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	 Advances in computer vision (CV) have led to an increasing market for biometric recognition 
systems.  However, as more users are registered in a system, its expanding dataset will increase 
the system’s response time and lower its recognition stability.  As mentioned above, we propose 
a new high-performance algorithm suitable for embedded finger-vein recognition systems.  
First, the semantic segmentation based on DeepLabv3+ filters out the background noise and 
enhances processing stability.  The adaptive symmetric mask-based discrete wavelet transform 
(A-SMDWT) and adaptive image contrast enhancement were used in the preprocessing of 
images, and feature extraction was performed through the repeated line tracking (RLT) method.  
Next, the histogram of oriented gradient (HOG) of the image was computed, after which a 
support vector machine (SVM) was then used to train a classifier.  Finally, a self-established 
finger-vein image dataset as well as a public dataset was implemented in the Raspberry Pi 
platform, which is a low-level embedded system.  The experimental results indicated that the 
proposed system offers advantages such as a high accuracy rate, low device cost, and fast 
response time.  Therefore, the three major issues that were encountered in previous embedded 
finger-vein image verification systems were mitigated in this work.

1.	 Introduction

	 Biometric technologies utilize the distinct biological features of an individual for 
identification purposes.  Therefore, digital technologies can be used to solve underlying 
problems such as forgetting one’s password.  Currently available biometric techniques include 
techniques utilizing the recognition of an individual’s veins,(1–11) face,(12,13) palmprint/shape,(14) 
gait,(15) iris,(16) and fingerprint.  In general, facial recognition involves the capture of an 
individual’s facial features through a visible light camera.  The process of recognition is easily 
influenced by factors such as the person’s facial position or angular movements, wavering 
light sources, and camera resolution.   In addition, wrinkles that develop with age or cosmetic 
surgery can lead to errors in facial recognition.  In fingerprint and palmprint recognition, 
physical contact is required for print acquisition.  However, the secretion of grease and sweat 
and the presence of dirt on the hands of users can impact the recognition process because 
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of the acquisition of poor-quality print patterns.  Moreover, as friction ridge impressions are 
external features of the body, they can easily be reproduced by people with ulterior motives.  
Therefore, regarding the use of friction ridge impressions, there is a risk of finger/palmprints 
being reproduced.  Meanwhile, even though iris recognition offers many features that increase 
its recognition accuracy, it uses infrared (IR) light to scan an individual’s iris and acquire its 
features, which can cause eye discomfort in the long run.  The biological imaging recognition 
techniques share a common element insofar as they all involve the capture of an individual’s 
external features, which explains why there are various external factors that can influence their 
reliability.  Moreover, the cost and size of a given biometric device also determine whether it 
will be adopted.  In contrast, the veins are a more reliable feature of an individual.  Compared 
with other recognition methods, the vein recognition offers a lower risk of harm or forgery since 
the veins are located beneath the skin, and this technology allows an individual’s features to 
be acquired using smaller devices.  In addition, vein patterns do not change with age, and even 
identical twins have different vein patterns.(1–11)

	 Novel recognition techniques developed in recent years mostly utilize biological 
imaging.(1–11,15–32)  Given that there are many types of biometrics, a technique’s ability to 
replace others and be accepted by the market is determined by three major criteria, namely, high 
accuracy rate, low equipment cost, and fast response time.  For vein recognition to be widely 
accepted, the equipment cost must be lowered, although low-resolution cameras will result 
in poor image quality.  In addition, increasing the number of people in a recognition dataset 
will lead to the inclusion of individuals with similar recognition features, which will lower 
the system’s response time and stability, thus increasing the difficulty of realizing practical 
application.  Certain vein recognition devices currently in use require users to press their 
fingers directly onto a sensor.  However, grease on the fingers may contaminate the sensor and 
raise sanitary concerns.  Therefore, it is important to develop recognition devices that involve 
contactless acquisition of user data.   In this work, we addressed the three important issues 
mentioned above, i.e., (1) low-cost and contactless devices, (2) high accuracy rate, and (3) real-
time processing.
	 In recent years, the accuracy rates and response times of biometric systems have become 
important indicators and have led to many studies on vein recognition methods.  Wang et al.(2) 

