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	 Color information is an important indicator of color matching.  It is recommended to use 
hue (H) and saturation (S) to improve the accuracy of color analysis.  The proposed method for 
dental shade matching in this study is based on the hue, saturation, value (HSV) color model.  
To evaluate the performance of the proposed method in matching dental shades, peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM), composite peak signal-to-noise 
ratio (CPSNR), and S-CIELAB (Special International Commission on Illumination, L* for 
lightness, a* from green to red, and b* from blue to yellow) were utilized.  To further improve 
the performance of the proposed method, dental image samples were multiplied by the weighted 
coefficients derived by training the model using machine learning to reduce errors.  Thus, 
the PSNR of 97.64% was enhanced to 99.93% when applied with the proposed fuzzy decision 
model.  Results show that the proposed method based on the new fuzzy decision technology is 
effective and has an accuracy of 99.78%, which is a significant improvement of previous results.  
The new fuzzy decision is a method that combines the HSV color model, PSNR(H), PSNR(S), 
and SSIM information, which are used for the first time in research on tooth color matching.  
Results show that the proposed method performs better than previous methods.
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1.	 Introduction

	 The techniques of big data analysis and machine learning are used widely in medicine [detecting 
pneumonia,(1) autism,(2) and risk of falling,(3) the classification of cancers,(4) and the analysis 
of cell pseudo-color images(5)].  A method of dental image analysis is developed in this study.  
The classification of dental shade was previously reported in Refs. 6–8, and a further study on 
dental shade analysis is presented in this study.
	 Most well-known algorithms use machine learning for training and classification.  
Guo et al.(9) proposed adaptive mask training for vehicle detection with an assistive system for 
intelligent transportation.  In the system, to improve traffic flow, it is easier to study traffic flow 
using trained data.  Moreover, when a feature vector is compromised and used to store biometric 
information, through deep learning, a machine-learning-based biometric recognition system can 
ensure accurate results.  Yang et al.(10) utilized edge devices that reduce latency and achieved 
real-time data services in Internet-of-Things (IoT) systems.  In healthcare system development, 
the diagnosis of specific malignancies uses artificial intelligence (AI) techniques to classify 
symptoms and distinguish whether samples are clean or infected.(11)  The results are classified 
on the basis of promise training and may enable the diagnosis of lymph node malignancy in 
clinical trials.  On the other hand, a widely used application of recognition in biometrics is 
fingerprint detection.  Hsia(12) used binary robustness as a feature of finger vein recognition as a 
new verification strategy.  Finger veins were shown to be a much more stable feature than other 
biometrics that cannot be copied or stolen.  
	 A small number of people were chosen to receive a new set of teeth, tooth filling, tooth 
whitening, and other dental surgeries.  For teenagers and middle-aged people, a good set of teeth 
seems to be particularly important.  As a result, helping dental patients find the right denture 
color has become important and necessary.  The skill of dentists to accurately determine the 
right denture color for patients is one of the major factors for patients to consider during denture 
making.  At present, most dentists still use artificial tooth samples as a way for patients to 
determine the denture ratio by comparing the color of the artificial tooth samples with that of 
native teeth.  A dental plate is used as the standard reference to easily determine the color that 
matches the natural tooth color.
	 To determine the tooth color, dentists often compare tooth color labels.(13,14)  However, color 
swatches do not completely cover the distribution range of the natural color shade of a human 
tooth.  Most palettes lack a series of darker red and yellow colors.  Moreover, because of the 
natural tooth color variability and continuous 3D space of the color distribution, a color block 
cannot contain all the colors in each color range.  If the color difference between the real tooth 
color and the tooth color tab is within the same range, the difference cannot be distinguished 
by the human eye and the requirements for practical applications can be met.(14,15)  The VITA 
classical color cards are currently being used as the standard in the dental market.  Figure 1 
shows the VITA classical color cards, Vita Zahnfabrik,(16) and its product-based Vitapan 
3D-Master color guide.(17,18)  
	 However, the use of these color cards often causes disputes between dentists and patients 
because the process involved in producing the actual artificial tooth results in a difference 
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between its final color and the color swatches used in color selection.  Moreover, the eyes of 
a dentist may be fatigued after working long hours, thereby reducing the accuracy of color 
matching.  Furthermore, factors such as light, age, mood, and fatigue can also cause discrepancy 
in the resulting actual color.(19)  All of these factors will negatively affect the color matching 
results.  As such, an effective color analysis method based on the HSV color model for color 
processing and a new fuzzy decision making method is proposed.
	 To avoid the above-mentioned problems caused by manual judgment, we propose an image 
processing technique for color matching.  For standard dental colorimetric images, a digital 
camera is used to create a picture library of the VITA 3D-Master shadow tab, as shown in Fig. 
1.  Typical resulting images of the captured color chart are shown in Fig. 2.  The color of the 
denture can be determined by comparing the real tooth sample with the color samples in the 
colorimeter to attain a more accurate match.

2.	 Literature Review

	 Algorithms for automatically matching the color of teeth using image processing have been 
proposed.(20,21)  First, color correction is applied to different images.  The system that decides 
on the color matching analyzes the image of the color card captured with a digital camera.(22)  
Because the tooth surface is measured with a different device, a color map or average color is 
necessary.  Both the reproduction and verification of shade are needed in the analysis to carry 
out color matching in the dental clinic.(23)  A camera calibration model that includes the Spatial 
CIELAB (S-CIELAB) method was proposed in Refs. 24 and 25.  Using the big data to obtain 

Fig. 1.	 (Color online) (a) VITA classical color cards,(10) (b) Vita Zahnfabrik,(16) and (c) VITA 3D-Master color 
guide.(17,18)

(a) (b)

