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Radio frequency identification (RFID) technology is one of the key enabling technologies to 
realize the IoT.  With the capabilities of sensing, wireless communication, and wireless-powered, 
non-line-of-sight transmission, lightweight RFID sensor tags are a critical enabling technology 
for future IoT applications, such as logistics, manufacturing, and healthcare.  In contrast to 
alternatives, such as barcodes and QR codes, the radio-frequency-powered identification 
approach featuring the simultaneous reading of multiple tags allows connected “things” 
to be identifiable for further data communication and integration.  Therefore, an effective 
anticollision protocol should be developed between the reader and the tags to achieve rapid 
identification, especially in a system with a large number of RFID sensor tags.  The dynamic 
slots collision tracking (DSCT) algorithm, which is based on a collision tracking technique, can 
reduce the prefix and the iteration overhead through a time-divided responding scheme.  The 
DSCT protocol performs well when consecutive collisions occur.  However, for nonconsecutive 
collisions, DSCT generates many idle time slots.  Thus, the identification time cannot be 
reduced.  In this paper, we present an enhanced DSCT (EDSCT) algorithm to reduce the 
identification time for nonconsecutive collisions.  The simulation results reveal that the proposed 
algorithm can effectively reduce the identification delay and improve the slot efficiency.

1.	 Introduction

Radio frequency identification (RFID) is a modern technology that has been widely 
employed in various industrial applications, such as object and human tracking, supply chain 
management, vehicle positioning, and inventory management.(1–3)  Conventional identification 
systems, such as barcodes, are inefficient for conducting automatic identification and data 
collection because of their low read rate, tag visibility problems, and tag-reader contact 
limitations.  However, RFID systems can provide rapid and reliable communication without 
requiring tag visibility or direct contact between readers and tags.  Owing to these features, 
RFID technology transcends the function of object identification and has also been used for 
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localization and sensing applications.(4,5)  Furthermore, since an RFID chip is powered by 
RF energy, components with sensing capability can also be integrated into RFID tags for 
simultaneous identification and sensing purposes.  RFID tags with sensing components can 
ultimately provide identification and sensing capability in a wireless-powered, contactless, and 
non-line-of-sight manner.  Different from traditional sensing, simultaneous wireless information 
and power transfer (SWIPT) has become a new paradigm of sensing and communication and 
could reshape the future IoT world.(6,7)  Owing to the wide coverage and mobility of RFID 
interrogators and the possibility of completely passive RFID sensors, the measurement of 
RFID-sensor-tagged “things” is no longer limited to specific locations, and there is also no need 
to frequently change the batteries of the RFID sensors.  Therefore, such a large-scale RFID 
system can be realized for many applications.

A research topic in large-scale RFID systems is how to decrease the processing time required 
to identify a certain number of tags within the range of an RFID interrogator.  Anticollision 
protocols are required to achieve rapid tag identification.  Collisions may occur when multiple 
tags simultaneously respond to a reader’s inquiry.  Generally, anticollision protocols aim to 
reduce the number of collisions during the tag identification process.  Moreover, collisions can 
be categorized into two types: reader and tag collisions.  Reader collisions occur when two 
or more neighboring readers simultaneously inquire about a tag.  In this case, the tag cannot 
accurately provide its unique identification code (ID) to inquiring readers.  Reader collisions 
can be easily eliminated by detecting these collisions and communicating with other readers.  
Tag collisions occur when more than one tag concurrently respond to a reader.  In this scenario, 
the reader cannot identify either of the tags that responded concurrently.  In RFID systems that 
include low-cost, passive tags, the tags can only respond to the reader’s inquiries.  Therefore, 
tag anticollision protocols are crucial for efficiently identifying tag IDs in RFID systems.

Numerous studies pertaining to anticollision protocols exist.  These protocols can be 
classified into two categories: Aloha-based and tree-based anticollision schemes.(8–13)  In the 
aloha-based schemes, an RFID reader creates a frame that contains several time slots and then 
adds the frame length to the inquiry message sent to the tags in the interrogation zone of the 
reader.  Tags respond to the reader’s inquiry by selecting a random time slot.  The tags that 
simultaneously respond in the same time slot cannot be recognized by the reader owing to the 
occurrence of collisions.  In this case, the reader has to repeatedly send inquiries until all tags 
are identified.  Thus, aloha-based schemes require long processing times when they are used for 
large-scale RFID systems.

In tree-based schemes, RFID readers use a scheme similar to the binary search algorithm for 
recognizing tags.  When a tag collision occurs, readers split collided tags into two subgroups 
and repeat the process until the tag IDs are recognized.  Therefore, readers using a tree-based 
scheme can identify all tags within the interrogation range.  Law et al. proposed a memoryless 
protocol known as a query tree (QT) through a binary splitting strategy for the tag identification 
problem.(10)  If a reader transmits a k-length prefix, then the tags with tag IDs containing the 
same first k bits as the prefix transmit from the (k + 1)th bit to the end bit of their tag IDs.  
Moreover, if collision occurs while transmitting the tag IDs, then an extended prefix formed by 
attaching a “0” or “1” bit to the prefix is transmitted.  Furthermore, if no collision occurs, then 
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the reader identifies one of the tags.  Choi et al. proposed a fast anticollision algorithm known 
as the Improved Bit-by-bit Binary-Tree (IBBT) algorithm for use in ubiquitous identification 
systems and evaluated its performance through three existing schemes.(11)  The reader used in 
the IBBT algorithm sends requests to all bits of tag IDs.  After the reader receives responses 
from the tags, it saves the results of each receiving bit of the tag IDs.  Therefore, the reader can 
identify the collided bits and sequentially sends requests to tags only for the collided bits in a 
bit-by-bit manner.  Myung et al. proposed an adaptive memoryless tag anticollision protocol, 
which is an extended scheme based on the QT protocol.(12)  The reader used in this approach 
employs a queue to maintain prefixes and an additional candidate queue for maintaining 
prefixes of identified and no-response nodes obtained during the previous identification attempt.  
Thus, the collision period can be shortened when the number of tags increases.  Bhandari 
proposed the intelligent QT (IQT) algorithm, which is a modified version of the QT protocol for 
cases in which tags have some common prefixes.(13)  

