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 In this study, we examine an adaptive two-stage sliding mode control scheme for an 
electrostatically actuated micro-electromechanical (MEM) actuator.  The objective of the 
control scheme is to regulate the position of the movable plate in the MEM actuator by voltage 
control.  For accurate measurements of system states, direct detection is possible by means of 
an existing sensing technique.  Two main steps are applied to design the closed-loop control 
system.  Firstly, for the dynamical model of the MEM actuator, a normalized time-scale 
approach and a nonlinear state transformation are introduced.  Then, the adaptive two-stage 
sliding mode control is designed to achieve the control goal.  The stability of the closed-loop 
control is proven and numerical studies to verify the control scheme are also performed.

1. Introduction

 Nowadays, the electrostatic micro-electromechanical (MEM) actuator is one of the 
most commonly applied devices in practical use, such as in micromirrors, microresonators, 
microswitches, and accelerometers.(1)  Owing to the simplicity of the structure, the rapid 
response, and the low power consumption, parallel-plate-type electrostatic MEM actuators are 
mostly used.  The one-dimensional parallel-plate electrostatic MEM actuator consists of two 
fixed plates at the top and bottom of the component and a moving plate in an electrical field.  
Because the capacitance is directly related to the position of the moving plate, a positional 
sensor that uses capacitance measurements to measure displacements can be developed.(2)  The 
positional regulation of the electrostatic MEM actuator is important in these applications.  To 
solve the control problem of the parallel-plate-type microactuator, both charge control(3–6) and 
voltage control(7,8) approaches are utilized.  In practical applications, voltage control is more 
easily implemented than charge control.(9)  
     Many studies have been published on voltage control approaches, such as static and dynamic 
output feedback,(10) nonlinear control,(11) passive control,(12) back-stepping control,(13) gain 
scheduling H∞ control,(14) linear parameter-varying control,(15,16) adaptive fuzzy control,(17) an 
artificial algorithm method,(18) and extended state observer-based control.(9,19)  Among these 
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studies, in Ref. 10, four output feedback control strategies were investigated by the input-output 
linearization approach.  In Refs. 11 and 13, Lyapunov-based back-stepping design methods 
were used to propose a nonlinear control scheme for an electrostatic microactuator.  In Ref. 14, 
gain-scheduling H∞ control by a linearized model was reported, and linear time-varying 
techniques were applied to the voltage control problem in Refs. 15 and 16.  Intelligent control 
methods, such as adaptive fuzzy control(17) and the artificial algorithm(18) approach, were 
introduced for the development of control strategies for electrostatic MEM actuators.  In Refs. 9 
and 19, active disturbance rejection control schemes, which consist of an extended state observer 
and PD-type control, were developed in the presence of external disturbance and noise.  
 Compared with previous studies,(10,11,13) the novelty of this study is the introduction 
of an adaptive two-stage sliding mode control scheme for the positional regulation of a 
parallel-plate-type electrostatically actuated MEM actuator.  There are three steps to develop 
the control scheme.  Firstly, the dynamical model for the MEM actuator is normalized by 
means of a normalized time-scale approach.  Then, a nonlinear state transformation is defined 
to transform the normalized dynamical model to a nearly controllable canonical form with a 
nonlinear cubic-power term.  An adaptive two-stage sliding mode control scheme based on the 
nearly controllable canonical form is introduced.  In the designed adaptive sliding mode control 
scheme, two types of sliding function are involved.  The level 1 sliding function is defined 
by the nonlinear transformed states of the dynamical system, where the asymptotic stability 
of transformed states is inherent.  The level 2 sliding function is formed by the level 1 sliding 
function, with which finite-time stabilization is guaranteed.  The proposed sliding mode control 
scheme also includes time-varying feedback gains, which are updated according to suitable 
adaptation rules.
 This paper is organized as follows.  The dynamical model of an electrostatic MEM 
microactuator is introduced and the normalized time-scale approach and nonlinear state 
transformation are also discussed in Sect. 2.  The design of the control scheme is outlined and 
the guaranteed stability is proven in Sect. 3.  In Sect. 4, numerical studies made to illustrate the 
effectiveness of the present scheme are reported.  Finally, conclusions are given in Sect. 5.