(c)
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the required accuracy is the key point to increase the accuracy of all the results.(26)  The method 
of computer-aided image processing uses S-CIELAB(27) as a classification indicator and was 
proposed in Ref. 28.  Furthermore, a structural similarity index (SSIM) comparison module(28) 
has been used to analyze hue, saturation, value (HSV) colors.  Statistical issues in big data 
regarding values and attributes have been observed.  The regression modelling with basic 
inference procedures, the aspects of model adequacy confirmation, and polynomial regression 
models and their variations have been investigated.(29)  Attempts to establish or identify related 
dependent or independent values have been presented in Ref. 30.  The mathematical expressions 
for modeling the behavior of random variables have been derived.  Furthermore, one variable in 
the linear modeling of the regression results has been found to be used frequently.  
	 Lin et al.(31) proposed a new program for analyzing colorimetric tooth color matching using 
peak signal-to-noise ratio (PSNR) and a fuzzy decision method.  The results indicated an 
improved accuracy of 92.31%, which is significantly higher than the accuracy of only 32.69% 
of previous methods.  The fuzzy decision method has a higher accuracy and a higher score than 
the PSNR standard method.  Furthermore, this matching method is consistently much better 
than the traditional method used by dentists.  As such, the basis of the matching color method(31) 
techniques, specifically linear regression, have been widely used because of their simplicity 
and effectiveness.  In machine learning, a classifier is trained using the defined features.  In 
particular, the accuracy is always the key component of analysis.  The improved accuracy 
in tooth color matching(32) confirmed the validity of the use of the color template with four 
measured values.  Digital images of the samples were taken from digital cameras with color 
accuracy.  Wee et al.(33) used various calibration models for the dental color matching of the 264 
color patches and 65 shade tabs.  
	 Labeling with a certain accuracy is necessary to calculate the required weighting 
coefficients, which are examined while training and testing the classifier.  To attain the 
exactness of the classifier, appropriate features and sufficient data are chosen to train a specific 
set.  In addition, the accuracy of the classifier is relative to the amount of data provided to the 
classifier and the number of selected attributes.  The images of the tooth are first converted to 
the HSV color system representation.(34)  Different color layers of the HSV have been analyzed 
using the matching criteria of the PSNR, composite peak signal-to-noise ratio (CPSNR), 
SSIM, and S-CIELAB.  Y’CbCr can be used to optimize the transmission of color signals.  
Here, Y stands for brightness or luminosity, which is a grayscale value; Cb and Cr stand for 

(a) (b) (c) (d) (e)

Fig. 2.	 (Color online) Five shade tab photos of VITA 3D-Master color guide: (a) 1M1, (b) 2M1, (c) 3M1, (d) 4M1, 
and (e) 5M1.



Sensors and Materials, Vol. 32, No. 10 (2020)	 3189

blue and red density offset components, respectively.  Therefore, this approach is backward-
compatible with monochrome television, which is entirely black and white.  Furthermore, 
three independent video signals are transmitted simultaneously using the RGB color model.  
We provide the benefits of reduced transmission data and a smaller bandwidth used by the 
methods of saturating images and specified pixels in colors.  Thus, the HSV color system is 
similar to visual judgment, but the combination of HSV and machine learning results in a huge 
improvement.

3.	 Proposed Methodology

3.1	 Image acquisition

	 A digital camera is used to obtain pictures of each VITA 3D-Master shade tab.(34)  It is 
ensured that the environment while capturing photos of each tab simulates the actual conditions 
of the dentist assisting the patients during the matching of tooth color.  Two photos are taken 
to generate two sets of images for the test datasets, namely, datasets A and B.  A colorimetric 
analysis is then performed on these two datasets to label each photo, and the photos are arranged 
in the same order as those of the VITA 3D-Master shade tabs.  Each dataset includes 26 tagged 
photos with depths of 24 bits per pixel and 8 bits for each of the R, G, and B color values.  The 
average size of the images in the dataset is 360 × 520 pixels.  
	 Figure 3 shows the flowchart of the proposed tooth color matching algorithm.  There are 
four main steps: color photo preprocessing, criteria evaluation, the addition of parameters for 
weighting coefficients, and fuzzy decision.  

Step 1: Preprocessing of color photos 
	 Normalization is applied to the raw images to adjust the pixel intensity range.  The extension 
of the dynamic range is the main idea of standardization.  This standardization brings the 

Fig. 3.	 (Color online) Flowchart of the proposed dental shade matching algorithm.
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image into a range of normalized values to avoid diagnosis error.  The image file should be 
normalized to a format that includes the whole dynamic range of the digital blocks specified.  
After the standardization, the photo is segmented to remove unnecessary items from the 
standardized features.  Furthermore, the segmentation is fixed by changing one aspect ratio 
to another without stretching the image.  After these preprocessing steps, the images must be 
evaluated while using the dataset to ensure the completeness of data.  The S-CIELAB, CPSNR, 
and PSNR formulas are captured from an image obtained using a digital camera.  As such, the 
original image is stored in an RGB format.  Accordingly, the substep pertaining to the format is 
the conversion of the RGB image to the HSV format, which is advantageous since it simplifies 
the colorimetric analysis.  Equations (1)–(3) show the conversion from the RGB format to the 
HSV format.  

	 1
2

1 2
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R G B
H
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−
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=  

− − − − 
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	 Each tooth photo is then scaled to a fixed size of 300 × 500 pixels, followed by the 
segmentation of the length and width of the photo to 50 to 250 pixels.  As shown in Fig. 4, the 
scaled image is used for comparison with other data sets.  The scaling and cutting process is 
part of the normalization of the size of the tooth images.  Consequently, the accuracy of the 
colorimetric analysis is improved.  

Step 2: Evaluation of criteria
	 The captured images in datasets A and B were obtained using the same VITA 3D-Master 
shade tabs.  Therefore, these two datasets are compared by different tooth color matching 
methods to determine the matching accuracies of the methods.  When the target photo in one 

Fig. 4.	 (Color online) (a) Original image and (b) the normalized and cut region of the image.

(a) (b)
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dataset is matched with the corresponding photo in the other dataset by the tooth color matching 
method, matching is considered correct.  When the dental color matching method identifies a 
photo that does not correspond to the target, matching is considered incorrect.  The two datasets 
are used to evaluate the performance characteristics of the different tooth color matching 
methods.
	 There are four evaluation criteria that are used in the proposed algorithm.  The first criterion 
is the S-CIELAB of the HSV image, which is a measure of the color difference.  A small 
S-CIELAB value indicates that the colors of the two images are highly similar.  Therefore, the 
first evaluation criterion is to select the tooth image with the smallest S-CIELAB value.  The 
second and third criteria respectively concern the H (hue) and S (saturation) values of the PSNR 
criterion of the tooth image.  The higher the PSNR, the higher the color similarity.  The fourth 
criterion is the SSIM standard, which is used to evaluate the similarity of the dental image 
structure.  In terms of image measurement, it is consistent with the judgment of the image by 
the human eyes.  As such, the higher the SSIM, the more similar are the images.  Finally, the 
target image will be selected on the basis of the smallest S-CIELAB value, the highest SSIM, 
and the highest H and S PSNRs.  Once determined, the module for the weighting coefficients of 
parameters is set.  