When aloha-based protocols are used, a particular tag may not be identified for a long time.  
However, tree-based protocols deliver 100% tag identification, but the identification delay is 
relatively longer owing to the large number of collisions and the large transmission overhead.  
Therefore, resolving collisions and reducing the transmission overhead are major issues that 
should be studied for tree-based anticollision protocols.  Zhou et al. proposed the collision 
tracking tree algorithm (CTTA), which is based on a QT scheme but does not include the 
collision tracking process.(14)  In the CTTA, a tag sends its ID from the (k + 1)th bit to the end 
bit if the prefix is the same as the tag’s first k bits.  However, if a collision is detected, then the 
reader transmits a signal to stop the tags from sending their IDs.  Although the process of the 
CTTA appears similar to that of a QT, the CTTA forms the next prefix by using the bits received 
before collision and reduces time wastage due to collision when the bits are received.  Gou et al. 
proposed the bit-collision-detection-based QT (BQT) protocol to reduce the number of collisions 
in the tag identification process.(15)  In the BQT protocol, a reader sends a query string with the 
same length as that of tag IDs to all tags.  Each bit position of the query string may include “0”, “1”, 
or a wild mask (*).  These tags match the bit positions of values “0” and “1” and must respond 
with their values for the position corresponding to the wild mask “*”.  Jia et al. proposed a 
collision tree (CT) algorithm that is also based on a QT with the aim of eliminating collisions 
and idle time.(16)  The proposed algorithm both generates prefixes and splits tags according 
to the first collided bit.  Thus, the generated idle slots are eliminated effectively.  Lai et al. 
proposed an optimal binary tracking tree protocol that employs a bit estimation algorithm to 
split tags into small sets and then uses a binary tracking tree method to quickly identify tags.(17)  
Su et al. proposed a hybrid anticollision algorithm, known as the anticollision protocol based 
on improved collision detection (ACP-ICD), to reduce the number of tag collisions.(18)  Their 
approach incorporates the concepts of bit-tracking technology and dual-prefix matching into a 
collision arbitration mechanism in the RFID system.  Landaluce et al. presented a bit window 
procedure to manage the length of tags’ bit streams to reduce the energy consumption due 
to collisions.(19)  They modified both QT and CT protocols by incorporating the bit window 
procedure and proposed the query window tree and collision window tree protocols.  However, 
these algorithms have complicated implementation procedures and high identification delays.
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Choi et al. proposed the bi-slotted collision tracking tree algorithm (BSCTTA) for reducing 
the transmission overhead through bi-slotted responses to increase the tag identification speed 
and the overall read rate and throughput in large-scale RFID systems.(20)  The BSCTTA 
also employs the collision tracking technique.  This algorithm appears similar to the CTTA; 
however, the BSCTTA provides two time slots in each query for tags to respond depending on 
their first-replied bit values.  In the BSCTTA, a reader sends (n − 1)-length inquiring bits (that 
is, a prefix) to tags.  Then, the tags that lie in the field of the reader send their tag IDs to the 
reader if the inquiring bits are the same as the first (n − 1) bits of the tag IDs.  When the tags 
send their IDs to the reader, they select one of the two time slots provided depending on whether 
the nth bit is “0” (first slot) or “1” (second slot).  Thus, the nth bit contains the time slot details.  
After the tags decide the corresponding time slot to send their IDs, they send the remaining bits 
of their IDs from the (n + 1)th bit to the end until an ACK signal, which is sent from the reader 
when a collision occurs, is received.  If a collision occurs, the reader saves a new prefix in the 
last input first output (LIFO) order.  

In our previous study,(21) we proposed a novel technique for resolving collisions, which 
outperforms the BSCTTA scheme in terms of the tag identification speed and the overall 
throughput in large-scale RFID systems.  We addressed the key design aspect of using a 
multiple-time-slotted technique known as the dynamic slots collision tracking (DSCT) 
algorithm for providing tag responses based on the prefix bits in the response bits in each 
query cycle to reduce the prefix and the iteration overhead.(21)  The reader used in the DSCT 
protocol allocates multiple time slots based on the length of the consecutive collision bits that 
were obtained in the previous query cycle for tags to respond.  Thus, the multiple time-slotted 
response obtained improves the tag identification efficiency of large-scale RFIDs.

Huang and Chen proposed an improved dynamic slots collision tracking tree anticollision 
algorithm (IDSCTTA) to eliminate the idle time slots during each query cycle in our previous 
DSCT algorithm.(22)  To eliminate the idle time slots, the proposed IDSCTTA scheme utilizes 
a bit change method (BCM) technique.  In each query cycle, if the consecutive collisions have 
been tracked by the reader, the IDSCTTA provides an additional time slot for those collided 
tags to transmit the changed bits to the reader so that the reader can realize which time slots are 
needed to resolve the collisions.  Although the IDSCTTA can eliminate the idle time slots, the 
communication overhead between a reader and tags increases.  As a result, the tag identification 
delay cannot be reduced compared with that of our previous DSCT scheme.  

The present study is an extension of our previous work and investigates the optimal 
assignment of tag response time slots regardless of the consecutiveness of collision bits.  The 
identification scheme proposed in this study (1) reduces the communication overhead between a 
reader and tags during the identification process, (2) reduces the number of query cycles, and (3) 
completes the identification process as quickly as possible.