proposed a method that combines the Radon transform and eigenvalues.  Given that the input 
device was a capacitive press contact device that might entail sanitary concerns, and that there 
were only ten subjects collected in the dataset, the method lacked experimental objectivity (that 
is, the recognition stability and response time could not be determined).  Mulyono and Horng(3) 
used a conventional low-cost network camera as their image acquisition device.  When near-
infrared (NIR) light with a wavelength range of 760–1000 nm is passed through a finger, the 
hemoglobin beneath the skin absorbs the IR light and creates an image in which vein patterns 
are visible as shadows.  Hence, the device used an IR LED array as its light source.  To avoid 
the impact of light sources nearby, the camera was equipped with an IR filter that allowed IR 
light with specific wavelengths to pass through while filtering out visible light.  However, the 
drawback of the device was its slower response time.  Im et al.(4) utilized a NIR camera to study 
the use of fixed feature points to improve recognition speed.  However, the device is costly.  
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The algorithm proposed by Miura et al.(5) presented the characteristics of grayscale images 
and repeatedly tracked the veins of a finger to identify the finger-vein pattern.  Although this 
algorithm showed excellent recognition results, the computing time was long.  Zhang et al.(6) 
utilized curvelet extraction to obtain vein patterns.  However, if low-resolution images 
are used, noise will also be extracted during feature extraction, which makes the method 
unsuitable for low-cost embedded devices.  Liu and Song(7) proposed an embedded platform for 
implementing a finger-vein recognition system.  Bicubic interpolation was used to reduce the 
spatial resolution and increase its response time.  However, this approach decreased the amount 
of vein pattern information and affected feature extraction results.  Moreover, the physical 
device had a high cost, large memory requirement, and high computational complexity.  In 
Ref. 10, the low-low (LL) bands in a discrete wavelet transform (DWT) are a means of reducing 
noise and computational complexity; however, the wavering light source during feature point 
acquisition affects the accuracy.  Hsia proposed the utilization of multiple feature points for 
regions of interest (ROI) positioning as well as a recognition method based on the concept of 
multi-image quality assessment (MQA)(11) in a recent study.  As in other similar studies,(10) 
the device was not implemented using a low-cost embedded system and was therefore costly.  
Syarif et al.(17) proposed an integrated enhanced maximum curvature method that used the 
histogram of oriented gradient (HOG) feature descriptor to retain image quality.  Even though 
the authors combined the method with a support vector machine (SVM) to train a classifier, 
the recognition results were poor.  Qin et al.(18) proposed a capillary-directed convolution for 
predicting capillary patterns, in which the Hausdorff distance was used to analyze the spatial 
similarity between vein samples.  Nevertheless, this method required a large memory and a 
long processing time.  Yang et al.(19) suggested the use of a Gabor filter to enhance the stability 
of recognition.  However, the computational complexity of certain processes through which 
the finger is distinguished from the background means that these processes take a long time, 
making them unsuitable for embedded platforms.  In Ref. 20, a neural network (NN) was used 
to perform matching in finger-vein recognition.  However, the high complexity of the operation 
resulted in slow response times.  The vein recognition system proposed by Yu et al.(21) used 
repeated iteration to determine the direction of capillaries and employed the Sobel edge detector 
to enhance the capillary patterns.  Their dataset only had 25 subjects, and the experiment 
was somewhat subjective owing to the low number of subjects, leading to concerns about the 
stability of the system for the recognition of more subjects.  The two-dimensional edge detection 
method presented in Ref. 22 generated better results and used image segmentation methods 
to process finger-vein images.  Even though this approach was able to reduce the processing 
complexity, the accuracy was unsatisfactory for low-resolution images.  A modified binary tree 
model to enhance the performance of vein recognition has also been proposed.(23)  However, the 
overall system also exhibited higher computational complexity.  Lu et al.(24) presented a new 
vein recognition system that simultaneously acquired and integrated data from two vein images 
in order to enhance its matching performance.  The disadvantage of the system was the high 
cost of producing the corresponding device.  The same group also presented a finger-vein ROI 
positioning method for reducing computational load.(25)  The method included edge detection 
and directional correction techniques that acquire vein regions.  However, the method used 
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the K-nearest neighbors (KNN) approach to build its classifier and thus required considerable 
physical resources of a deep neural network (DNN) integrated with conventional features 
and an SVM to enhance the accuracy of input vein images with poor quality.  Moreover, the 
training required by the system consumed a lot of time, making the system unsuitable for real-
time applications.  Qi and El Yacoubi(26) proposed a DNN for representation learning to predict 
image quality using very limited knowledge.   Das et al.(27) proposed a deep learning (DL) 
method based on a convolutional neural network (CNN).  While the method exhibited a stable 
recognition rate, its huge computational complexity necessitated the use of high-end graphics 
processing units (GPUs), making it unsuitable for the development of low-cost embedded 
platform applications.
	 To overcome the problems encountered by the aforementioned authors, we proposed an 
embedded vein verification system that uses NIR and low-cost RGB cameras in conjunction 
with an embedded system (the Raspberry Pi 3 Model B platform).  First, the finger in the 
foreground is separated from the background on the basis of DL, so that vein images of fingers 
in a complex external environment can be acquired in a stable manner.  Next, the spatial 
resolution was reduced by means of an adaptive symmetric mask-based discrete wavelet 
transform (A-SMDWT), and ROIs with localized vein patterns were identified to reduce the 
noise, computational load, and system response time.  Afterwards, biomedical image contrast 
techniques were used to enhance the vein pattern features, which were acquired through the 
repeated line tracking (RLT) method.   Then, HOG of the image is computed, after which a 
SVM is used for classification.  The completion of these steps yielded the desired vein patterns 
and increased the speed of the overall system in terms of embedded image recognition and 
comparison.
	 The rest of this paper is organized as follows.  Section 2 outlines the proposed embedded 
vein verification system with a line tracking, an HOG, and an SVM.  Section 3 provides the 
experimental results.  Finally, conclusions are given in Sect. 4.

