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 Vehicle object tracking is a research hotspot in computer vision.  To solve the problem of 
single object extraction caused by the shadow effect and occlusion between vehicles, this paper 
presents a vehicle object tracking algorithm suitable for both dynamic and stationary states.  
First, the improved Canny algorithm is used to obtain the information in a video sequence, and 
the dynamic region of the object is extracted using the difference between the mean of the video 
sequence and the object frame.  Secondly, the Gaussian mixture model is used for video object 
segmentation to obtain the foreground image and the background image, and the static object 
is identified through the intersection operation of the object dynamic region and the foreground 
image combined with the edge information.  Then, chroma information is introduced into a 
statistical nonparametric model to eliminate the shadow of the foreground image, and the mean-
shift tracking algorithm is used for dynamic object tracking of the foreground image after 
eliminating the shadow.  The experimental results show that the proposed tracking algorithm 
can identify and track vehicles effectively and quickly, providing new ideas for the future 
development of the sensor field.

1. Introduction

 In recent years, with the continuous development of sensors, we can obtain clear traffic video 
information through cameras, enabling us to achieve vehicle object tracking and detection.  
With the continuous development of computer vision technology, vehicle object recognition and 
tracking have become research hotspots in the fields of computer vision and image processing.  
Vehicle object tracking is widely used in many fields, such as video intelligent monitoring, 
traffic monitoring, and automatic driving.
 The unique sequence characteristics of video allow video object segmentation to play 
a decisive role in vehicle object tracking.  When performing vehicle tracking in a complex 
environment, factors such as the variation of light, noise interference, and object occlusion will 
affect video object segmentation.  Therefore, to provide a real-time and accurate foreground 
image for the tracking model, it is necessary to solve the problem of shadow interference caused 
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by illumination changes and the difficulty in single object extraction caused by occlusion 
between objects.  It is difficult for the traditional object-tracking methods such as region 
segmentation, optical flow, and interframe difference to solve the problem.  Although the 
currently popular deep learning methods have strong advantages in the vehicle object tracking 
field, they need a large number of samples to train a network model in practical applications.
 Video object segmentation is a basic task in vehicle object tracking, which is to assign 
the same label value to pixels belonging to the same object in consecutive video frames 
by analyzing the video sequence.  According to the type of information used, video object 
segmentation can be divided into two categories: one is based on spatial information(1) and 
the other is based on temporal information.(2)  However, in many cases, video foreground and 
background cannot be distinguished effectively only from spatial or temporal information.  In 
this case, there are new approaches that combine the two methods.(3–5)  For example, Wang et 
al. proposed a video saliency detection algorithm based on the spatiotemporal gradient.(3)  Wei 
et al. proposed a video object segmentation model using multiframe and multiscale features 
through the feedback of back layer features.(4)  Zeng et al. proposed a video object segmentation 
algorithm based on prior probability and metric learning.(5)  These video object segmentation 
algorithms improve the segmentation accuracy by updating the reference space with features 
having high classification confidence.  However, the reference space significantly reduces the 
speed of the algorithm because its size is gradually increased by introducing more classification 
confidence features.
 Shadow elimination is a necessary step to distinguish dynamic objects and their shadows.  
Most of the existing algorithms use the inherent characteristics of shadows to identify shadow 
regions.(6–10)  The use of a color feature eliminates shadows according to the characteristics of 
the decrease in the brightness value in the shadow area; the use of an edge feature eliminates 
shadows according to the large difference between the shadow and the background; the use of 
a texture feature eliminates shadows according to the slight difference in the characteristics of 
the texture feature before and after shadow area coverage.  For this reason, Qu et al. analyzed 
the characteristics of shadow and provided a reference for shadow detection algorithms.(6)  Kar 
and Deb,(7) Jiang et al.,(8) and Wang and Suter(9) respectively removed shadows in HSV color 
space, YUV color space, and RGI color space.  Farou et al.(10) combined the best color features 
of different color spaces to determine the shadow area.  Although the above methods improve 
the shadow elimination algorithm based on color features, there are still many problems when 
using only a single feature in complex scenes.  Therefore, more features are needed to eliminate 
shadow.
 In video object dynamic tracking, the mainstream video object dynamic tracking algorithms 
are divided into two categories: generative object tracking algorithms(11–13) and discriminant 
object tracking algorithms.(14–17)  Generative object tracking algorithms establish the object 
model through online learning, then use the model to search the image area to find the smallest 
reconstruction error to complete the object positioning.  This kind of tracking algorithm 
has advantages of high stability, no need for training, and low computational requirement.  
However, only the region most similar to the object model is considered in the tracking process, 
which leads to low tracking accuracy.  The discriminant object tracking algorithms regard 
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object tracking as a binary classification problem.  They extract both object and background 
information to train the classifier.  Then the object is separated from the background of the 
image sequence by the classifier.  Finally, the position of the object in the current frame is 
obtained.  The discriminant object tracking algorithms include those based on correlation 
filtering algorithms and deep learning algorithms.  Although discriminative object tracking 
algorithms have good tracking accuracy, they are based on deep learning, which requires a lot 
of data training.  Owing to the weak generalization of this kind of algorithm and the difficulty 
of training data to cover all actual scenes, the accuracy of object-tracking algorithms based on 
deep learning is significantly reduced when there are no training scenes.
 In conclusion, with the development of vehicle tracking research, the current tracking 
algorithms have made progress in video object segmentation and dynamic object tracking, but 
further improvement is required to deal with the shadow interference caused by illumination 
changes and to overcome the difficulty of single object extraction caused by vehicle occlusion.  
This paper proposes a method of unsupervised static recognition and dynamic tracking for 
vehicles.  To solve the problem of unclear edge information in video object segmentation, an 
improved Canny algorithm is proposed.  To solve the problem that the tracking object feature is 
similar to the shadow feature, chroma information is introduced into a statistical nonparametric 
quantization algorithm to achieve shadow elimination.  In addition, we use the mean-shift 
algorithm to track the dynamic object in real time.