Our contributions are summarized as follows.
•	 	We introduce a tag identification problem observed in RFID systems, that is, a reader 

collects tag IDs and their sensing data to minimize the time required to complete ID 
identification and information collection.  
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•	 	We proposed a novel design that uses a multiple-time-slotted technique for providing 
tag responses when collisions are detected.  We exploited the collision tracking scheme 
when tags respond to a reader and allocated an adequate number of time slots in the next 
query cycle for resolving collisions.  The number of allocated time slots depends on the 
number of detected collision bits regardless of whether they are consecutive or not.  The 
maximum length of collision bits that can be detected is defined by users when using this 
algorithm.  

•	 	The simulation results of this study validate that the performance of the proposed 
approach is better than that of the previously proposed collision-tracking-based 
approaches.

The rest of this paper is organized as follows.  Section 2 presents the concept of the dynamic 
slot allocation scheme as the preliminary work of this study.  Section 3 introduces the proposed 
collision-tracking-based tag identification technique.  Section 4 presents the performance 
evaluation of the proposed scheme—the enhanced DSCT (EDSCT) algorithm.  Performance 
comparisons and analyses are also presented.  Finally, the paper is concluded in Sect. 5.

2.	 DSCT Scheme

The primary idea of the proposed anticollision algorithm is the allocation of an appropriate 
number of time slots for tags to respond during each query cycle.  When time slots are allocated, 
readers send information to tags so that the corresponding tags can respond in appropriate 
time slots.  Thus, different tags respond to the reader in different time slots.  This method 
substantially reduces the number of collisions.  

In this study, we proposed a collision tracking scheme to track the collision bits and provide 
multiple time slots for tags to respond.  The maximum length of the collision bits, which is 
denoted as Cmax, that can be tracked using the scheme was varied and can be defined by users 
while using the proposed scheme.  In each query cycle, a reader determines the appropriate 
number of time slots for tags to respond depending on the number of collision bits that are 
tracked in the previous query cycle.  The reader stores two values for identifying tags: the length 
of collision bits C and the length of inquiring bits n (prefix).  When the length of collision bits is 
tracked on the basis of the response provided by tags, the reader determines the number of time 
slots required for tags to respond in the next query cycle to be 2C.  This means that the reader 
provides 2C time slots for tags to respond.  The 2C time slots are represented by C-bit values 
from 0 to (2C − 1).  On the basis of this characteristic, the RFID systems can reduce the time 
required for identification by using the following procedure.
1) 	REQUEST: A reader sends prefix-inquiring bits of length n to tags.
2) 	RESPONSE: The tags present in the interrogation zone of the reader respond by transmitting 

their tag IDs to the reader if the inquiring bits are the same as the first n bits of the tag IDs.
•	 	When the tags transmit their IDs to the reader, they select one of the 2C time slots based 

on the (n + 1) to (n + C) bits of the tag IDs.  Thus, the time slots indicate the values of the 
(n + 1)th bit to the (n + C)th bit.  



3448	 Sensors and Materials, Vol. 32, No. 10 (2020)

•	 	Tags send their IDs from the (n + C + 1)th bit until the ACK signal is obtained from the 
reader.  

3) 	DECISION: On the basis of whether collision has occurred and the length of consecutive 
collision bits C′, the reader decides whether to continue the procedure using the following 
conditions:
•	 	If collisions occur and C′ ≤ Cmax, then the reader sends ACK signals to the tags and saves 

a new prefix in the LIFO stack.  
•	 	If a collision occurs at the last bit of the tag IDs, then the reader assumes that there are 

two tags because of the uniqueness of the tag IDs.  
•	 	If no collision occurs, then the reader identifies a tag and sends an ACK signal after 

receiving the last bit.  
•	 	If no tag responds, then the reader sends an ACK signal after the time allocated to the 

first received bit is over.  
4) 	Perform the aforementioned steps until the LIFO stack is empty.

The previously proposed DSCT scheme focuses on the consecutive collision bits.  Once a 
nonconsecutive situation occurs, the reader sends an ACK signal to the tags to notify them to 
stop transmitting their remaining ID bits.  Then, in the subsequent query cycles, the reader 
allocates an appropriate number of time slots for tags to respond.  The number of allocated time 
slots is based on the length of consecutive collision bits, which are tracked by the reader.  If the 
length of the tracked consecutive collision bits is two, then four possible tag IDs are present for 
these two collision bits.  Thus, the reader allocates 2c time slots for the tags when the length of 
collision bits is c.  

The following example is presented to provide a better understanding of our previously 
proposed scheme.  Table 1 presents the operation of the scheme for eight tags with an ID 
length of 10 bits.  The tag IDs are “0000001010”, “0001011011”, “0001001101”, “0001011101”, 
“0100010011”, “0101000101”, “0101100111”, and “0101101001”.  Initially, the reader sends an 
empty query string to the tags in the interrogation zone and allocates one time slot for the tags 
to respond to simultaneously, which results in a collision.  The reader realizes that a collision 
has occurred when the collision bit is obtained in the second bit, which is followed by a “0”-bit 
signal.  This step introduces a nonconsecutive collision situation.  Thus, the reader sends an 
ACK signal to all tags to make them cease the transmission of their remaining ID bits and 
updates the tag response string as “0*0”.  Subsequently, the reader pushes the collision prefix 
string “0” and a c-value of one into the stack.  Then, the reader fetches the query string “0” 
from the prefix stack, broadcasts the string to all tags, and allocates two time slots for the 
corresponding tags to respond.  When the query prefix string sent by the reader is received, 
the tags with the prefix bit matched with “0” send their remaining IDs back to the reader by 
selecting the corresponding time slot based on the second bit of their IDs.  After the tags have 
sent their IDs in time slot “0”, the reader recognizes the results from the tag response to be 
“0*0”.  Thus, the reader updates the response string as “000*0” and then pushes the collision 
prefix string “000” into the stack along with the c-value of two.  Similarly, the reader pushes 
the collision prefix string “010” with a collision bit length of two into the stack after the tags 
send their IDs in time slot “1”.  Then, the reader begins a new query cycle in the same manner 
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by fetching the prefix string “010” from the stack, sending the string to all tags, allocating four 
time slots, and waiting for the tags to respond.  Thus, two tag responses are obtained in time 
slots “00” and “10”, two collision bits are detected in time slot “11”, and no tag response is 
obtained in time slot “01”.  The identification process proceeds until the prefix stack is empty.