3.2	 Image evaluation criteria

S-CIELAB(35) 
	 In previous studies,(32,34) ΔE*

ab in S-CIELAB was used, and the color difference was applied 
individually to a single uniform color patch.  This is based on the concept of spatial distribution.  
A smaller S-CIELAB value implies that the images are more closely related and have smaller 
distortions.  The S-CIELAB ΔE*

ab can be calculated using Eqs. (4)–(8).
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Here, / / /n n nX Y Y ZZX = = , where X, Y, and Z are the three color values of the object.  Xn, Yn, 
and Zn are the three color values of the reference white.  Each halftone patch of high visibility 
is represented by the scanned values of Xn, Yn, and Zn.  After the prediction of S-CIELAB, the 
calculation of specifications, and the comparison of halftones, the average field and ΔE values 
are distributed at average levels.(34)  Moreover, the values of the original halftone patch for both 
the pixel and the corresponding pixel are compared with the overall index.  The parameter L is 
100 times the Munsell brightness; when L is set to 0, the color becomes black, and when it is set 
to 100, the color becomes white.  The parameters a* and b* indicate red–green and yellow–blue 
coordinates, respectively.

CPSNR(36)

	 In the general method, the components of the R, G, and B color model are combined to 
form a colored image.  The quality of the resulting image can be evaluated using the CPSNR 
criterion.  In this work, the CPSNR is calculated by combining the components of H, S, and V 
to form an image, and then it is used for judgment.  A larger CPSNR implies a smaller image 
distortion.  The relevant definitions of CPSNR are shown in Eqs. (9)–(11).
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( )    Grayscale is 1, color is 3FrameSize ImageLength ImageWidth Number of channels= × × 	 (11)

PSNR(37)

	 PSNR values are commonly measured in work on image quality.  As shown in Eqs. (12)–(14), 
the maximum value and error terms in the images are considered for evaluation.
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( )    Grayscale is 1, color is 3FrameSize ImageLength ImageWidth Number of channels= × × 	 (14)

In is the n-th pixel value of the original image and Pn is the n-th pixel value of the processed 
image.

Structural similarity index (SSIM)(38)

	 SSIM is an index used to measure the similarity of two digital images.  As shown in Eqs. 
(15) and (16), the maximum value of the image and the error term are considered for evaluation.  
Because of its simplicity and effectiveness, SSIM has been popularly used in applications 
related to image and video processing in recent years.

	
1 1

2 2 2 2 2
1 2

)( )
)( )

(2 2
( , )

(
x y xy

x x y x y

C C
SSIM x y

C C
µ µ σ

µ µ µ σ σ

+ +
=

+ + + +
	 (15)

( )     Grayscale is 1, color is 3FrameSize ImageLength ImageWidth Number of channels= × × 	 (16)

Step 3: Add parameters for weighting coefficients
	 Draper and Smith(30) described a method of obtaining the values and attributes of a problem 
through a statistical graph.  In addition, the dependent and independent variables are identified 
and analyzed for establishing or identifying existing relationships between them.  This 
procedure is described as linear regression in statistics and is commonly used since it is simple 
and efficient.
	 The steps are as follows.  First, the analysis of the colorimetric modules of datasets A and B.  
Second, the appropriate interval weighting coefficients are integrated by linear regression.  The 
coefficients are obtained from experimentally determined evaluation indices.  Third, the control 
interval is adjusted throughout the experiment.  The idea is to widen the interval of its judgment 
values by using the dichotomy, which compares the two adjacent values and marks the close one 
to simplify the procedure, to easily compare these indices.  The dichotomy compares the two 
adjacent values and marks the close one to simplify the procedure.  
	 Training the modules by applying the values of the colorimetric modules, i.e., SSIM, 
PSNR(H), and PSNR(S), is acceptable since the weighting factors are required and limited.  
The valid range of correct ratios is between 1 and 9%.  Although the valid range is continuously 
increasing, the results will be less than expected.  PSNR(Hw) and PSNR(Sw) represent the 
adjusted weights of PSNR(H) and PSNR(S), respectively.  Figure 5 shows the scores obtained 
from the scoring formula of colorimetric modules for dentures with 1 to 9% weight training.  
Figure 6 shows the correct ratios of dentures obtained using the colorimetric module with 1 to 
9% weight training.

Step 4: Fuzzy decision
	 The fuzzy decision is well known in many fields of studies such as power control(39) 
and prediction.(40)  Gulzard et al.(41) provided a fuzzy mapping approach for usability 
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qualit ies.  For individual photos, the matching photo is determined by adaptive 
correspondence by the fuzzy decision.(42)  Additionally, the fuzzy controller seeks high-
quality results automatically.  The related factors are set to the correct results of the fuzzy 
processor and simplistically displayed.  For example, the proposed method provided the 
brightness, contrast value, hue, saturation, and environmental parameters, which are 
found in each tooth detail and are therefore beneficial to controlling the fuzzy decision. 
The fuzzy decisions based on experimental evaluation(43) and fuzzy logic(44) are well suited for 
solving problem spaces with partial authenticity.  Data mining, the concept of fuzzy logic with 
classification techniques, is used for processing the uncertainty in a dataset.
	 A new type of fuzzy decision making that obeys the fundamental rules of machine language 
was realized(44) and is applied here to the proposed algorithm to select S-CIELAB, SSIM, 
PSNR(H), and PSNR(S) for tooth color matching.  In the proposed fuzzy decision method, 
one of the inputs is the brightness of tooth color.  The brightness of the tab photo is b(n).  The 
other input is the hue of the tooth color in the tab photo.  The chroma of the tab photo is c(n).  
The lightness b(n) and chroma c(n) are indicated by tab numbers of the VITA 3D-Master color 
guide.  For example, the tab number in Fig. 2(d) is 5M1, which means that b(n) is 5 and c(n) is 1.
	 On the basis of the expert system, the algorithm is designed to use datasets A and B to 
calculate each accuracy score induction.  Table 1 shows the tooth color matching accomplished 
using the initial fuzzy adjusted rules.  Moreover, the values given in the experimental result 
section are used for training the adjustment rules for a different fuzzy dataset.  On acquiring 
accuracy and score results, the datasets are used to train the different machine learning datasets 
listed in the following tables.  The scoring results obtained using datasets A and B to train the 
fuzzy adjustment rules are listed in Table 1.  To obtain the results in Table 1, datasets C and D 
are used as test datasets.  With the input fuzzy sets of b(n) and c(n), the fuzzy adjustment rule 
maps the two features to the output fuzzy set of o(n).
	 With the use of datasets C and D as test datasets, the accuracy and score results listed in 
Tables 10–14 were obtained.  The fuzzy adjustment rule of the two features, namely, the input 