2. Related Work

2.1 Video object segmentation

 Video object segmentation is the most basic step in vehicle tracking.  At present, video object 
segmentation is mainly realized by establishing a mathematical model or neural network.(18)  A 
method based on a neural network requires a large number of training data samples and a large 
amount of calculation.  Since the video data studied in this paper is a vehicle-monitoring video 
with a relatively fixed background, the method of building a neural network is more complex 
and inefficient than that of establishing a mathematical model.  Therefore, a Gaussian mixture 
model (GMM) is used for video object segmentation.
 As a pixel-level video object segmentation model, the GMM can realize multimodal 
simulation in complex scenes by the linear combination of multiple Gaussian distributions and 
modeling each pixel.  
 The calculation process of the GMM is described as follows.  Firstly, K Gaussian models are 
established for each pixel point in RGB color space to represent the features of each pixel point 
in the image.  Features that can be described include color, depth, gradient, and brightness.  The 
value of pixel i in RGB space at time t is denoted as xi,t, and the probability that it belongs to the 
background is obtained by the following equation:
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where ΘB represents the background.  K is the number of Gaussian components representing 
pixel features and its value is generally 3–5.  ωi,t is the ith Gaussian model weight at time t.  μi,t 
and 2

,i tσ  are the mean and variance of Gaussian model i at time t, respectively.
 The K Gaussian distributions used to describe the color distribution of each point are 
sorted in order of decreasing ω/σ.  The threshold T [ ]0,1T ∈ [0,1] is chosen to determine the number 
of Gaussian components that can be retained.  Only the first b Gaussian distributions above 
this threshold are considered as the background distribution B, and the others are considered 
as the foreground distribution F.  The background distribution B is expressed by the following 
equation:

 ( ),1arg min b
b i tiB Tω

=
= >∑ . (2)

 Each pixel in the current image is matched with all the Gaussian components one by one as 
follows:

 , , 1 , 12.5i t i t i tx µ σ− −− ≤ . (3)

 If the difference between a pixel and a Gaussian component in B satisfies the above formula, 
it indicates that the pixel is a background point; if the difference between the pixel and a 
Gaussian component in F satisfies the above formula, it indicates that the pixel is a foreground 
point; if the pixel does not match any Gaussian component in the GMM, a new Gaussian 
distribution is defined to replace the Gaussian component with the lowest ωi,t.  The mean of the 
new Gaussian distribution is initialized to the current pixel value and its standard deviation and 
weight are set to 30 and 1/K, respectively.  The purpose of setting a large standard deviation is 
to include as many pixels as possible in the model so as to obtain the most likely model.  The 
reason for setting the weight to 1/K is that the most likely Gaussian model is obtained by setting 
a low weight to update its parameters.
 When the matching between pixels and the Gaussian model is completed, all the Gaussian 
components are updated:
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where the renewal rate parameters α and ρ satisfy 0 ≤ α ≤ 1 and ρ = α/ωi,t, respectively.  Mi,t 
represents the matching result between the pixels and the Gaussian model in time t.  If the 
match is successful, then Mi,t = 1; otherwise, Mi,t = 0.
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2.2 Shadow elimination