2.	 Low-complexity Vein Verification Technique

	 After a rigorous literature review and analysis, we modified algorithms for computer vision 
(CV) based on the techniques discussed in previous studies and implemented the algorithms 
in the Raspberry Pi embedded platform.  We achieved better data processing and performance 
than those in the literature.  As shown in Fig. 1, the research method consisted of four stages, (1) 
front-end hardware devices (including vein acquisition); (2) preprocessing of images (including 
image enhancement, noise removal, and normalization); (3) postprocessing of images (including 
feature extraction); and (4) verification and matching mechanisms.

2.1	 Semantic image segmentation

	 When veins are illuminated by NIR light, the hemoglobin in the red blood cells absorb 
the light and appear as shadows [Fig. 2(a)].  Finger-vein images were acquired through this 
principle, as shown in Fig. 2(b).   Since the vein images in this work were acquired using a 
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low-cost RGB camera, the image was blurred, and energy loss from important feature points 
occurred during feature extraction.  Therefore, in the acquisition of biological patterns, it is 
crucial to enhance the image quality through preprocessing.  Furthermore, displacement may 
occur during vein image acquisition.  To retain useful information from the foreground (veins) 
and overcome the problem of displacement, the semantic segmentation using DeepLabv3+ and 
ROI positioning was established, as shown in Figs. 2(c) and 2(d).
	 At present, both methods are subject to background noise or exposure.   In this work, we 
propose the framework based on semantic segmentation,(33) as shown in Fig. 3, and a model 
suitable for finger veins is trained.  This method uses a semantic segmentation network, which 
is described as follows: (1) The encoder is composed of deep convolutional neural networks 
(DCNNs).  The problem of object scaling can be overcome by using atrous convolution, 
convolution layers of different scales, max pooling layers for feature extraction, and sampling 
layer by layer.  (2) Bilinear upsampling is carried out on the features of the image provided by 
the encoder; 1 × 1 and 3 × 3 convolution layers are utilized to obtain the final segmentation 

Fig. 1.	 Flowchart of the proposed system.

Fig. 2.	 (Color online) NIR vein image acquisition: (a) schematic of the method of acquisition; (b) image acquired 
by the system; (c) via DeepLabv3+; (d) acquired ROI image (90 × 220).

(a) (b) (c) (d)
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of finger images through quadrilinear upsampling in a decoder.  DCNNs of DeepLabv3+ have 
Mobilenetv2.  The average intersection ratio of Xception is higher than that of Mobilenetv2, 
but Xception comprises 20 times more training parameters than Mobilenetv2.  Therefore, 
Mobilenetv2 has a shorter verification time, so it is selected as the DCNN architecture for this 
work.
	 First, an upper point and a lower point on the left side of a finger were identified.  The 
inclination of the finger was determined through these two points.  Next, Eq. (1) was used 
to calculate and correct the angle of inclination, as this significantly reduces the problem of 
recognition errors caused by finger displacement.