Fig. 5.	 (Color online) Weight training using datasets 
A and B.

Fig. 6.	 (Color online) Accuracy after training with 
datasets A and B.
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fuzzy sets of b(n) and c(n), was based on the results of evaluating the criteria of datasets A 
and B.  Their output fuzzy set of o(n) can be mapped.  After selecting the best results from the 
three criteria, each tooth image can be matched with the shadow tab with the highest degree 
of correspondence.  Therefore, the fuzzy logic decision method could effectively improve the 
accuracy of tooth shadow matching.

4.	 Experimental Results

	 The VITA 3D-Master color guide(15) has 26 dental shadow tabs that can be classified on the 
basis of brightness and chroma information.  As shown in Table 1, the classifications of XM1, 
XM2, XM3, XL1.5, XL2.5, XR1.5, and XR2.5 are based on brightness.  On the other hand, the 
classifications of 1MX, 2MX, 3MX, 4MX, and 5MX are based on chroma.  To develop an index 
to evaluate the accuracy of tooth shadow matching, a scoring formula [Eq. (17)] with values 
between 0 and 100 is developed to determine the accuracy of tooth shadow matching.  The 
scoring formula considers the effects of brightness and chroma and uses a linear decrement for 
matching.  On the basis of the results in the above processing, the base image in the comparison 
database and the reference image in the reference dataset have the most relevant chroma values.  
As such, the comparison score of the reference image is determined as 100.  The second-highest 
correlation can yield the score of the reference image reduced by one by comparing the chroma 
value of the real image in the dataset.  The total number of teeth defined as having the highest 
score of 100 is divided by 26 (the number of dental shadow tabs) to obtain a gap unit of about 3.8462.  
Therefore, the score can be calculated as  

	 Score = 100 − [3.8462 × (N − 1)], 	 (17)

where N is the ground truth image in the comparison of the dataset, and its chroma value is the 
most relevant to the Nth reference image in the reference dataset.  It shows that even if the score 
is not accurate, it is close to 100.  It also represents the different color spaces of each dental 
shadow tab.  For example, if the colorimetric result is correct, the score is 100 points.  If the 

Table 1
Fuzzy adjustment rules for brightness b(n) and chroma c(n).

b(n)
XM1 XM2 XM3 XL1.5 XL2.5 XR1.5 XR2.5

c(n)

1MX PSNR PSNR — — — — —(H) (H)

2MX PSNR SSIM PSNR SSIM PSNR PSNR PSNR
(H) (H) (H) (H) (H)

3MX PSNR S-CIE PSNR PSNR S-CIE PSNR S-CIE
(H) LAB (S) (S) LAB (S) LAB

4MX PSNR PSNR PSNR PSNR PSNR PSNR PSNR
(H) (V) (H) (S) (S) (S) (S)

5MX PSNR PSNR PSNR — — — —(S) (S) (S)
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colorimetric value is the second most relevant, the given score is 100 – 3.8462 = 96.15 points.  If 
a value is the third smallest, the score is 100 – (3.8462 × 2) = 92.31 points and so on.
	 The method discussed in this section is compared with the existing S-CIELAB method for 
tooth shadow matching.(32)  Table 2 shows the results of S-CIELAB (H, S, V) and S-CIELAB 
(Y, Cb, Cr)(34) with the average score of each reference image in two modes of comparison.  The 
results of CPSNR (H, S, V) and CPSNR (Y, Cb, Cr)(30) are given in Table 3.  From Tables 2 and 
3, it is evident that the accuracy rates of the evaluation, analysis, and screening using the HSV 
approach of the VITA 3D-Master color guide(7) are higher than those obtained using Ycbcr.  
	 To determine the clinical application of this method, this study was carried out in 
collaboration with Dr. Nung-Hsiang Lin and Dr. Yufang Guo of the Department of General 
Dentistry of Chang Gang Memorial Hospital.  Figure 7 shows a sample of original images of 
a tooth in datasets A, B, C, and D.  Through the use of tooth colorimetric plates and related 
clinical resources provided by Chang Gang Memorial Hospital, the relevant clinical environment 
has been restored and constructed, including the tooth ratio in the swatch photographing 
environment and the ease of capturing the target tooth color and using the color comparison 
technology proposed in this article.  The aim of this study is to develop a technology that can be 
easily used by dentists to automatically compare tooth colors using the proposed program.  This 
will reduce the time taken for tooth color comparison and finding the appropriate denture color.

Table 2
Scores obtained using S-CIELAB (H, S, V) and (Y, Cb, Cr)(23)  criteria.