 Owing to the influence of illumination in a real environment, a shadow will inevitably 
appear in the tracking object and background, which will reduce the accuracy of vehicle 
object tracking.  To reduce the influence of the shadow on tracking results, the statistical 
nonparametric quantization (SNP) algorithm is used as a good shadow elimination algorithm.  
 The SNP theory assumes that the expected brightness of pixel i in a video frame is 
Ei = [ER(i), EG(i), EB(i)], the brightness of pixel i in the current frame is Ii = [IR(i), IG(i), IB(i)], 
CDi is the chromaticity distortion of pixel i, and φ(αi) is the luminance distortion of pixel i.  
 φ(αi) is a scalar value that brings the observed color close to the expected chromaticity.  It is 
given by φ(αi) = min (Ii − αiEi)2, where αi represents the brightness of the pixel with respect to 
the expected value.  αi = 1 indicates that the pixel is regarded as background, αi < 1 indicates 
that the pixel is regarded as shadow, and αi > 1 indicates that the pixel is regarded as dynamic 
foreground.  Chromaticity distortion is defined as the orthogonal distance between the observed 
color and the expected chromaticity line.  The chromaticity distortion of pixel i is given by 

i i i iCD I Eα= − .  Figure 1 illustrates the chromaticity distortion in RGB space.
 By calculating the channel average value of pixel i in the first N frames, the mean vector iE
is obtained.  iE  is used as an estimate of the luminance expected value Ei.  It is represented by 

( ) ( ) ( ), ,i R G BE i i iµ µ µ =   = [μR(i), μG(i), μB(i)], where μR(i), μG(i), and μB(i) represent the arithmetic means of the R, 
G, and B components of pixel i, respectively.  By substituting iE into φ(αi) and CDi, the initial 
values of luminance distortion and chromaticity distortion φ(α0) and CD0, respectively, are 
obtained:

 ( ) ( ) ( )2 2 2
0( ) min ( ) ( ) ( ) ( ) ( ) ( )R i R G i G B i BI i i I i i I i iϕ α α µ α µ α µ = − + − + −  

, (5)

 ( ) ( ) ( )2 2 2
0 ( ) ( ) ( ) ( ) ( ) ( )R i R G i G B i BCD I i i I i i I i iα µ α µ α µ= − + − + − . (6)

Fig. 1. (Color online) Chromaticity distortion in RGB space.
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 Owing to the different sensitivities of cameras to different color channels, the variation of 
the values of the three channels is not consistent.  To solve this problem, the standard deviation 
Si = [σR(i), σG(i), σB(i)] of each channel is used as the weight to correct the sensitivity of Eqs. (5) 
and (6), and we obtain

 
22 2

( ) ( ) ( ) ( ) ( ) ( )( ) min
( ) ( ) ( )

R i R G i G B i B
i

R G B

I i i I i i I i i
i i i
α µ α µ α µϕ α

σ σ σ

     − − − = + +    
      

, (7)

 
22 2

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

R i R G i G B i B
i

R G B

I i i I i i I i iCD
i i i
α µ α µ α µ

σ σ σ
    − − −

= + +    
    

. (8)

If φ(αi) < 0, the pixels are shadow points; if φ(αi) > 0, the dynamic objects are distinguished by 
CDi.(19)

2.3 Dynamic object tracking

 To locate all the objects in the video image in real time, it is necessary to track the dynamic 
vehicle on the basis of static vehicle object recognition.  In this paper, the mean-shift tracking 
algorithm is used to achieve the real-time tracking of dynamic vehicles.  This is an adaptive 
gradient algorithm based on kernel density estimation.  It uses a probability density function 
and kernel function to describe the research target.
 In the mean-shift algorithm, n sample points are assumed to exist in d-dimensional space Rd: 
xi (i = 1, ..., n).  For a point in this space, the mean-shift vector Mh can be expressed as

 1 ( )
i h

h i
x S

M x x
k ∈

= −∑ , (9)

where k is the number of sample points xi in Sh, a high-dimensional spherical region with radius 
h.  The sample points in Sh are distributed along the direction of increasing gradient value of the 
probability density.  The sample point y is a member of the following set: 

 Sh = {y: (y − x)T(y − x) ≤ h2}. (10)

3. Method

3.1 Proposed framework

 In this paper, the object recognition and tracking in a video sequence are divided into three 
parts: static object recognition, dynamic object recognition, and dynamic object tracking.  
Figure 2 shows the flowchart of the algorithm in this paper.  
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3.2 Static object recognition