2. Dynamical Model of Electrostatic Microactuator

 The one-dimensional model of an electrostatic MEM microactuator is shown in Fig. 1.  This 
microactuator has three parallel plates with a middle moving plate (electrode) and top and 
bottom fixed plates.  
 In the system, the capacitance of the microactuator is C(t) = εA/y(t), where ε and A are 
the permittivity and the cross-sectional area of an electrode, respectively.  The attractive 
electrostatic force from the top electrode is f(t) = Q2(t)/2εA, where Q(t) is the charge on an 
electrode.  The dynamical equation of the model depicted in Fig. 1 is given as(20) 
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where y(t) is the gap between the moving and bottom electrodes.  y0 is the zero-voltage gap.  M, B, 
and K are the mass of the moving electrode, the damping ratio, and the linear spring constant, 
respectively.  I(t) and V(t) are the current in the device and the control voltage, respectively.  The 
state vector of the system is [ ] 3

0( ) ( ) ( ) , ( ) >0TQ t y t y t R y t δ∈ ≥ .  δ0 denotes the thickness of 
the insulating layer coated on the bottom electrode; δ0 is helpful in preventing a singularity in 
the mathematical model.  For the accurate measurement of system states, the direct detection 
of the velocity ( )y t  of the moving electrode is possible.(21)  The charge Q(t) on the device can be 
inferred from the measurements of voltage and capacitance.  It is possible for the sensing system 
to detect the voltage between the moving and bottom electrodes and the capacitance across the 
device.(22)  
 For convenience in performing the normalized time scaling of Eq. (1), we defined a positive 
constant σ and propose the following normalized terms:

 , ,t AR A MRτ σ α σε β σε σ= = = . (2)

 Moreover, let u(τ) = V/βR be the normalized control input.  The normalized state vector for Eq. (1) 
is chosen as

 [ ] [ ]1 2 3( ) ( ) ( ) ( ) T TZ z z z Q y yτ τ τ τ β β β= =  . (3)

 Then, the normalized state equation of an electrostatic MEM microactuator is described as
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where 2
0 0ˆ, 2 , , andn n nK M B M y yω ξω ω ω σ α= = = = .

 The goal of the controlled microactuator is to regulate the state vector Z(τ) to the constant 
desired state vector Zd.  For the system given by Eq. (4), the constant vector Zd is defined as

Fig. 1. Model of an electrostatic microactuator.
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 [ ] ( )21 2 3 0ˆ( ) 0.5 0
TT

d d d d d dZ z z z q q yτ ω = = − +  
, (5)

where z1d = qd is the normalized desired charge.  z2d and z3d are the normalized desired 
gap and velocity, respectively.  It can be verified that the normalized desired charge is 

2
0 2ˆ2 ( )d dq y zω= − , when the normalized gap z2(τ) reaches the normalized desired 

gap z2 = z2d.  To this end, the control objective of the position-regulating problem for the 
electrostatic MEM microactuator is to determine an appropriate control scheme u(τ), such that 
the error state vector Z(τ) − Zd converges to zero, that is, 3 1lim ( ( ) ) 0dZ Z

τ
τ ×

→∞
− → , for any initial 

error state vector Z(0) − Zd.
 To develop the control scheme of the position-regulating problem, we further consider the 
following nonlinear state transformation: 
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. (6)

 From Eq. (6), it is easy to check that the transformed state vector X(τ) converging to zero  
implies that the state vector Z(τ) converges to the constant desired state vector Zd.  Thus, the 
positional regulation of the system given by Eq. (1) is equivalent to the state stabilization 

problem.  That is, 3 1lim ( ) 0X
τ

τ ×

→∞
→  for any initial transformed state vector X(0).  

 In addition, by considering the system uncertainty Δ(τ) and external disturbance d(τ), the 
transformed state equation of the microactuator system can be presented as follows using the 
state transformation in Eq. (6):
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where the appended control input is 1( ) ( ) ( )U z uτ τ τ= − .  

3. Design of Control Scheme

 In the following, the rule of thumb for the adaptive two-stage sliding mode control scheme 
is introduced.  There are two basic steps to stabilize the system in Eq. (7).  First, two types 
of sliding function are chosen.  The level 1 sliding function s(τ) is defined by the transformed 
states xi(τ), i = 1, 2, 3, where the desired stabilization of transformed states is embedded in 
s(τ) = 0 and ( ) 0s τ = .  The level 2 sliding function σ(τ) is formed by the level 1 sliding function 
s(τ), with which the finite-time stabilization of s(τ) is guaranteed under σ(τ) = 0 and ( ) 0σ τ = .  
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Secondly, the adaptive sliding mode control law ( ) ( ) ( )eq swU U Uτ τ τ= +  is designed so that 
σ(τ) = 0 and ( ) 0σ τ = ; then, any initial value of s(τ) converges to and remains at the origin even 
in the presence of system uncertainty Δ(τ) and external disturbance d(τ).  When the status of 
s(τ) = 0 is maintained, it means that the trajectory in phase space for the transformed states 
given by Eq. (6) is stabilized under the embedded converging motion.  Then, the system in Eq. (7) 
is stabilized.
 The level 1 sliding function s(τ) is defined as
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where γ is the design parameter and λi, i = 1, 2, 3 are positive parameters.  They are calculated 
from