Reference tab 
image

S-CIELAB
Dataset A compared 

with dataset B
Dataset B compared 

with dataset A Average Average(34)

1M1 	 100 	 100 	 100 	 100
1M2 	 100 	 100 	 100 	 100
2M1 	 76.92 	 76.92 	 76.92 	 40.39
2M2 	 96.15 	 96.15 	 96.15 	 96.15
2M3 	 100 	 96.15 	 98.08 	 96.16
2L1.5 	 100 	 100 	 100 	 100
2L2.5 	 96.15 	 96.15 	 96.15 	 86.54
2R1.5 	 96.15 	 84.62 	 90.39 	 73.08
2R2.5 	 100 	 96.15 	 98.08 	 100
3M1 	 65.38 	 84.62 	 75 	 53.85
3M2 	 96.15 	 80.77 	 88.46 	 65.39
3M3 	 96.15 	 73.08 	 84.62 	 73.08
3L1.5 	 84.62 	 100 	 92.31 	 96.16
3L2.5 	 84.62 	 88.46 	 86.54 	 69.23
3R1.5 	 92.31 	 100 	 96.16 	 86.54
3R2.5 	 80.77 	 65.38 	 73.08 	 59.62
4M1 	 88.46 	 100 	 94.23 	 78.85
4M2 	 80.77 	 100 	 90.39 	 80.77
4M3 	 96.15 	 88.46 	 92.31 	 75
4L1.5 	 100 	 100 	 100 	 100
4L2.5 	 80.77 	 96.15 	 88.46 	 75
4R1.5 	 61.54 	 84.62 	 73.08 	 59.62
4R2.5 	 84.62 	 80.77 	 82.7 	 59.62
5M1 	 34.61 	 100 	 67.31 	 57.7
5M2 	 76.92 	 100 	 88.46 	 80.77
5M3 	 100 	 100 	 100 	 100
Average 	 87.28 	 91.86 	 89.57 	 79.36
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	 The two proposed methods are S-CIELAB and CPSNR.  SSIM, PSNR(H), PSNR(S), and 
fuzzy methods are also used.  The values used for training were from datasets A and B.  The 
performance of color matching is evaluated using different criteria.  Each dataset has 26 tooth 
shadow images taken under different conditions.  The S-CIELAB(24) method was used with 
the first shadow image in dataset A as a reference.  Twenty-six (26) S-CIELAB values were 
calculated using the 26 tooth shadow images in database B.  The S-CIELAB value of the tooth 

Table 3
Scores obtained using CPSNR(H, S, V) and (Y, Cb, Cr)(23) criteria.

Reference tab 
image

CPSNR 
Dataset A compared 

with dataset B
Dataset B compared 

with dataset A Average Average(34)

1M1 	 100 	 100 	 100 	 100
1M2 	 100 	 100 	 100 	 100
2M1 	 80.77 	 80.77 	 80.77 	 48.08
2M2 	 100 	 100 	 100 	 100
2M3 	 100 	 100 	 100 	 100
2L1.5 	 100 	 100 	 100 	 100
2L2.5 	 84.62 	 82.7 	 83.66 	 63.46
2R1.5 	 100 	 96.16 	 98.08 	 90.39
2R2.5 	 100 	 100 	 100 	 100
3M1 	 76.92 	 82.69 	 79.81 	 63.46
3M2 	 100 	 86.54 	 93.27 	 69.23
3M3 	 96.15 	 86.54 	 91.35 	 84.62
3L1.5 	 80.77 	 90.39 	 85.58 	 84.62
3L2.5 	 84.62 	 90.39 	 87.51 	 86.51
3R1.5 	 96.15 	 98.08 	 97.12 	 90.39
3R2.5 	 84.62 	 76.93 	 80.78 	 63.46
4M1 	 96.15 	 98.08 	 97.12 	 92.31
4M2 	 80.77 	 90.39 	 85.58 	 94.23
4M3 	 100 	 94.23 	 97.12 	 92.31
4L1.5 	 100 	 100 	 100 	 100
4L2.5 	 88.46 	 92.31 	 90.39 	 90.39
4R1.5 	 69.23 	 80.77 	 75 	 63.46
4R2.5 	 84.62 	 86.54 	 85.58 	 63.46
5M1 	 46.15 	 73.08 	 59.62 	 59.62
5M2 	 80.77 	 90.39 	 85.58 	 86.54
5M3 	 100 	 100 	 100 	 100
Average 	 89.65 	 91.43 	 90.53 	 84.10

(a) (b) (c) (d)

Fig. 7.	 (Color online) Clinical dental images from Department of General Dentistry in Chang Gang Memorial 
Hospital. Datasets (a) A, (b) B, (c) C, and (d) D.
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shadow image in dataset B with the highest correlation (the lowest S-CIELAB value or the 
highest CPSNR, SSIM or PSNR value) to one tooth shadow image in dataset A is displayed and 
specified as the correct result.  This is done for all 26 tooth shadow images in dataset A.  This 
process is repeated continuously and considered to produce the reference datasets.  The number 
of correct results after comparing dataset A with dataset B is listed in Table 2.  Equation (18) 
is used to compute the accuracy by dividing the number of correctly matched images with the 
total number of pictures (26 tooth shadow images per dataset).

	
.      100

 .   
No of correct shade matching picturesAccuracy

Total no of pictures
= × 	 (18)

	 In Table 3, the comparison accuracies of datasets B and A are listed.  The test is repeatedly 
applied with all the comparison methods described above using the same set of steps with 
dataset B as the reference for comparing the images in dataset A.  Table 4 shows the values of 
PSNR(V).
	 Tables 5–7 show the values of SSIM, PSNR(H), and PSNR(S) after machine learning was 
used to select the best weighting coefficients.  The weights (H), (S), and (V) are labeled (Hw), (Sw), 
and (Vw), respectively.
	 The results of the fuzzy method show that the accuracy of analysis and screening when 
using HSV is higher than that when using YcbCr.  In addition, the whiter areas of the VITA 
3D-Master color guide(15) have a higher accuracy, as listed in Table 8.

Table 4
Scores obtained using PSNR(V) criteria.