 The vehicle in a video sequence may be stationary for a long time.  Therefore, identifying 
the static object stably in the video is an important task in this algorithm.  Considering that the 
GMM can extract the object of interest from the current frame, how to distinguish the dynamic 
object from the static object and how to locate the static object are the most important problems 
in this part.  
 The recognition of a stationary object is shown in Fig. 3.  We use the dynamic area D and 
the foreground information F to perform the intersection calculation, then a rough position of 
the dynamic object in the foreground information is obtained, and the rest of the foreground 
information is considered as the static object S, which is expressed by the following equation:

 ( )S F D F= −  . (11)

 The static object is located by an edge detection algorithm.  To achieve this, the Canny 
algorithm is the best algorithm.  However, the high and low thresholds of the Canny algorithm 
are fixed, meaning that it is not suitable for edge detection in dynamic scenes.  Therefore, this 
paper proposes an improved Canny algorithm based on the idea of Zhang et al.(20) to ensure that 
high-quality edge information can still be obtained in changing scenes.
 We use the maximum interclass variance algorithm (Otsu) to adaptively select the high 
threshold and low threshold when edge connection occurs.  The Otsu algorithm first calculates 
the gray level range of the image, and then divides the pixels into two categories, called C0 
and C1, by setting a certain gray value T.  The optimal threshold is calculated as the maximum 
variance between classes.  The high and low thresholds are denoted by Th and Tl, respectively,

Fig. 2. Algorithm flowchart.
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where σ(t) is the interclass variance of the image, L is the range of the gray level, P0(t) and P1(t) 
denote the probabilities of occurrence of C0 and C1, and u0(t) and u1(t) denote the average gray 
levels of C0 and C1, respectively.  The low threshold is given by Tl = Th / 2.
 The Canny algorithm calculates the gradient amplitude and direction of the image using 
the first-order partial derivative 2 × 2 finite difference, so it can only calculate the gradient 
amplitude in the vertical, horizontal, and diagonal directions.  Owing to the large interval 
between different directions, the Canny algorithm is fuzzy for the edge perception of 
nonspecific angles.  Therefore, in this paper, all gradient directions are divided into eight parts 
to enhance the perceptual strength of the Canny algorithm for random angle edges.  At the same 
time, a 3 × 3 edge detection template is used to calculate the gradient amplitude and direction, 
so as to reduce noise interference.  The template for the gradient calculation in eight directions 
is shown in Fig. 4.
 Taking the 0° direction as an example, the mathematical expression for the partial derivative 
G1(x, y) in this direction is as follows:

 1( , ) [ ( 1, 1) 3 ( , 1) 3 ( 1, 1)
( 1, 1) 3 ( , 1) 3 ( , 1)]

G x y g x y g x y g x y
g x y g x y g x y

= − + + + + + +
− − − − − − −

. (13)

 By calculating the directional partial derivatives in eight directions, we can calculate the 
gradient direction α(x, y) and gradient amplitude M(x, y) at the pixel (x, y) as follows:
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(a) (b) (c) (d)

Fig. 3. (Color online) Recognition of stationary object: (a) video mean sequence, (b) dynamic area, (c) foreground 
area obtained by GMM, and (d) stationary object recognition.
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 Through finding the gradient direction α(x, y) and substituting it into the eight directions 
we designed, we can achieve more accurate edge detection.  Figure 5 shows the edge detection 
results of the improved Canny algorithm for a certain frame in a video compared with those of 
the traditional Canny algorithm.  We can see that the edge contours acquired by the improved 
Canny algorithm are clearer; there is less noise in the image, and the edges are well connected.

3.3 Dynamic object recognition

 The dynamic object area contains not only the dynamic object but also shadow caused by 
illumination.  To distinguish the dynamic object and shadow in the foreground image and 
reduce the error of subsequent processing, it is necessary to eliminate the shadow part in the 
foreground region.  In this paper, chroma information is introduced into the SNP algorithm 
to eliminate shadow.  As shown in Sect. 2.2, the SNP algorithm distinguishes the object 
from the shadow using only the value of luminance distortion.  This algorithm achieves 
good results for removing shadow in a simple video environment but will not be suitable in a 

Fig. 4. Detection templates in eight directions: (a) 0° direction, (b) 22.5° direction, (c) 45° direction, (d) 67.5° 
direction, (e) 90° direction, (f) 112.5° direction, (g) 135° direction, and (h) 167.5° direction.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. (Color online) Results of edge detection by improved Canny algorithm: (a) original image, (b) result of 
edge detection by Canny algorithm, and (c) result of edge detection by improved Canny algorithm.