 [ ]3 2 1
TB Pλ λ λΓ = = − , (9)

where the symmetric matrix P is obtained by solving the following algebraic Riccati equation:
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θ is the design parameter and I2×2 and I3×3 are the identity matrices.  When the conditions 
s(τ) = 0 and ( ) 0s τ =  are satisfied, ( ) 0s τ =  can be expressed as

 1 3 1 2 1 1 1( ) ( ) ( ) ( ) 0x x x xτ λ τ λ τ λ τ+ + + =   . (12)

 Because the characteristic equation c3 + λ3c2 + λ2c + λ1 =0 is Hurwitz, the asymptotic 
stability of Eq. (12) is guaranteed.  
 The level 2 sliding function σ(τ) is defined as

 
0

( ) [ ( )] [ ( )]p q m qs k s d
τ

σ τ τ τ τ= + ∫ , (13)

where k > 0, p > q, p > m, m + q > p, and p, q, m are positive and odd integers.  For σ(τ) = 0 and 
( ) 0σ τ = , the finite-time stability of s(τ) is obtained as follows.  Taking the time derivatives with 

respect to τ of Eq. (13) yields
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 Letting 1( ) [ ( )] qsφ τ τ= , we obtain
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 From Eq. (15), there exists a finite time, τ = Ts ≥ 0, such that the level 1 sliding function s(τ) 
moves from s(0) to s(Ts) = 0.  The finite time Ts is given by

 ( )[ (0)]
( )

p m q
s

pT s
k p m

−=
− . (16)

 At this point, it is concluded that the object of the control scheme design is to ensure that 
σ(τ) = 0 and ( ) 0σ τ =  are satisfied so that s(τ) = 0 approaches the origin in a finite time and 
remains there.  Then, conditions s(τ) = 0 and ( ) 0s τ =  are satisfied such that the transformed 
states xi, i = 1, 2, 3 tend to zero asymptotically according to Eq. (12).  

Theorem 
 If the input control u(τ) in the system in Eq. (7) in the nonlinear feedback control scheme is 
designed to be

 1( ) ( ) ( )u U zτ τ τ= − , (17)

the appended control input U(τ) has the form
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where s(τ) and σ(τ) are defined in Eqs. (8) and (13), respectively.  The positive and adaptive 
feedback gains Ki(τ), i = 0, 1, 2, 3 are updated according to the following adaptation algorithms:

 ( ) 1
0 0( ) ( ) ( ) 0p qK sτ ρ σ τ τ −= ≥ , (19)

 ( ) 1( ) ( ) ( ) ( ) 0, 1, 2,3p q
i i iK x s iτ ρ τ σ τ τ −= ≥ = , (20)
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where Ki(0) = 0 and ρi, i = 0, 1, 2, 3 are the positive constants determined in the adaptation 
process.  Then, the level 1 sliding function σ(τ) will be asymptotically stabilized and remain 
at σ(τ) = 0 and ( ) 0tσ = .  It follows that the level 2 sliding function s(τ) converges to zero in the 
finite time Ts defined in Eq. (16).  When the status of s(τ) = 0 is maintained, the trajectory in 
phase space for the transformed states x(τ)i, i = 1, 2, 3 of the system in Eq. (7) is stabilized in the 
inherent converging motion given by Eq. (12), where the positive parameters λi, i = 1, 2, 3 are 
obtained from Eqs. (9)‒(11).  Then, the position regulation control problem of the system in Eq. (4) 
can be solved.

Proof
 The Lyapunov candidate function is selected to be

 2 2
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1( ) ( ) ( ( ) ) 0
2 2

n

i i
ii

pV t t K t K
q
γσ
ρ=

= + − ≥∑ , (21)

where , 0,1,2,3iK i =, i = 0, 1, 2, 3 are sufficiently large positive constants and satisfy the following 
inequalities:

 2
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 Taking the derivative of Eq. (21) with respect to τ along with the solutions of the system in Eq. (7), 
the two sliding functions Eqs. (8) and (13), and the control law in Eq. (17), we obtain
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Substituting Eqs. (17)‒(20) into Eq. (21) with the criteria in Eq. (22) yields 
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 Therefore, the condition of 0V <  is satisfied.  The level 2 sliding function σ(τ) can reach 
σ(τ) = 0 and ( ) 0σ τ =  asymptotically.  Then, the level 1 sliding function s(τ) approaches zero in 
the finite time Ts given by Eq. (16).  The conditions s(τ) = 0 and ( ) 0s τ =  are satisfied such that 
the transformed states xi(τ), i = 1,2,3  defined in Eq. (12) tend to zero asymptotically.  It is thus 
proven that the positional regulation is accomplished.