Finally, all tags can be identified after four query cycles.  The DSCT scheme uses 25 bits for 
prefixes and 44 bits for tag responses.  Thus, the use of the DSCT scheme to recognize eight 
tags has a total communication overhead of 69 bits.  

For comparison, Table 2 presents the results obtained after identifying the eight tags 
presented in Table 1 through the BSCTTA.  Table 2 shows that the BSCTTA uses 29 bits for 
prefixes and 43 bits for responses.  Thus, the use of this algorithm for identifying eight tags 
has a total overhead of 72 bits.  The DSCT scheme can reduce the transmission overhead of the 
BSCTTA in the tag identification process by reducing the number of query cycles.  

3.	 Proposed Anticollision Scheme

The DSCT scheme proposed in the previous study can reduce the number of query cycles 
by allocating a higher number of time slots during each query cycle for tags to respond.  Thus, 
the number of transmission bits sent by the reader can be dramatically reduced.  As a result, 
the total transmission overhead can be reduced.  However, the DSCT scheme can only track 
consecutive collisions.  This means that the reader may require a higher number of query 
cycles to finish the identification process once a collision is tracked regardless of the collision 

Table 1
Detailed query cycle of the DSCT scheme for identifying eight tags.
Query 
cycle Prefix  string Time slots Tag response Reader update 

string Results Prefix stack

1 (‘’,0) all tags ‘0*0’ ‘0*0’ Collision (‘0’,1)

2 (‘0’,1)
‘0’ ‘0*0’ ‘000*0’ Collision (‘000’,1)

‘1’ ‘0**’ ‘010**’ Collision (‘000’,1), 
(‘010’,2)

3 (‘010’,2)

‘00’ ‘10011’ ‘0100010011’ Identified (‘000’,1)
‘01’ ϕ ϕ Idle (‘000’,1)
‘10’ ‘00101’ ‘0101000101’ Identified (‘000’,1)

‘11’ ‘0**’ ‘010110**’ Collision (‘000’,1),
(‘010110’,2)

4 (‘010110’,2)

‘00’ ϕ ϕ Idle (‘000’,1)
‘01’ ‘11’ ‘0101100111’ Identified (‘000’,1)
‘10’ ‘01’ ‘0101101001’ Identified (‘000’,1)
‘11’ ϕ ϕ Idle (‘000’,1)

5 (‘000’,1) ‘0’ ‘001010’ ‘0000001010’ Identified ϕ
‘1’ ‘0*1’ ‘00010*1’ Collision (‘00010’,1)

6 (‘00010’,1) ‘0’ ‘1101’ ‘0001001101’ Identified ϕ
‘1’ ‘1**’ ‘0001011**’ Collision (‘0001011’,2)

7 (‘0001011’,2)

‘00’ ϕ ϕ Idle ϕ
‘01’ ‘1’ ‘0001011011’ Identified ϕ
‘10’ ‘1’ ‘0001011101’ Identified ϕ
‘11 ϕ ϕ Idle ϕ

*Note: The ϕ symbols shown in the Tag response, Reader update string, and Prefix stack columns indicate no 
response from tags, an empty string, and an empty stack, respectively.
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bit length.  We proposed an enhanced version of the DSCT scheme in this study to reduce the 
number of query cycles—the EDSCT algorithm.  The primary idea of the EDSCT algorithm 
is to allow the reader to track all collisions until the length of the tracked collision bits attains 
the value of the maximum collision bit Cmax.  After the value is attained, the reader adds a new 
query cycle for resolving these collision bits by allocating 2Cmax time slots for tags to respond.  
The identification process in the EDSCT scheme is similar to that in the DSCT scheme, except 
that the collision bits may not always be consecutive.  Therefore, the tags should know the 
positions of the collision bits to select the appropriate time slots for responding.  Therefore, we 
used the protocol adapted in the BQT protocol with an appropriate modification for our method.(15)  
The proposed protocol is as follows.  Initially, the reader broadcasts an empty string to all tags 
in its interrogation zone and allocates only one slot for all tags to respond.  Subsequently, each 
tag responds simultaneously, thus resulting in collisions.  The reader checks each individual 
bit of the tags’ responses.  When the reader detects collision bits through a hybrid Manchester 
coding system, it updates the query string according to the result of each bit position.(15)  If 
all responses have values “0” or “1” for a particular bit position, no collisions occur at this bit.  
Moreover, the bit of the query string can be updated using the corresponding values “0” or “1”.  
If a collision occurs at a particular bit position, then the bit string at this position is indicated 
as “*”.  In this case, the length of the collision bits C is incremented by 1.  When the length of 
the collision bits reaches the maximum value Cmax, the reader sends an ACK signal to tags to 
stop them from transmitting their remaining IDs.  After the query string is updated, the reader 
considers the following three possible situations: 1) multiple “*” exist in the updated query 
string, 2) a single “*” is present in the updated query string, and 3) no “*” exists in the updated 
query string.  In the first case, the reader saves a new prefix with the updated query string and 
the value of C into the LIFO stack.  In the second case, the reader replaces “*” with “0” and 