(a) (b) (c)
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complex environment.  Inspired by Wang and Suter,(21) the brightness threshold is set using 
the traditional SNP shadow elimination algorithm.  When the scene brightness is higher than 
the threshold value, the normalized color feature space is used.  In contrast, the original color 
feature space is used for shadow elimination.  By using a different color space for shadow 
elimination when the brightness information is different, false detection caused by a change in 
brightness is effectively reduced.  The color feature of pixel x is set as follows:
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r g b I L

x
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= 


, (16)

where (r, g, b) is the color eigenvalue obtained by normalization, (R, G, B) is the real color 
eigenvalue, and L is the luminance threshold.
 Considering the low brightness of the shadow part and the limitations of the light sensor 
hardware, the noise distribution in the shadow part is relatively dense, which leads to a change 
in the chrominance of the shadow area.  Therefore, we propose a method of shadow elimination 
by using luminance information and chroma information at the same time.
 The sensitivity-corrected luminance distortion φ(αi) and chromaticity distortion CDi are 
obtained (see Sect. 2.2), then the root mean square (RMS) values of φ(αi) and CDi, RMS[φ(αi)] 
and RMS(CDi), respectively, are calculated.  Then the following values are obtained.
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where B represents the background, S represents the shadow, D represents different objects 
in the foreground, and F represents the same object in the foreground.  Figure 6 shows the 
elimination effect of the improved SNP algorithm and the SNP algorithm for a certain frame 
shadow in the video.  We can see that when introducing chroma information to assist shadow 
elimination, the brake lamp is not recognized as shadow in Fig. 6(d).  However, the chroma 
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information of the tire is similar to that of the shadow, which leads to the misjudgment of the 
tire in Fig. 6(d).  Owing to the deviation of the brightness information in the shadow area, 
the edge of the shadow is mistakenly detected in Fig. 6(c), while better shadow suppression is 
obtained in Fig. 6(d).

3.4 Dynamic object tracking

 Different motion states of an object will change its shape, and the mean-shift algorithm 
cannot reflect a change in object shape during tracking.  In this paper, the mean-shift tracking 
algorithm based on edge information is used to track the dynamic object.  
 First, we select the object model.  The edges of foreground objects D and F obtained in Sect. 3.3 
are detected by using the improved Canny algorithm, then the object model is determined by 
a morphological closed operation, and the object model is represented by a rectangular box.  
The Gaussian kernel function is used to calculate the object model, and the bandwidth h of the 
Gaussian kernel function is the size of the object area.  All the pixel values in the video frame 
are divided into n intervals, and each interval corresponds to an eigenvalue u according to the 
size of the range.  The probability density of each object model feature is calculated using the 
following equation:
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where C is the normalization constant of the object model and k(x) is the Gaussian kernel 
function used for pixel weighting.  The Kronecker delta function δ[b(xi) − u] is used to 
determine whether the pixel value xi in the object model is equal to the characteristic value u.  
 Second, we select the candidate model.  The object frame region may be included in the 
subsequent frames, and the center coordinate of the region is the center coordinate y of the 
kernel function.  The feature probability distribution of the candidate model is similar to that of 
the object model, which is expressed by the following equation:

Fig. 6. (Color online) Results of elimination by improved SNP algorithm: (a) original image, (b) regions extracted 
by GMM, (c) result of shadow elimination by SNP algorithm, and (d) result of shadow elimination by improved 
SNP algorithm.

(a) (b) (c) (d)
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 Third, we compare the similarity of functions.  The Bhattacharyya coefficient is selected as 
the similarity function, which is expressed by the following equation:
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 The similarity between the candidate model and the object model is judged by the 
Bhattacharyya coefficient.  The mean-shift vector m of the object model is obtained as follows:
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where g(x) = −k'(x).  
 Finally, we determine the object area.  The center of the object box in the previous frame is 
taken as the center of the search window.  The mean-shift vector is iterated continuously to find 
the candidate area that maximizes the similarity function.  We update the object box and repeat 
until the video and the tracking end.

4. Experimental Results and Analyses

4.1 Experimental environment and dataset

 The experimental hardware environment was an Intel Xeon E5-1603 v4 CPU with a clock 
speed of 2.80 GHz and an NVIDIA NVS 315 GPU.  The algorithm was developed in Python 
and the tracking visualization was based on OpenCV.  We selected challenging image sequences 
from the VOT2013, OTB2015, and VOT2017 datasets, which included illumination changes, 
rapid motion, object rotation, and occlusion.  The video images had a height of 280 pixels, a 
width of 320 pixels, and a frame rate of 25 frames per second (FPS).