Reference 
image

PSNR(V)
Dataset A compared 

with dataset B
Dataset B compared 

with dataset A
Average

1M1 	 11.54 	 11.54 	 11.54 
1M2 	 84.62 	 84.62 	 84.62 
2M1 	 69.23 	 53.85 	 61.54 
2M2 	 100 	 100 	 100
2M3 	 84.62 	 73.08 	 78.85 
2L1.5 	 65.38 	 88.46 	 76.92 
2L2.5 	 100 	 92.31 	 96.16 
2R1.5 	 96.15 	 100 	 98.08 
2R2.5 	 84.62 	 100 	 92.31 
3M1 	 92.31 	 92.31 	 92.31 
3M2 	 88.46 	 76.92 	 82.69 
3M3 	 61.54 	 53.85 	 57.70 
3L1.5 	 100 	 100 	 100
3L2.5 	 96.15 	 96.15 	 96.15 
3R1.5 	 34.61 	 69.23 	 51.92 
3R2.5 	 100 	 100 	 100
4M1 	 100 	 100 	 100
4M2 	 96.15 	 73.08 	 84.62 
4M3 	 96.15 	 100 	 98.08 
4L1.5 	 69.23 	 100 	 84.62 
4L2.5 	 76.92 	 92.31 	 84.62 
4R1.5 	 88.46 	 69.23 	 78.85 
4R2.5 	 92.31 	 73.08 	 82.70 
5M1 	 100 	 100 	 100
5M2 	 73.08 	 96.15 	 84.62 
5M3 	 88.46 	 100 	 94.23 
Average 	 82.69 	 84.47 	 83.58
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Table 5
Scores obtained using SSIM criteria.

Reference 
image

SSIM
Dataset A compared 

with dataset B
Dataset B compared 

with dataset A
Average

1M1 	 84.62 	 84.62 	 84.62
1M2 	 84.62 	 84.62 	 84.62
2M1 	 96.15 	 92.31 	 94.23
2M2 	 100 	 100 	 100
2M3 	 80.77 	 96.15 	 88.46
2L1.5 	 100 	 100 	 100
2L2.5 	 88.46 	 69.23 	 78.845
2R1.5 	 50 	 96.15 	 73.075
2R2.5 	 61.54 	 100 	 80.77
3M1 	 100 	 92.31 	 96.155
3M2 	 100 	 65.38 	 82.69
3M3 	 100 	 96.15 	 98.075
3L1.5 	 100 	 100 	 100
3L2.5 	 100 	 100 	 100
3R1.5 	 80.77 	 100 	 90.385
3R2.5 	 100 	 100 	 100
4M1 	 69.23 	 84.62 	 76.925
4M2 	 96.15 	 46.15 	 71.15
4M3 	 84.62 	 100 	 92.31
4L1.5 	 26.92 	 100 	 63.46
4L2.5 	 65.38 	 100 	 82.69
4R1.5 	 88.46 	 100 	 94.23
4R2.5 	 100 	 73.08 	 86.54
5M1 	 92.31 	 100 	 96.155
5M2 	 73.08 	 100 	 86.54
5M3 	 84.62 	 100 	 92.31
Average 	 84.91 	 91.57 	 88.24

Table 6
Scores obtained using PSNR(Hw) criteria.

Reference 
image

PSNR(Hw)
Dataset A compared 

with dataset B
Dataset B compared 

with dataset A
Average

1M1 	 100 	 100 	 100
1M2 	 100 	 100 	 100
2M1 	 100 	 100 	 100
2M2 	 100 	 100 	 100
2M3 	 100 	 100 	 100
2L1.5 	 100 	 100 	 100
2L2.5 	 100 	 100 	 100
2R1.5 	 100 	 100 	 100
2R2.5 	 100 	 100 	 100
3M1 	 100 	 100 	 100
3M2 	 100 	 80.77 	 90.39
3M3 	 100 	 100 	 100
3L1.5 	 100 	 100 	 100
3L2.5 	 100 	 100 	 100
3R1.5 	 100 	 100 	 100
3R2.5 	 100 	 100 	 100
4M1 	 100 	 100 	 100
4M2 	 100 	 34.61 	 67.31
4M3 	 100 	 100 	 100
4L1.5 	 80.77 	 100 	 90.39
4L2.5 	 80.77 	 100 	 90.39
4R1.5 	 100 	 100 	 100
4R2.5 	 100 	 100 	 100
5M1 	 100 	 100 	 100
5M2 	 100 	 100 	 100
5M3 	 100 	 100 	 100
Average 	 98.52 	 96.75 	 97.64



3200	 Sensors and Materials, Vol. 32, No. 10 (2020)

Table 7
Scores obtained using PSNR(Sw) criteria.

Reference 
image

PSNR(Sw)
Dataset A compared 

with dataset B
Dataset B compared 

with dataset A
Average

1M1 	 100 	 100 	 100
1M2 	 100 	 100 	 100
2M1 	 100 	 100 	 100
2M2 	 100 	 100 	 100
2M3 	 100 	 100 	 100
2L1.5 	 100 	 100 	 100
2L2.5 	 100 	 100 	 100
2R1.5 	 100 	 100 	 100
2R2.5 	 100 	 100 	 100
3M1 	 100 	 100 	 100
3M2 	 100 	 100 	 100
3M3 	 100 	 100 	 100
3L1.5 	 100 	 100 	 100
3L2.5 	 100 	 100 	 100
3R1.5 	 100 	 100 	 100
3R2.5 	 100 	 100 	 100
4M1 	 100 	 100 	 100
4M2 	 100 	 96.15 	 98.08
4M3 	 100 	 100 	 100
4L1.5 	 100 	 100 	 100
4L2.5 	 100 	 100 	 100
4R1.5 	 100 	 100 	 100
4R2.5 	 100 	 100 	 100
5M1 	 100 	 100 	 100
5M2 	 100 	 100 	 100
5M3 	 100 	 100 	 100
Average 	 100 	 99.85 	 99.93

Table 8
Scores obtained by the fuzzy decision method: (H, S, V) vs (Y, Cb, Cr).(31)

Reference 
image

Fuzzy
Dataset A compared 

with dataset B
Dataset B compared 

with dataset A
Average Average(23)