	
1 2
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 
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	 We proposed an SMDWT with LL-band matrix coefficient for image preprocessing.  
Neighboring pixels were used to compute the two-dimensional convolution products, as shown 
in Fig. 4(a).  The A-SMDWT consisted of the 5/3 coefficient(34) and the 9/7 coefficient,(35) and 
the complexity of each image was calculated from their standard deviation (SD) and a specific 

Fig. 3.	 (Color online) Framework of semantic segmentation.
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threshold.  The 9/7 coefficient is used when the SD of the image exceeds the threshold, as this 
indicates a high image frequency;(36) the 5/3 coefficient is used when the SD of the image is 
lower than the threshold, as this indicates a lower image frequency.(36)  This method not only 
compiles the effective energy while filtering out noise, but also reduces spatial resolution while 
decreasing the response time of a system.
	 When a device is capturing images, the contrast of images may differ from one image 
to another owing to the placement of the user’s finger and the stability of the light source.  
Therefore, we utilized an adaptive histogram(32) to enhance the dynamic range of the vein 
images, thereby increasing the contrast and obtaining better results during feature extraction as 
well as enhancing the accuracy of recognition and matching.  An image acquired through this 
method is shown in Fig. 4(b).

2.2	 Feature extraction

	 From the vein images, it can be seen that the veins appear as black lines after absorbing IR 
light (i.e., the grayscale level of the veins is lower than that of the surrounding tissue).  From the 
perspective of digital imaging, the veins can be regarded as the valley of an image, in which 
the degree of darkness determines the depth of the trough.   Therefore, vein patterns can be 
analyzed by detecting the troughs, as shown in Figs. 5(a) and 5(b).
	 We employed the RLT method, which is a method of tracking vein patterns, as described in 
Ref. 5.  The method tracks the patterns of vein capillaries by detecting the troughs of the image.  
First, a tracking point was constructed to detect troughs (veins) in nearby pixels; if a trough was 
detected, the tracking point was specified and the tracking resumed, after which the tracking 
results obtained were stored in a defined space.   If no troughs were present, another tracking 
point was constructed and vein patterns were obtained from the defined space.  The steps are 
described below.
	 Step 1: An initial tracking point is specified as (xs, ys) and is determined by uniform random 
numbers.  The moving direction attribute is defined as Dlr, Dud and prevents the tracking point 
from moving into paths with excessive curvature.  Dlr, Dud are determined as follows.

Fig. 4.	 (Color online) Vein acquired through A-SMDWT: (a) LL-band (45 × 110); (b) adaptive image contrast 
enhancement.

(a) (b)
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Here, Rnd(2) denotes a uniform random number of 0 – n.
	 Step 2: The defined space Tc is initialized and a pixel Nc is defined, which ensures that the 
tracking point is within the finger and prevents the duplication of previous tracking points.  Nc 
is defined as 

	 ( , )c c c cf rN R N x yT= ∩ ∩ ,	 (3)

where Nr(xc, yc) denotes a neighboring pixel of the tracking point, as shown in
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where plr and pud are the selection probabilities, and their optimum values are 50 and 25, 
respectively, based on test results.  N3(D)(x, y) can be defined as

( ) ( ) ( ){ }3 ) , , , , ,( )( , x y x y y x x y y xN D x D y D D x D D y D D x D D yD x y = + +   − + − +   + + + + .	 (5)

	 Afterwards, the tracking points are stored in the defined space Tc, and Vl is then used to 
determine if a tracking point has moved.  If Vl is positive, then Step 2 is repeated after moving 
the tracking point.  If Vl is zero or negative, then Step 3 is repeated, as this indicates that the 
current tracking point is not on a vein.
	 Step 3: Repeat Steps 1 and 2.
	 Finally, the vein patterns are obtained from the self-defined space.  The results of the feature 
extraction are shown in Fig. 5(c).