4.2 Qualitative analysis

 We tested and evaluated our proposed vehicle tracking algorithm.  Figure 7 shows the vehicle 
motion scene and the tracking results in the experiment.  The first line of images is the first 
frame of each video sequence, and the remaining lines are the tracking results of the algorithm 
and the actual position of the object vehicle.
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 The first scene [Fig. 7(a)] shows the tracking of slow-moving vehicles from the upper right 
view.  The tracking objects are black and white vehicles with high definition.  The object vehicle 
runs slowly on the road, and the two vehicles intersect during driving.  As can be seen from Fig. 
7(a), this algorithm can stably track slow-moving vehicles and distinguish vehicles of different 
colors and models.  When the black vehicle blocks the white vehicle, the tracking of the black 
vehicle has no offset, and the white vehicle can be continuously tracked after partial occlusion.  
Meanwhile, vehicles stopped on the road can be detected.  However, the silver vehicle in the 
upper left corner, whose color is similar to the background, is not detected.
 The second scene [Fig. 7(b)] shows the tracking of vehicles moving in and out of the field of 
vision, also from the upper right view, where the tracking objects are black and white vehicles 
with ordinary definition.  At first, the white vehicle is waiting for the traffic lights.  During 
the waiting process, the black vehicle enters the camera area, and the camera follows the black 
vehicle.  After the green light, the white vehicle moves forward along the road, and the black 
vehicle turns left to leave the camera area, and the camera follows the white vehicle.  We can 
see that this has little effect on the tracking accuracy of the dynamic camera, i.e., when the 
object moves in or out of the field of view, the object can be tracked well.

Fig. 7. (Color online) Vehicle tracking results. 
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 Figure 7(c) shows the tracking situation when the vehicle is occluded.  This scene shows the 
view from above the vehicle.  The tracking object is a white vehicle with high definition that is 
running with a high speed on the road.  During the tracking, another white car enters the field 
of vision, and then the vehicle is blocked by a road sign.  As can be seen from Fig. 7(c), this 
algorithm can track fast-moving vehicles since the tracking of the object vehicle has no offset.  
The second white vehicle is not tracked when it first enters the field, but it is successfully 
tracked after completely entering the field.  When the road sign almost completely blocks the 
vehicle and the tracking position deviates from the actual position of the vehicle, the vehicle 
cannot be detected or tracked until the entire vehicle reappears in the field of view.  
 Figure 7(d) shows the tracking of vehicle rotation and scale changes with the view from 
above the vehicle.  The tracking object is a red vehicle with high definition.  After turning 
around on the road, the object vehicle quickly approaches then moves away from the camera.  
It can be seen from Fig. 7(d) that the rotation and scale changes of the object vehicle have little 
influence on its tracking.  However, once the vehicle is far away, the tracking frame is slightly 
offset from the object vehicle position.

4.3 Quantitative analysis

4.3.1 Evaluation of improved Canny algorithm

 To verify the effectiveness of the improved Canny algorithm proposed in this paper, it is 
compared with the Canny algorithm on the same video.  The accuracy and stability of the 
algorithm are evaluated by the spatial accuracy (SA) and temporal coherency (TC).(22)  The SA 
reflects the shape similarity between the segmentation result of each frame and the reference 
segmentation template, and the TC reflects the similarity of the spatial accuracy between two 
adjacent frames in the video sequence.  Figure 8(a) shows that the SA of the proposed method 
is about 10% higher than that of the Canny algorithm, indicating that its segmentation accuracy 
is higher.  Figure 8(b) shows that the TC of the proposed method is between 0.87 and 1, and 
the fluctuation range is small.  The TC for the Canny algorithm is between 0.8 and 1, and the 
fluctuation range is large.  This shows that the stability of the improved Canny algorithm is 

Fig. 8. (Color online) Performance comparison of algorithms for the same video sequence: (a) spatial accuracy and (b) 
temporal coherency.

(a) (b)
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effectively increased by automatically setting thresholds for different frames.  Table 1 shows the 
SA and TC of the improved Canny algorithm with different numbers of directions.  We find that 
when the number of directions is eight, good results are achieved for the SA and TC.