4. Numerical Studies and Discussion

 In the following section, the effectiveness of the proposed adaptive two-stage sliding mode 
control scheme for the positional regulation of the system in Eq. (4) is verified.  The fourth-order 
Runge-Kutta method is used to implement the closed-loop systems with a time step size of 10−4 
in numerical simulations.  
 The normalized natural frequency of the system is ω = 1.0 and the damping ratio is ξ = 0.01.  
The normalized zero voltage gap is taken as y0 = 1.0.  The positional regulation of the system in 
Eq. (4) is performed for z2d = 0.6.  The initial conditions of the system in Eq. (4) are chosen as 
z1(0) = 0.25, z2(0) = 1.0, and z3(0) = 0.  For the adaptive two-stage sliding mode control scheme 
in Eq. (18) associated with Eqs. (8)‒(11), (13), (19), and (20), the positive constants are set as γ = 0.75, 
θ = 0.2, p = 11, q = 7, m =9, k = 2, ρ0 = 10,  ρ1 = 40, and ρ2 = ρ3 = 125.  It is presumed that the 

system uncertainty and external disturbance are ( )2 2 2
1 2 3( ) 0.1sin ( ) ( ) ( )z z zτ τ τ τ∆ = + +  and d(τ) 

= 0.05cos(πτ), respectively.  In the case of the normalized desired gap, z2d = 0.6, the normalized 
desired charge is z1d = 1 0.8 0.8944dz = = = 0.8944.  The time responses for the level 1 and 2 sliding mode 
functions and the state trajectory of the controlled system in the phase plane (s(τ), σ(τ)) are 
shown in Fig. 2.  It is shown that σ(τ) converges to zero within a finite time; thus, s(τ) = 0 and 
( ) 0s τ =  are realized after σ(τ) = 0 and ( ) 0σ τ = .  

Fig. 2. (Color online) Time responses of s(τ), σ(τ), and state trajectory in (s(τ), σ(τ)) plane for z2d = 0.6.
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Fig. 3. Time responses of Ki(τ), i = 0, 1, 2, 3 and u(τ) for z2d = 0.6.

Fig. 4. Time responses of xi(τ), i = 1, 2, 3 for z2d = 0.6.

 Figure 3 shows the time responses of the adaptive feedback gains Ki(τ), i = 0, 1, 2, 3 and the 
control input u(τ).  When compared with the past work(23) for the robust controller design of an 
electrostatic MEM actuator, the proposed control input u(τ) is clearly continuous and chatter-free 
in the appearance of system uncertainties and external disturbances.  Figure 4 demonstrates 
the time responses of transformed states xi(τ), i = 1, 2, 3.  It is clear that the system in Eq. (7) is 
stabilized.  Figure 5 depicts the time responses of the normalized charge, z1(τ), the normalized 
gap z2(τ), and the normalized velocity z3(τ).  When z2(∞) → z2d = 0.6 is achieved, the problem of 
the positional regulation of the system in Eq. (4) is solved.
 In the other case of the normalized desired gap, z2d = 0.2, the normalized desired charge is 
z1d = 1 1.6 1.2649dz = = = 1.2649.  Figure 6 depicts the time responses of s(τ), σ(τ), and the state trajectory of 
the controlled system in the s(τ) vs σ(τ) plane.  In Fig. 7, it is shown that the positional regulation 
of the system in Eq. (4) is completed for z2(∞) → z2d = 0.2.  
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Fig. 7. Time responses of zi(τ), i = 1, 2, 3 for z2d = 0.2.

Fig. 5. Time responses of zi(τ), i = 1, 2, 3 for z2d = 0.6.

Fig. 6. (Color online) Time responses of s(τ), σ(τ), and state trajectory in (s(τ), σ(τ)) plane for z2d = 0.2.
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 The proposed control scheme can be implemented similarly to those in previous studies.(21,22)  
The direct detection of the velocity ( )y t  for the moving electrode is possible by the accurate 
measurement of system states.(21)  The charge Q(t) on the MEM actuator can be inferred from 
the measurements of voltage and capacitance.  The sensing system can be set to sense the 
voltage between the moving and bottom electrodes, and the capacitance across the device.(22)  

5. Conclusion 

 In this study, an adaptive two-stage sliding mode control scheme for achieving the positional 
regulation of an electrostatic MEM actuator has been proposed.  To develop the control scheme, 
a normalized time-scale approach and a nonlinear state transformation are applied to the 
dynamical model.  It is proved that the proposed control scheme can guarantee the regulation 
of the states of the system in Eq. (4) to the desired values.  Numerical studies are performed for 
two cases to demonstrate the effectiveness of the presented control scheme.
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