Table 2
Detailed query cycle of the BSCTTA for identifying the eight tags presented in Table 1.
Query 
cycle Prefix  string Time slots Tag response Reader update 

string Results Prefix stack

1 ‘’ ‘0’ ‘*’ ‘0*’ Collision ‘0’
‘1’ ϕ ϕ Idle ‘0’

2 ‘0’ ‘0’ ‘0*’ ‘000*’ Collision ‘000’
‘1’ ‘0*’ ‘010*’ Collision ‘000’, ‘010’

3 ‘010’ ‘0’ ‘010011’ ‘0100010011’ Identified ‘000’
‘1’ ‘*’ ‘0101*’ Collision ‘000’, ‘0101’

4 ‘0101’ ‘0’ ‘00101’ ‘0101000101’ Identified ‘000’
‘1’ ‘0*’ ‘010110*’ Collision ‘000’, ‘010110’

5 ‘010110’ ‘0’ ‘111’ ‘0101100111’ Identified ‘000’
‘1’ ‘011’ ‘0101101011’ Identified ‘000’

6 ‘000’ ‘0’ ‘001010’ ‘0000001010’ Identified ϕ
‘1’ ‘0*’ ‘00010*’ Collision ‘00010’

7 ‘00010’ ‘0’ ‘1101’ ‘0001001101’ Identified ϕ
‘1’ ‘1*’ ‘0001011*’ Collision ‘0001011’

8 ‘0001011’ ‘0’ ‘11’ ‘0001011011’ Identified ϕ
‘1’ ‘01’ ‘0001011101’ Identified ϕ

*Note: The ϕ symbols presented in the Tag response, Reader update string, and Prefix stack columns indicate no 
response from tags, an empty string, and an empty stack, respectively.
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“1” and marks them as two successfully identified tags without extra queries.  In the third case, 
the reader recognizes the tag ID and successfully identifies a tag.  The reader then obtains the 
subsequent query string and the value of C from the stack for the next query cycle and repeats 
the identification process until the LIFO stack is empty.  The reader broadcasts the query string 
to all tags in each query cycle.  Each bit position of the query string may include “0,” “1,” or “*”.  
If any tag matches the bit positions of values “0” and “1” in the query string, then it must 
respond with their values for the position corresponding to “*.” For example, if a reader sends 
the query string “0*1**” to all tags, then the tags that contain “0” and “1” as the first and third 
bits, respectively, respond to the reader by transmitting their values of the second, fourth, and 
fifth bits.  The reader also allocates 2Cmax time slots for tags to respond to.  The 2Cmax time slots 
are represented by the values of the Cmax bit from 0 to (2Cmax − 1).  The values correspond to 
the positions of “*” in the query string.  For example, if the reader sends the query string “0*1*” 
to tags, then the reader allocates four time slots that are indicated as “00,” “01,” “10,” and “11” 
for the tags to respond to.  Then, the tags whose first and third bits are “0” and “1,” respectively, 
transmit the remaining bits of their IDs in the corresponding time slot set according to their 
second and fourth bits.  The identification procedure of the proposed scheme is as follows:
1) 	REQUEST: A reader sends prefix-inquiring bits of length n to tags, including the wild mask “*”.
2) 	RESPONSE: Tags in the interrogation zone of the reader respond to the reader with their 

tag IDs if the first n bits of the tag IDs match the bit positions of values “0” and “1” in the 
inquiring bits.
•	 	When the tags respond to the reader with their IDs, they select one of the 2C time slots 

depending on their values at the positions corresponding to “*” in the prefix query string.  
•	 	The tags send their IDs from the (n + 1)th bit until the time that the ACK signal sent from 

the reader is received.  
3) 	DECISION: On the basis of whether a collision has occurred and the length of collision bits 

C′, the reader decides whether to continue the procedure under the following conditions.
•	 	If all responses have values “0” or “1” for a particular bit position, then the reader updates 

the corresponding bit position of the query string with the value “0” or “1”.  
•	 	If a collision occurs at a particular bit position, then the corresponding bit position of the 

query string is indicated as “*” and the value of C′ is incremented by 1.
•	 	If a collision occurs and C′ = Cmax, then the reader sends an ACK signal to all tags and 

saves the updated query string as a new prefix into the LIFO stack.  
•	 	If no collision occurs, then the reader identifies a tag and sends an ACK signal after 

receiving the last bit.  
•	 	If no response is obtained from any tag, then the reader sends an ACK signal after the 

receiving time of the first bit has passed.  
4) 	Perform the above steps until the LIFO stack is empty.

An example is presented in Table 3 to understand the proposed algorithm better.  Table 3 
presents the operation of the proposed scheme for the eight tags presented in Table 1.  The 
identification process is as follows.  First, the reader sends the request command with an empty 
prefix to all tags in the first query cycle (Table 3).  In this case, all tags respond to this request 
command, and the reader begins to track the received bits to verify whether the received bits 
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are collided bits.  Because the reader receives the second collided bit at the fourth bit, the 
reader sends an ACK signal to stop the ID transmissions from the tags.  At this moment, the 
reader updates the query string as “0*0*” and stores the updated query string into the stack.  
Subsequently, the reader obtains the first query string in the stack, which is “0*0*”, and sends it 
to all tags along with four time slots, that is, “00”, “01”, “10”, and “11”.  This means that the tags 
that match prefix strings “0000”, “0001”, “0100”, and “0101” respond in slots “00”, “01”, “10”, 
and “11”, respectively.  In this case, tag A responds in slot “00”, tags B, C, and D respond in slot “01”, 
tag E responds in slot “10”, and tags F, G, and H respond in slot “11” (query cycle 2).  In query 
cycle 2, tags A and E are identified, and two updated query strings, “00010*0*” and “0101*0*”, 
are saved into the stack.  The identification process proceeds until the stack is empty.  In this 
example, four query cycles are executed to identify eight tags.