(a) (b) (c)

Fig. 5.	 (Color online) Finger-vein cut-off and distribution of gray levels: (a) distribution of gray levels; (b) position 
of cut-off area; (c) feature extraction result.
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	 The HOG method with the gradient structure characteristic of local shape has a good 
performance, so it produces good results when applied to vein structures.  It is used to obtain 
the feature descriptors from the RLT images with the ROI as follows.  First, the RLT image 
was segmented for HOG testing; the image was segmented to N × N pixels (N = 8), and 2 × 2 
blocks were grouped, after which the blocks were moved to perform the computation.  Then, 
the features of each block were extracted.  The most common way to calculate pixel gradients 
for each cell is to use Gaussian gradient templates for convolution.  Although more complex 
convolution kernels have been used in Ref. 37, they are not better than using horizontal and 
vertical convolution kernels.  In this work, we used vertical and horizontal directions, Dx = [−1, 0, 1] 
and Dy = [−1, 0, 1]T, respectively, when computing convolution kernels, as shown in Eq. (6).  
Next, the histogram division of the processed gradient image was performed.  It has been 
found that the effect is best when 180 degrees of orientation are divided into nine bins.  This 
step utilizes the gradient to obtain a weighted vote on the directions of the histogram.  The 
histograms in each cell are obtained, and the histograms of four cells are strung into a column, 
after which the combined histograms are normalized.

	  and x x y yf f D f f D= × = × 	 (6)

	 L2-hys: f = 
2 2
2

 v

v + ε
, if v ≥ 0.2, v = 0.2	 (7)

Here, v is a vector that has not been normalized and its maximum value is 0.2, and ε is a small 
constant to avoid a zero divisor.  We used Eq. (7) for normalization, thus acquiring the HOG 
descriptors of the RLT image.

2.3	 Verification matching

	 The concept of the SVM(38) is to establish an optimal objective function for classification 
by means of modeling.   In addition, it uses the principle of structural risk minimization to 
obtain the so-called optimal classification hyperplane, which serves as the support vector.  The 
objective of obtaining the hyperplane is to ensure that the maximum margin and minimum 
classification error exist between different classes of data.  However, it is difficult to classify 
data in an actual space.  When the data are not linearly separable, a kernel function must be 
used to map the data from the input space to a feature space, as shown in Fig. 6(a).  Figure 6(b) 
shows the SVM used in this work; it is provided by the OpenCV library.  The method consists 
of two steps.
1)	 Training:
	 In this work, the extracted vein pattern features served as input data for training.   The 
training methods mostly employ multiclass SVMs together with radial basis functions (RBFs).
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2)	 Testing:
	 After training, a classification model is obtained and matching is performed by testing the 
images, as shown in Fig. 6.  The recognition rate is enhanced and optimized by adjusting the 
parameters.

3.	 Experimental Results 

	 Figure 7(a) shows the embedded finger-vein verification system developed for this work.  To 
enable the practical use of the system at a low cost, the verification technique was integrated 
with the interface.  An NIR light with a wavelength of 940 mm served as the light source, while 
a Raspberry Pi RGB camera and NIR filters were used to capture images.  Then, the Raspberry 
Pi platform (Table 1) was used to process the images and the algorithms for verification, thereby 
establishing the embedded finger-vein system shown in Fig. 7(b).
	 The finger-vein images used in this work were a public dataset and a private dataset 
consisting of self-captured images.  An 850-mm-wavelength NIR light served as the light source 
of the public FVUSM dataset(27) that comprised a total of 2952 grayscale vein images provided 
by 123 volunteers (83 males and 40 females) aged between 20 to 52 years.  The size of the 
grayscale images was 640 × 480.  Each volunteer provided their left and right index and middle 
fingers.  Six vein images were taken for each finger.  To ensure that the experimental results 
are more objective, the left and right index and middle fingers were regarded as being sourced 
from datasets of different people, thus increasing the number of samples for comparison.  
There were a total of 492 classes, and each class included six finger-vein images.  On the other 
hand, 940-mm-wavelength NIR light served as the light source of the self-captured images 
in the private dataset.  The images were taken from 32 volunteers (20 males and 12 females) 
aged between 20 and 25 years.  Each volunteer provided their left and right index and middle 
fingers, and six vein images were taken from each finger.  The size of the grayscale images 

Fig. 6.	 Vein matching: (a) SVM steps; (b) process of verification matching.

