iteration 
routine stops as a result of the extreme deformation of the electrostatic mesh. 

Movement of the 
microstructure Movement 

of mesh 

Displaced surface New node 
__ ..___ nodes _____ positions 

Deflection of 
microstructure 

Forces Electrostatic Submode! 
------1 field near 

surface of 
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Fig. 7. Schematic data flow describing the coupling of four simulation routines in order to simulate 

the deflection of a microstructure under the influence of an electrostatic field. 
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5.2 Tuning-fork quartz resonator oscillating in air 

A simulation of one tine of a tuning-fork resonator oscillating in air is now presented. 
The assumption that there is a linear gradient of the velocity of the air between the sample 
surface and tuning fork, made by Gtithner, C3J is compared with the results of the simulation. 

One tine of the resonator is simulated while it is oscillating parallel to a fixed surface. 
The frequency of the oscillation is 32 kHz. The velocity field is shown in Fig. 10. Figure 

11 presents the velocity parallel to the velocity of the oscillator over the distance to the 
fixed surface. The superposition of a linear velocity gradient due to the movement of the 
surface of the quartz parallel to the fixed surface and a parabolic flow can clearly be seen. 
The parabolic flow is a result of the increasing pressure in front of the resonator and the 
decreasing pressure behind it. 

In the future, different orientations of the tuning fork must be tested in order to verify 
which flow, linear or parabolic, is responsible for sensitivity and selectivity in measuring 

the profile of a surface while the resonator is moved over it. Also, the effects of the second 

tine will be investigated. 

5.3 Extensional-mode quartz resonator oscillating in air 
The first step of a simulation of this kind lies in the choice of an appropriate mesh. 

According to the information obtained by simulating the oscillating sphere, the size of the 
mesh elements should be approximately equalto the length of the oscillating resonator. In 

the present simulation, the quartz is 1330 µm long in they-direction, its cross section being 

80 µm x 120 µm. The mesh exhibits a cross section of 1.8 mm2 around the moving tip of 
the resonator, while towards the fixed end of the resonator, the mesh is much thinner. 
Figure 12 shows the elements used to model the resonator, while Fig. 13 shows a view of 
the overall mesh. It must be emphasized that the quartz and the surrounding space are 
meshed in one step with the mesh generator of ANSYS. Following a piezoelectric 
simulation of the quartz with ANSYS, the movement of its boundary is incorporated into 

several single FIDAP simulations, one for each frequency of the resonator. The air flow is 

simulated in the same manner. The reaction forces on the surface of the quartz are 

calculated according to the methods presented during the description of the oscillating 
sphere, and incorporated in a second piezoelectric simulation as boundary conditions. The 
coupling of the simulation tools is shown schematically in Fig. 14. This figure also shows 
a possible coupling with the simulation program SPICE simulating the electrical driving 
circuit. 

The electrical behavior of the quartz resonator simulated in vacuum is shown in Figs. 

15 and 16. A frequency shift and damping effects can be seen, although the accuracy of the 
simulation is not yet high enough to compare quantitative results with experimental results 
because of the limitation on computing time. 
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Fig. 10. Example of the velocity field of the air around the tip of one tine of a tuning-fork resonator 

oscillating over a fixed surface. The results were obtained by a simulation with FlDAP. 
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Fig. 11. Velocity of the air in the x-direction (see Fig. 10) as a function of the distance between the 
tine of the tuning-fork resonator and the fixed surface along the line sketched in Fig. 10. The air 

stream is a superposition of a linear velocity gradient and a parabolic flow. 
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ANSYS 5.0 24 

SEP 22 1993 

19: 49: 01 

PLOT NO. 
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YV =O. 5 
zv =1 
DIST=O. 716E-03 

YF =0. 66SE-03 

Fig. 12. Elements used to simulate the extensional-mode quartz resonator. These elements are 
used to transfer the calculated surface forces of the surrounding air simulated by FIDAP to the 

piezoelectric oscillations simulated by ANSYS. The resonator is fixed at the top, while the electrodes 

are on the surfaces parallel to the x-axis. 
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Fig. 13. Mesh to simulate the air flow around an extensional-mode resonator. The resonator is 
represented by the lighter elements (see Fig. 12) and is fixed at the top and moving at the bottom. 
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Fig. 14. Schematic data flow desc1ibing the coupling of ANSYS and FIDAP in order to sjmulate 

the influence of hydrodynamic forces on a quartz resonator oscillating in air. The future coupling 

with SPICE is also indicated. 
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Fig. 15. Phase of the extensional-mode quartz resonator as a function of the frequency. The inset 
shows the results of the simulation of the resonator in vacuum. Here, the results of the simulation of 

the resonator in vacuum are represented by 0, and x represents the results of the simulation of the 

resonator in air. The influence of air results in a broadened resonance curve as expected. 
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Fig. 16. Impedance of the extensional-mode quartz resonator as a function of the frequency. The 
inset shows the results of the simulation of the resonator in vacuum. Here, the results of the 
simulation of the resonator in vacuum are represented by 0, and x represents the results of the 
simulation of the resonator in air. 
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6. Conclusions

In this paper, it was shown that the behavior of microstructures can be simulated by
coupling different commercially available simulation tools like ANSYS and FIDAP. The 
effects of external fields acting on movable microstructures can be incorporated into the 
simulations. These coupled simulation tools can be used instead of experiments. There­
fore it is not necessary to develop new specific programs because commercially available 
FEM programs are suitable for solving different problems. 

The accuracy of these simulations has been tested by comparison with analytically 
solvable problems and it was confirmed that the relative error of such simulations is fairly 
small. 

The behavior of a polysilicon cantilever under the influence of an applied electrostatic 
field and air damping effects acting on a vibrating quartz resonator have been modeled as 
examples. The comparison with experimental results confirmed the accuracy of the 
described method. In this way the simulations have shown that these routines permit the 
modeling of the properties of microstructures and reveal interesting information about the 
interactions governing their nature. This supports the assumption that the microscopte 
results such as the velocity field around an oscillating quartz tip, not achievable with other 
methods, can be derived· from such simulations. The presented method allows the use of 
these tools for optimization purposes. An adaptation of the simulations to quantitative 
behavior of the microstructures can be achieved by changing the characteristics of the mesh 
used. 
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