Table 3 reveals that the EDSCT scheme uses 19 bits for prefixes and 38 bits for responses.  
Thus, a total overhead of 57 bits is used to identify eight tags.  Compared with the DSCT 
scheme, the EDSCT scheme can effectively reduce the number of query cycles required in the 
tag identification process.

4.	 Performance Evaluation
 

To evaluate the performance of the proposed approach, we implemented both DSCT 
and EDSCT schemes with three different values of Cmax (2, 3, and 4).  We compared the 
performance of both the DSCT and EDSCT schemes with the BSCTTA and IDSCTTA schemes.  
The performance of the IDSCTTA scheme improves as the value of Cmax increases.  Therefore, 
in our experiments, we only evaluated the performance of the IDSCTTA when Cmax = 4.  
The various resulting algorithms are indicated as BSCTTA, IDSCTTA-4, DSCT-2, DSCT-3, 
DSCT-4, EDSCT-2, EDSCT-3, and EDSCT-4.  We conducted a set of simulation experiments 
to evaluate the proposed algorithm.  All experiments were performed on a computer equipped 

Table 3
Detailed query cycle of the EDSCT scheme for identifying eight tags.
Query 
cycle Prefix string Time slots Tag response Reader update 

string Results Prefix stack

1 (‘’,0) ‘0*0*’ ‘0*0*’ Collision (‘0*0*’,2)

2 (‘0*0*’,2)

‘00’ ‘001010’ ‘0000001010’ Identified ϕ
‘01’ ‘0*1*’ ‘00010*1*’ Collision (‘00010*1*’,2)
‘10’ ‘010011’ ‘0100010011’ Identified (‘00010*1*’,2)

‘11’ ‘*0*’ ‘0101*0*’ Collision (‘00010*1*’,2),
(‘0101*0*’,2)

3 (‘0101*0*’,2)

‘00’ ‘101’ ‘0101000101’ Identified (‘00010*1*’,2)
‘01’ ϕ ϕ Idle (‘00010*1*’,2)
‘10’ ‘111’ ‘0101100111’ Identified (‘00010*1*’,2)
‘11’ ‘001’ ‘0101101001’ Identified (‘00010*1*’,2)

4 (‘00010*1*’,2)

‘00’ ϕ ϕ Idle ϕ
‘01’ ‘01’ ‘0001001101’ Identified ϕ
‘10’ ‘11’ ‘0001011011’ Identified ϕ
‘11’ ‘01’ ‘0001011101’ Identified ϕ

*Note: The ϕ symbols presented in the Tag response, Reader update string, and Prefix stack columns indicate no 
response from tags, an empty string, and an empty stack, respectively.
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with a 3 GHz central processing unit and an 8 GB memory in C# on the .NET framework.  
Every experiment was repeated 50 times, and the recorded data were averaged over these runs 
to obtain the final results.  

The simulation environment is in accordance with the EPCglobal C1 G2 standard as follows.(23)  
We employed an RFID system that has one reader and N tags within the reading range, where 
N = 5000, 10000, ..., and 50000.  All tags have 96-bit-long IDs.  We also considered two 
different tag ID distributions: uniform random and sequential distributions.  The tag IDs in the 
sequential distribution are in groups and consecutive.  The maximum group size g was set as 
10, 20, or 50% of the number of tags to be identified.  The rate of data communication in the 
transmission channels was set to 80 kbps.  For convenience, we considered a noise-free channel 
between the reader and tags and ignored the propagation delay of the signal because all the 
aforementioned algorithms would be equally influenced by the propagation delay.  

The conducted simulations focused on determining the performance of algorithms for 
different numbers of tags in terms of the average number of queries required, average number 
of transmission bits required, delay time, and system efficiency.  The former two performance 
metrics were measured by conducting the identification of one tag.  System efficiency was 
measured using S = N/Stot, where Stot is the total number of slots.  

4.1	 Average number of queries required versus number of tags

The results pertaining to the average number of queries of schemes required for one tag 
identification are presented in Figs. 1–4 for both uniform and group distributions.  Note that 
the performance of the IDSCTTA scheme in terms of the average number of queries required 
is the same as that of our DSCT scheme.  Therefore, the performance of the IDSCTTA scheme 
is omitted from Figs. 1–4.  Figure 1 shows that both dynamic slot schemes significantly 
outperform the BSCTTA in terms of the average number of queries required to identify all 
tags when IDs are uniformly distributed.  The performance of all schemes in terms of the 

Fig. 1.	 (Color online) Average number of queries 
required with uniform distribution.

Fig. 2.	 (Color online) Average number of queries 
required with group distribution for a g value of 10%.
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average number of queries required is almost flat irrespective of the value of N.  The maximum 
number of allowed collision bits has a strong influence on the performance of the DSCT and 
EDSCT schemes.  The performance of these schemes in terms of the average number of queries 
required improves as Cmax increases.  The average numbers of queries required in the DSCT 
schemes are approximately 0.61, 0.44, and 0.35 for Cmax values of 2, 3, and 4, respectively.  
The average numbers of queries required in the EDSCT schemes are approximately 0.58, 0.42, 
and 0.33 for Cmax values of 2, 3, and 4, respectively.  The EDSCT schemes with Cmax values 
of 2, 3, and 4 outperform the corresponding DSCT schemes by approximately 4.17, 5.32, and 
6.42%, respectively.  The reason for these results is clear.  The number of query cycles increases 
proportionally with the number of tags, thus resulting in the average number of queries required 
almost remaining unchanged.  Both the DSCT and EDSCT schemes allocate a higher number 
of slots than that used in the BSCTTA protocol.  Thus, the average number of queries required 
for dynamic-slots-based protocols is lower.  Moreover, the EDSCT schemes use more slots than 
the DSCT schemes during each query.  Thus, the EDSCT schemes with different Cmax values 
use fewer query cycles to complete the identification than that used by the corresponding DSCT 
scheme.