1M1 	 100 	 100 	 100 	 100
1M2 	 100 	 100 	 100 	 100
2M1 	 100 	 100 	 100 	 100
2M2 	 100 	 100 	 100 	 100
2M3 	 100 	 100 	 100 	 100
2L1.5 	 100 	 100 	 100 	 100
2L2.5 	 92.31 	 92.31 	 92.31 	 86.54
2R1.5 	 100 	 100 	 100 	 100
2R2.5 	 100 	 100 	 100 	 100
3M1 	 100 	 100 	 100 	 100
3M2 	 96.15 	 100 	 98.08 	 88.46
3M3 	 100 	 100 	 100 	 100
3L1.5 	 100 	 100 	 100 	 92.31
3L2.5 	 100 	 100 	 100 	 100
3R1.5 	 100 	 100 	 100 	 100
3R2.5 	 100 	 100 	 100 	 100
4M1 	 100 	 100 	 100 	 100
4M2 	 100 	 96.15 	 98.08 	 100
4M3 	 100 	 100 	 100 	 100
4L1.5 	 100 	 100 	 100 	 100
4L2.5 	 100 	 100 	 100 	 100
4R1.5 	 100 	 100 	 100 	 100
4R2.5 	 84.62 	 100 	 92.31 	 100
5M1 	 100 	 100 	 100 	 100
5M2 	 100 	 100 	 100 	 100
5M3 	 100 	 100 	 100 	 100
Average 	 98.96 	 99.56 	 99.26 	 98.74
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Table 9
(H, S, V) vs (Y, Cb, Cr).(23) Numbers of exact shadow matching pictures obtained by different methods.

SCIELAB 
(Y,Cb,Cr)(27) 

CPSNR
(Y Cb,Cr)(27)     

Fuzzy 
decision 

(Y,Cb,Cr)(27) 

SCIELAB 
(H,S,V)

CPSNR 
(H,S,V)

Fuzzy 
decision

Dataset A compared with dataset B 20 21 24 18 19 23
Dataset A compared with dataset B 7 8 24 22 20 24

	 Tables 9 and 10 show the corresponding results obtained using dataset B as the reference 
for comparing dataset A.  Furthermore, a statistical method was developed on the basis of the 
submechanism to standardize the results.  Consequently, the results of comparison could be 
examined in greater detail.  Another comparison is performed and the results obtained are 
listed as scores of machine learning of SSIM and numbers of accurate shade matching pictures.  
The colorimetric is decided by the purposed algorithm to find out the most closed color of the 
original tooth color.  The goal for this current comparison is to simplify this binary result and 
show any intermediate trend of inaccuracy.
	 At the beginning of the experiment, the weight of PSNR(Hw) had a markedly wide color 
range.  To optimize the comparison accuracy, the trial-and-error method may provide a smaller 
color range.  In the following methods, weights in the range from W = 1.0 to 1.1 were used for 
the dataset images.  On the other hand, integrating machine learning enabled the determination 

Table 10
Scores obtained using PSNR(Hw) machine learning criteria.

Reference
image

PSNR(Hw)
 Dataset A 
compared 

with dataset 
B (W = 1.08)

Dataset B 
compared 

with dataset 
A (W = 1.08)

 Dataset A 
compared 

with dataset 
B (W = 1.06)

Dataset B 
compared 

with dataset 
A (W = 1.06)

Dataset A 
compared 

with dataset 
B (W = 1.07)

 Dataset B 
compared 

with dataset 
A (W = 1.07)

Dataset A 
compared 

with dataset 
B (W = 1.09)

 Dataset B 
compared 

with dataset 
A (W = 1.09)

Dataset A 
compared 

with dataset 
B (W = 1.1)

 Dataset B 
compared 

with dataset 
A (W = 1.1)

1M1 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100
1M2 	 100 	 100 	 100 	 100 	 100 	 88.46 	 100 	 92.31 	 100 	 100
2M1 	 100 	 100 	 84.62 	 84.62 	 100 	 100 	 100 	 100 	 57.69 	 57.69
2M2 	 100 	 100 	 100 	 100 	 46.15 	 100 	 53.85 	 100 	 100 	 100
2M3 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100
2L1.5 	 100 	 100 	 100 	 100 	 80.77 	 100 	 84.62 	 100 	 100 	 100
2L2.5 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100
2R1.5 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 69.23 	 100
2R2.5 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 92.31 	 100
3M1 	 100 	 100 	 100 	 100 	 100 	 80.77 	 100 	 84.62 	 100 	 100
3M2 	 100 	 80.77 	 61.54 	 61.54 	 100 	 34.61 	 100 	 42.31 	 100 	 53.85
3M3 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100
3L1.5 	 100 	 100 	 100 	 100 	 42.31 	 100 	 42.31 	 100 	 100 	 100
3L2.5 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100
3R1.5 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 80.77 	 100
3R2.5 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100
4M1 	 100 	 100 	 96.15 	 96.15 	 96.15 	 100 	 100 	 100 	 100 	 38.46
4M2 	 100 	 34.61 	 23.08 	 23.08 	 100 	 100 	 100 	 100 	 100 	 19.23
4M3 	 100 	 100 	 100 	 100 	 100 	 80.77 	 100 	 84.62 	 100 	 100
4L1.5 	 80.77 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 42.31 	 100
4L2.5 	 80.77 	 100 	 53.85 	 100 	 100 	 100 	 100 	 100 	 42.31 	 100
4R1.5 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 76.92 	 100
4R2.5 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 96.15
5M1 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100
5M2 	 100 	 100 	 80.77 	 100 	 100 	 100 	 100 	 100 	 80.77 	 100
5M3 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 76.92 	 100
Average 	 98.52 	 96.75 	 92.31 	 94.82 	 94.82 	 95.56 	 95.41 	 96.3 	 89.2 	 90.98
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of the best weight for PSNR(Hw), W = 1.08.  The accuracy in the comparison of dataset A with 
dataset B can reach up to 98.52%.  To verify this as the best accuracy, weights of W = 1.06, 1.07, 
1.09, and 1.1 were examined and the results are listed in Table 10.  The results obtained with W 
= 1.07 and 1.09 are very close to that obtained with W = 1.08.  Hence, the averages of the results 
obtained with W = 1.06 and 1.1 were used to determine the difference between the images; with 
these, the accuracies are up to 94.82 and 90.98%, respectively.
	 Applying the same steps as with PSNR(Hw) to PSNR(Sw), the best weight was found to 
be W = 1.04.  The scores shown in Table 11 were obtained with W = 1.03 and 1.05, which are 
different from those used to obtain the results in Table 10 (W = 1.07 and 0.9).  The weight of 
PSNR(Sw) is lower than that of PSNR(Hw).  The best resulting average can reach up to 100 
when using W = 1.02 and 1.04.  The results obtained with W = 1.03 and 1.05 are too close to that 
obtained with W = 1.04.  Therefore, the averages of the results obtained with W = 1.02 and 1.06 
were used to determine the difference; the accuracies are up to 99.26 and 97.93%, respectively.
	 Table 12 shows the best results for PSNR(Hw) for comparing dataset A with dataset B.  Here, 
it is clearly evident that the optimal accuracy is different from that in Table 10.  In contrast to 
the case of the original PSNR(H) value, the result is significantly improved.  When using the 
original PSNR(H), the average score can only reach 57.4% at the highest.  In contrast, with W = 1.08, 
the average accuracy score can reach as high as 98.52%.