4.3.2 Evaluation of improved SNP algorithm

 To verify the performance of the shadow elimination algorithm proposed in this paper, 
we compare the improved SNP algorithm and the SNP algorithm for the video sequences in 
Figs. 7(a)–7(d) in Sect. 4.2.  The accuracy of the algorithms is evaluated by the shadow detection 
rate η and the shadow discrimination rate ξ.(23)  By calculating η, the recall rate of the shadow 
elimination algorithm for shadow areas can be evaluated.  By calculating ξ, the precision of the 
shadow elimination algorithm for shadow areas can be evaluated.  As shown in Table 2, the 
average values of η and ξ of the improved SNP algorithm are 2.5 and 7.3% higher than those of 
the SNP algorithm.  Therefore, the shadow elimination effect of the improved SNP algorithm is 
better than that of the SNP algorithm.

4.3.3 Comparison with other methods

 To better evaluate the effect of our algorithm for vehicle tracking, we not only use 
the precision and success rate to analyze our method and other methods, but also use the 
quantitative index FPS as the speed evaluation index.  Figure 9 shows the precision plots and 
success rate plots(24) of the experimental results of our method and six other trackers: LOT, 

Table 1
Comparison of algorithm performance for different numbers of directions. 
Number of directions Average SA Average TC

4 77.43 0.973
5 79.56 0.957
6 82.31 0.963
8 84.06 0.979
9 84.07 0.953

10 83.62 0.978
12 83.24 0.959

Table 2
Analysis of shadow detection rate and shadow discrimination rate.
Video sequence Evaluation standard SNP (%) Improved SNP (%)

a
η 72.8 72.6
ξ 88.9 89.3

b
η 80.5 83.2
ξ 74.2 87.6

c
η 82.9 81.1
ξ 77.3 88.7

d
η 84.0 92.0
ξ 92.3 92.4
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ORIA, L1APG, CSK, Struck, and MTT.  In the precision plot, our algorithm ranks first; in the 
success rate plot, our algorithm ranks second.  Table 3 shows the time cost of our method and 
the other methods for processing the same video.  It can be seen that our algorithm can basically 
achieve real-time tracking.

5. Discussion

 By introducing edge information into the object tracking algorithm, we realized the tracking 
of vehicles without providing prior information, and we carried out comparison experiments 
with many other tracking algorithms.  The results show that our method has the advantage 
of a high speed without training.  In this part, we will discuss several factors that influence 
the tracking results of this algorithm, including the selection and improvement of the edge 
detection algorithm, the selection and improvement of the shadow elimination algorithm, and 
the limitations of the algorithms.

5.1 Selection and improvement of edge detection algorithm

 Currently, edge detection operators include the Roberts, Sobel, Prewitt, Laplacian, LOG, and 
Canny algorithms.  Among them, the Roberts, Sobel, and Prewitt algorithms, as edge detection 
algorithms based on the first-order differential, have particular importance.  The Roberts 
algorithm was the earliest algorithm devised for image edge detection.  It has a good calibration 
effect for vertical edges but a poor detection effect for other angles, and its ability to suppress 

Fig. 9. (Color online) Precision and success rate plots of the different trackers on the OTB vehicle dataset: (a) 
precision plots and (b) success rate plots.

(a) (b)

Table 3
Speed comparison of different trackers.

Ours LOT ORIA L1APG CSK Struck MTT
Speed (FPS) 26.33 3.12 14.62 3.64 40.57 20.26 3.86
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noise is weak.  The Sobel algorithm has the advantages of a low computational cost and high 
speed.  However, its accuracy is low and it is only effective for horizontal and vertical edge 
detection.  The Prewitt algorithm has better edge detection than the Roberts algorithm in both 
the horizontal and vertical directions, but an unreasonable setting of the gray threshold results 
in poor noise suppression.  The Laplacian and LOG algorithms are second-order differential 
algorithms.  The Laplacian algorithm can detect an edge of any direction, but the influence 
of noise is the most serious among the algorithms.  The LOG algorithm is relatively accurate 
in detecting edge positions, but false edges caused by noise are easily detected.  In general, 
although traditional first- and second-order differential algorithms have high detection accuracy 
in the horizontal and vertical directions, they have low detection accuracy in other directions.  
These algorithms are not suitable for targets with multidirectional edges such as vehicles.  
Compared with the first- and second-order differential algorithms for edge detection, the Canny 
algorithm has more theoretical and practical importance because of its better robustness and 
complete edge detection mechanism.  Therefore, the Canny algorithm was improved in this 
study.  Considering that the double threshold setting in the traditional Canny edge detection 
algorithm cannot achieve adaptive adjustment under changing scenarios and its anti-noise 
ability is low, the double threshold is adaptively adjusted by the Otsu method in this study.  This 
ensures that high-quality edge information is obtained in a changing scene.  At the same time, 
we have extended the detection template of the Canny algorithm in different directions.  By 
increasing the number of sensing directions, the perceptual ability of the algorithm for random 
angle edges is enhanced.