Figures 2–4 present the behavior evaluation of all protocols when the tag IDs are not 
uniformly distributed.  From these figures, we deduce that the average number of queries of 
all protocols remains almost unchanged with the value of N.  The average number of queries 
required for all protocols without uniformly distributed tag IDs is less than half of that for all 
protocols with tag IDs in a uniform distribution.  The reason for this is also clear.  Consider the 
identification process of a set of tags.  If tag IDs have the longest common prefixes and only 
differ in a few least significant bits, then the tags that do not have uniformly distributed IDs 
become sibling leaves in the identification tree and result in fewer collisions than those that 
have uniformly distributed IDs.  Thus, all protocols require fewer query cycles when tags do 
not have uniformly distributed IDs than when they have uniformly distributed IDs.  Moreover, 
all protocols exhibited similar performance in terms of the average number of queries required 
irrespective of the group size g.  The DSCT and EDSCT schemes outperform the BSCTTA 

Fig. 3.	 (Color online) Average number of queries 
required with group distribution for a g value of 20%.

Fig. 4.	 (Color online) Average number of queries 
required with group distribution for a g value of 50%.
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scheme.  The maximum number of allowed collision bits Cmax has a greater influence on the 
performance of the DSCT and EDSCT schemes.  The performance of these schemes in terms 
of the average number of queries required improves as Cmax increases.  The performance of 
DSCT and EDSCT improves with increasing maximum number of allowed collision bits and 
decreasing number of collision slots.  However, the behavior of the EDSCT schemes is similar 
to that of the DSCT schemes when the tag IDs have a group distribution.  Collisions occur 
consecutively because the tag IDs differ in terms of the last few least significant bits, which 
results in the same collision bits in both the DSCT and EDSCT protocols.

4.2	 Average transmission versus number of tags

Our next experiment evaluated the influence of the number of tags on the number of 
transmission bits required to complete tag identification for the BSCTTA, IDSCTTA, DSCT, 
and EDSCT schemes.  We measured the performance of these protocols by calculating the 
average number of transmission bits required to complete the identification of one tag.  These 
results are shown in Figs. 5–8 for both uniform and group distributions.  Figure 5 reveals that 
the average number of transmission bits required to identify one tag in each algorithm decreases 
slightly as the number of tags increases, except in the BSCTTA protocol.  In the BSCTTA 
protocol, the average number of transmission bits required to identify one tag is fixed regardless 
of the number of tags.  This result is observed in BSCTTA because each query cycle comprises 
only two slots for tags to respond and each identified tag can save only one bit for transmitting 
its ID to the reader.  In other protocols, multiple collision bits occur during the query process.  
Thus, each identified tag requires fewer bits to respond than the length of its ID.  The DSCT 
scheme outperforms the IDSCTTA scheme when Cmax = 4 because the communication 
overhead of the IDSCTTA scheme increases with the number of collisions.  The EDSCT 
schemes outperform the IDSCTTA and DSCT schemes regardless of the Cmax value because 
the EDSCT schemes always generate a higher number of time slots to resolve collisions than the 

Fig. 5.	 (C o l o r o n l i n e) Ave r a g e n u m b e r o f 
transmission bits required with uniform distribution.

Fig. 6.	 (C o l o r o n l i n e) Ave r a g e n u m b e r o f 
transmission bits required with group distribution and 
g = 10%.
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DSCT schemes.  As a result, the EDSCT schemes perform approximately 20.8 to 25.6% better 
than the DSCT schemes.  

Figures 6–8 reveal that the average number of transmission bits required for each tag in all 
schemes when the group distribution is used is less than half of that required when uniformly 
distributed IDs are used.  In the group distribution, because the tag IDs differ in terms of the 
last few least significant bits, each query cycle recognizes more tags with the same query 
prefix.  Moreover, all protocols exhibit similar performance in terms of the average number of 
transmission bits required irrespective of the group size g.  The DSCT and EDSCT schemes 
outperform the BSCTTA scheme.  The DSCT and EDSCT schemes also outperform the 
IDSCTTA scheme when Cmax = 4.  The performance of these schemes in terms of the average 
number of transmission bits required improves as Cmax increases because the number of 
collision slots decreases.  The EDSCT schemes exhibit similar behaviors to the DSCT schemes 
because collision bits occur consecutively when the tag IDs have a group distribution.

4.3	 Delay time versus number of tags

We next experimentally evaluated the influence of the number of tags on the total time 
required to complete tag identification through the BSCTTA, IDSCTTA, DSCT, and EDSCT 
schemes.  We measured the performance by calculating the time required to complete the 
communication of all required transmission bits between the reader and tags.  These results 
are shown in Figs. 9–12 for both uniform and group distributions.  Figure 9 reveals that as 
the number of tags increases, the EDSCT schemes significantly outperform the BSCTTA, 
IDSCTTA, and DSCT schemes.  The reason for this is clear.  The number of collision slots 
is lower in the EDSCT schemes than in the BSCTTA, IDSCTTA, and DSCT schemes.  As a 
result, the number of query cycles and total number of transmission bits in the EDSCT schemes 
are smaller than those in the BSCTTA, IDSCTTA, and DSCT schemes.  Moreover, the delay 
time of the EDSCT schemes decreases as Cmax increases because the number of identified tags 
increases in each query cycle.  

Fig. 7.	 (C o l o r o n l i n e) Ave r a g e n u m b e r o f 
transmission bits required with group distribution and 
g = 20%.