(a)

(b)
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was 320 × 240.  There were a total of 128 classes, and each class included six vein images.  The 
results of the experiment shows the proposed vein verification technique was effective for the 
FVUSM dataset and our dataset when the data were collected with three images each being 
used for training and for testing.
	 We used the equal error rate (EER), an important indicator of system security, as a measure 
for assessing the verification efficiency.  The EER is given by Eq. (9).  With regard to the 
verification system, there are two types of possible errors: the false rejection rate (FRR) and 
the false acceptance rate (FAR).  The former, given by Eq. (10), indicates that the system has 
incorrectly rejected an authorized user; the latter, given by Eq. (11), indicates that the system has 
incorrectly accepted an unauthorized user.  When the similarity setting is gradually increased 
from its minimum value, the FAR will gradually decrease from its maximum value and become 
approximately zero.  Meanwhile, the FRR will gradually increase from approximately zero.  
When the similarity setting reaches its maximum value (for instance, the similarity must be 
100% in order for an image to be recognized), the FRR will be at its peak, and the curves 
formed by the FAR and the FRR will intersect at a point known as the EER, which is the point 
where both recognition error rates are equal.  At this intersection, the sum of the FRR and the 
FAR is minimum.  The performance of the system is most balanced when the similarity is set 
to the receiver operating characteristic (ROC), as shown in Fig. 8.  Therefore, the magnitude 
of the EER is often used as an indicator of the security performance of verification systems.  
In this work, the SVM parameters in the OpenCV library(39) were adjusted to achieve system 
optimization.  From the results in Table 2, it can be seen that this proposed method achieved 
a higher accuracy than that in previous works.  When three images were used for training 
and three for testing, the results showed that the proposed finger-vein verification technique 

Fig. 7.	 (Color online) Devices used in this work: (a) system architecture; (b) self-developed finger-vein verification 
system device.

(a) (b)

Table 1
System specifications.
CPU clock rate 1.2 GHz
Operating system Raspbian Stretch
Memory 1 GB LPDDR2
Programming language Python
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had EERs of 1.06 and 3.30% in our dataset and FVUSM dataset, respectively.  EER was then 
applied as a serious access control system, and the results showed that the error decreased to 0.06  
and 1.62% in the dataset if five images were used for training and one for testing.

	 EER = FRR = FAR	 (9)

	 FRR = (FP / FP + TP) × 100%	 (10)

	 FAR = (FN / FN + TP) × 100%	 (11)

Here, FP indicates that the class was falsely predicted as positive; TP indicates that the class 
was correctly predicted as positive; FN indicates that the class was falsely predicted as negative.
	 The matching time of the overall image verification system of this work was shorter than 0.2 s, 
and the feature extraction time was approximately within 0.5 s.  Therefore, it took the system 
around 0.61 s to completely process one image, as shown in Table 3.  By a comparison with the 
results in previous works under the same development conditions, we found that the proposed 
method achieved a fourfold decrease in the response time.(2,5,7)

(a) (b)

Fig. 8.	 (Color online) ROC curve: (a) our dataset; (b) FVUSM dataset.

Table 2
EER of various methods.

Method EER
Our Dataset (%) FVUSM (%)

Liu et al.(7) (3 Training / 3 Testing) 1.51 5.28
Lee et al.(10) (3 Training / 3 Testing) 3.13 10.20
Miura et al.(11) (3 Training / 3 Testing) 2.50 7.20
This work (3 Training / 3 Testing) 1.06 3.30
This work (4 Training / 2 Testing) 0.20 2.91
This work (5 Training / 1 Testing) 0.06 1.62
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4.	 Conclusions

	 We proposed a new low-complexity algorithm for real-time applications that can be 
implemented in a low-cost embedded finger-vein verification system.  First, the finger in the 
foreground is separated from the background using DL, so that vein images of fingers in a 
complex external environment can be acquired in a stable manner.  The A-SMDWT was used 
to enhance the contrast of images together with the RLT and the HOG methods for feature 
extraction, and an SVM was used to train a classifier.  Finally, the method was implemented 
using the Raspberry Pi platform.  The experiments included the self-capturing of images as well 
as a data and performance analysis using the public finger-vein image dataset called FVUSM.  
In comparison with the results of relevant studies, the proposed method achieved a better 
accuracy and a higher computation speed.  The response time of the overall system was 0.61 s, 
and its EER was approximately 1.06%.
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