5.2 Selection and improvement of SNP algorithm

 Shadow elimination methods can be divided into two categories: deterministic and statistical 
methods.  A deterministic method determines whether a pixel is a shadow through the known 
background and object characteristics in the video.  According to whether it is necessary to 
establish a model in the decision process of the deterministic method, deterministic methods 
can be divided into the deterministic nonmodel-based method and deterministic model-based 
method.  In the modeling process, the deterministic model-based method relies on parameters 
such as the lighting conditions and number of objects in the scene, so it has high computational 
complexity in a complex environment.  Moreover, in a complex environment, this kind of 
method cannot achieve shadow elimination in multiple scenes through a unified model, so there 
has been relatively little research on this method.  The computational cost of the deterministic 
nonmodel-based method is relatively low.  However, owing to the limitations of the model, when 
the image content changes rapidly, the accuracy of shadow elimination is significantly reduced.  
The statistical methods have a certain degree of robustness against interference.  They classify 
pixel points by the probability values of pixels, so the parameters of the statistical function 
used are essential.  The statistical methods can be further divided into the statistical parametric 
method and statistical nonparametric method according to the method used to obtain the 
parameters.  Owing to the large amount of calculation and low adaptability to changing scenes, 
the statistical parameter method is more suitable for shadow elimination in indoor scenes.  
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The target of this paper is vehicles, which are usually in outdoor scenes, so the statistical 
parameter method is not applicable.  To sum up, by referring to the applicability and real-time 
performance of various methods, we have improved the statistical nonparametric model by 
introducing chroma information into pixel category determination.  Our experiments show that 
the introduction of chroma information can effectively reduce false detection.  At the same time, 
the chroma information can also be used to quadratically discriminate the foreground region 
extracted by the GMM, which improves the accuracy of the dynamic region and the tracking 
performance of the algorithm.

5.3 Limitations

 Although our experiments show that our algorithm is effective, there are still some problems.  
For example, although the algorithm can solve the problem of partial occlusion of the object 
vehicle to a certain extent, tracking failure will still be caused by excessive occlusion.  In 
Fig. 7(c), when the tracking object was occluded by a large area for a long time, the proposed 
algorithm exhibited tracking drift; since the algorithm locates the vehicle by edge detection, 
it is easy for vehicle detection failure to occur when the object is similar to the background 
because only edge information is used; there is a trade-off between the shadow elimination 
rate and target integrity.  When the shadow removal rate is high, the integrity of the moving 
object is difficult to ensure.  However, when the moving object is complete, the shadow removal 
rate will be reduced.  However, tracking incomplete objects will make the object frame unable 
to completely cover all objects, which reduces the location precision of the object.  However, 
in this paper, we mainly discuss the vehicle tracking problem without large changes in the 
background, a complex background, or multiple view changes.  We will consider these issues in 
future research.

6. Conclusions

 The development of sensors provides a means of vehicle detection and recognition, which are 
research hotspots in computer vision.  In recent years, vehicle tracking algorithms have made 
great progress in real-time tracking and accuracy.  To solve the problems of mutual occlusion 
and shadow interference in vehicle tracking, we presented an unsupervised vehicle object 
tracking algorithm suitable for both dynamic and stationary states.  This algorithm shows good 
performance on public datasets.  Experiments showed that:
(1) The proposed multidirectional Canny edge detection algorithm can extract edge information 

more effectively and reduce the incidence of false detection between different objects with a 
similar appearance.

(2) By introducing chroma information into the SNP model, shadow areas can be removed 
more accurately, increasing the accuracy of the object area.  Thus, the tracking accuracy is 
improved.

(3) Compared with other methods, our algorithm, which basically meets the requirements of 
real-time tracking, can achieve better tracking results and has a higher speed.
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(4) Compared with algorithms based on deep learning, our algorithm ensures better tracking 
accuracy.  Moreover, it does not need a large number of samples to train the model or a lot of 
computing resources.

 To obtain better vehicle tracking results, we will try to improve the recognition and tracking 
ability of the algorithm for large-area occlusion targets by adding trajectory prediction in the 
future.  At the same time, we will do more in-depth research on the vehicle tracking problem 
when the background changes relatively rapidly, and try to enhance the tracking ability of the 
algorithm for vehicle objects by introducing optical flow information.  We will also continue to 
optimize the algorithm structure and improve the efficiency of the algorithm.  
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