Fig. 8.	 (C o l o r o n l i n e) Ave r a g e n u m b e r o f 
transmission bits required with group distribution and 
g = 50%.
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Figures 10–12 reveal that the delay time observed in all schemes when the group distribution 
is used is less than half of that when uniformly distributed IDs are used.  Similar reasoning to 
that of the previous experiment can be used to explain this.  That is, because the tag IDs differ 
in the last few least significant bits in the group distribution, each query cycle can recognize 
more tags with the same query prefix.  Moreover, both the DSCT and EDSCT schemes 
exhibit similar performance in terms of the average number of transmission bits required 
irrespective of the group size g.  Furthermore, the DSCT and EDSCT schemes outperform 
the BSCTTA scheme and also the IDSCTTA scheme when Cmax = 4.  However, the delay 
time of dynamic-slots-based schemes increases as the group size g increases.  In the group 
distribution, the number of different bits in the least significant bits of tag IDs increases as the 
group size g increases.  Thus, the number of collision slots and the total number of transmission 
bits increase.  

Fig. 9.	 (Color online) Time required for complete 
tag identification with uniform distribution.

Fig. 10.	 (Color online) Time required for complete 
tag identification with group distribution and g = 10%.

Fig. 11.	 (Color online) Time required for complete 
tag identification with group distribution and g = 20%.

Fig. 12.	 (Color online) Time required for complete 
tag identification with group distribution and g = 50%.
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4.4	 System efficiency versus number of tags

Results pertaining to the system efficiency of the protocols are shown in Figs. 13–16 for 
both uniform and group distributions.  Figure 13 reveals that each of the compared approaches 
exhibits similar system efficiency as the number of tags increases.  Moreover, the DSCT and 
EDSCT protocols perform significantly worse in terms of the slot system efficiency than the 
BSCTTA and IDSCTTA schemes.  The rationale behind these results is clear.  Because the 
numbers of identification slots and total slots increase as the number of tags increases, the slot 
system efficiency is almost flat.  In the DSCT and EDSCT schemes, each query cycle allocates 
at least two time slots for tags to respond.  Some of the slots may identify the tag when no 
collision occurs.  However, the rest of the slots may receive multiple responses from tags or 
no response.  In this case, the slot may collide or be idle.  Therefore, the slot utilization in the 
DSCT and EDSCT schemes is poorer than that in the BSCTTA scheme, in which only two slots 
are allocated for each query, and the IDSCTTA scheme, in which no idle slot is allocated for 

Fig. 15.	 (Color online) Comparison of slot system 
efficiency for group distribution and a g value of 20%.

Fig. 16.	 (Color online) Comparison of slot system 
efficiency for group distribution and a g value of 50%.

Fig. 13.	 (Color online) Comparison of slot system 
efficiency for uniform distribution.

Fig. 14.	 (Color online) Comparison of slot system 
efficiency for group distribution and a g value of 10%.
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each query.  The slot utilization in the EDSCT schemes is poorer than that in the DSCT schemes 
at the same Cmax value because the EDSCT schemes always allocate a higher number of slots 
during the identification process.

Figures 14–16 reveal that the DSCT and EDSCT schemes significantly outperform the 
BSCTTA scheme in terms of the slot system efficiency when the tag IDs have a group 
distribution irrespective of the group size g.  The rationale for this is clear.  In a group 
distribution, the tags are sibling leaves in the identification tree and cause many collision 
slots during each query prefix.  Thus, the number of idle slots is reduced, which results in 
both the DSCT and EDSCT schemes having a superior slot system efficiency than that in the 
case of uniformly distributed tag IDs.  Furthermore, both the DSCT and EDSCT schemes 
exhibit similar slot system efficiencies (approximately 90 to 110%) regardless of the value of 
N.  Note that the IDSCTTA scheme also exhibits a similar slot system efficiency to the DSCT 
scheme because the number of idle slots decreases considerably when the tag IDs have a group 
distribution.

5.	 Conclusions

The rapid technical progress and widespread application of RFID sensing techniques have 
produced novel solutions in different fields of applications, which are very promising for 
future IoT-rich sensing applications.  However, developing a highly efficient tag identification 
process for large-scale RFID systems is a crucial and very challenging task.  Many collisions 
may occur during the tag identification process due to the nature of large-scale RFID systems.  
Identification protocols, such as the BSCTTA, can reduce the numbers of query cycles required 
and occurring collisions by allocating two slots for tags to respond on the basis of collision 
details obtained in the previous query cycle.  In this study, we extended the previous DSCT 
scheme, in which the number of slots allocated in each query cycle is dynamic and depends on 
the number of collision bits detected in the previous query cycle, to manage both consecutive 
and nonconsecutive collision situations.  To evaluate the performance of the proposed scheme, 
we conducted a series of experiments on both uniform and group distributions.  Simulation 
results reveal that the proposed EDSCT scheme significantly outperforms the BSCTTA scheme 
in terms of the average number of queries required, the average number of transmission bits 
required, and the delay time regardless of the distribution of tag IDs.  The proposed scheme 
also outperforms the BSCTTA scheme in terms of the slot system efficiency when tag IDs 
exhibit a group distribution.  The proposed EDSCT scheme exhibits better performance than 
the DSCT scheme in terms of the average number of queries required, the average number of 
transmission bits required, the delay time, and the slot system efficiency when tag IDs exhibit 
a uniform distribution.  Furthermore, both the DSCT and EDSCT schemes outperform the 
IDSCTTA scheme in terms of the average number of transmission bits required and the delay 
time regardless of the distribution of tag IDs.  For a group distribution, the EDSCT scheme 
requires similar average numbers of queries and transmission bits and has a similar delay time 
and slot system efficiency to those in the DSCT scheme.  Therefore, the EDSCT scheme has 
better performance than the BSCTTA, IDSCTTA, and DSCT schemes.
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