Table 11
Scores obtained using PSNR(Sw) machine learning criteria.

Reference 
image

PSNR(Sw)
Dataset A 
compared 

with dataset 
B (W = 1.04)

Dataset B 
compared 

with dataset 
A (W = 1.04)

Dataset A 
compared 

with dataset 
B (W = 1.02)

Dataset B 
compared 

with dataset 
A (W = 1.02)

Dataset A 
compared 

with dataset 
B (W = 1.03)

Dataset B 
compared 

with dataset 
A (W=1.03)

Dataset A 
compared 

with dataset 
B (W = 1.05)

Dataset B 
compared 

with dataset 
A (W = 1.05)

Dataset A 
compared 

with dataset 
B (W = 1.06)

Dataset B 
compared 

with  dataset 
A (W = 1.06)

1M1 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 96.15
1M2 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 92.31
2M1 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 92.31
2M2 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 96.15
2M3 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 96.15
2L1.5 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 96.15
2L2.5 	 100 	 100 	 88.46 	 84.62 	 96.15 	 96.15 	 96.15 	 96.15 	 84.62 	 80.77
2R1.5 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 92.31 	 96.15
2R2.5 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 92.31 	 96.15
3M1 	 100 	 100 	 100 	 92.31 	 100 	 100 	 100 	 100 	 96.15 	 88.46
3M2 	 100 	 100 	 100 	 92.31 	 100 	 100 	 96.15 	 92.31 	 96.15 	 84.62
3M3 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 96.15
3L1.5 	 100 	 100 	 100 	 100 	 100 	 100 	 96.15 	 100 	 100 	 96.15
3L2.5 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 96.15
3R1.5 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 96.15
3R2.5 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 96.15
4M1 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 96.15
4M2 	 100 	 96.15 	 96.15 	 76.92 	 100 	 100 	 100 	 100 	 96.15 	 61.54
4M3 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 96.15
4L1.5 	 100 	 100 	 96.15 	 100 	 100 	 100 	 100 	 100 	 96.15 	 96.15
4L2.5 	 100 	 100 	 100 	 96.15 	 100 	 100 	 100 	 100 	 92.31 	 88.46
4R1.5 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 96.15 	 100 	 92.31
4R2.5 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 96.15
5M1 	 100 	 100 	 100 	 100 	 96.15 	 100 	 92.31 	 100 	 100 	 96.15
5M2 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 96.15
5M3 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 100 	 96.15
Average 	 100 	 99.85 	 99.26 	 97.78 	 99.7 	 99.85 	 99.26 	 99.41 	 97.93 	 92.75
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Table 12
Score chart of machine learning PSNR(Hw) criteria.

Reference 
image

PSNR(Hw)
Dataset A compared 

with dataset B
(W = 1.0)

 Dataset A compared 
with dataset B 

(W = 1.08)

 Dataset B compared 
with dataset A

(W = 1.0)

Dataset B compared 
with dataset A

(W = 1.08)
1M1 	 7.69 	 100 	 7.69 	 100
1M2 	 42.31 	 100 	 42.31 	 100
2M1 	 23.08 	 100 	 23.08 	 100
2M2 	 50 	 100 	 50 	 100
2M3 	 92.31 	 100 	 92.31 	 100
2L1.5 	 100 	 100 	 100 	 100
2L2.5 	 88.46 	 100 	 88.46 	 100
2R1.5 	 57.69 	 100 	 57.69 	 100
2R2.5 	 50 	 100 	 96.15 	 100
3M1 	 84.62 	 100 	 92.31 	 100
3M2 	 100 	 100 	 30.77 	 80.77
3M3 	 65.38 	 100 	 73.08 	 100
3L1.5 	 26.92 	 100 	 19.23 	 100
3L2.5 	 80.77 	 100 	 53.85 	 100
3R1.5 	 34.61 	 100 	 80.77 	 100
3R2.5 	 96.15 	 100 	 96.15 	 100
4M1 	 11.54 	 100 	 3.85 	 100
4M2 	 92.31 	 100 	 11.54 	 34.61
4M3 	 65.38 	 100 	 92.31 	 100
4L1.5 	 19.23 	 80.77 	 42.31 	 100
4L2.5 	 23.08 	 80.77 	 53.85 	 100
4R1.5 	 11.54 	 100 	 15.38 	 100
4R2.5 	 69.23 	 100 	 38.46 	 100
5M1 	 96.15 	 100 	 100 	 100
5M2 	 38.46 	 100 	 92.31 	 100
5M3 	 23.08 	 100 	 38.46 	 100
Average 	 55.77 	 98.52 	 57.4 	 96.75

	 Table 13 shows the best results for PSNR(Sw) for comparing dataset A with dataset B.  Here, 
it is clearly evident that the optimal accuracy from Table 12 is different.  As seen in Table 9, 
when using the original PSNR(S), the score can only reach 98.22%.  When W = 1.04 is used, the 
accuracy can reach 100%.
	 By applying the same steps as with PSNR(Hw) and PSNR(Sw), we found the best weight 
using the SSIM(Hw, Sw, V) method to be W = 1.02.  Referring back to Table 13 above, adding 
a weight when comparing the images results in an accuracy higher than that obtained without 
weight.  Furthermore, the comparison accuracy does not continue to improve as the weight 
increases.  After the accuracy reaches a certain value, it decreases as the weight increases 
further.  Therefore, each method has its own optimal weight that gives the highest comparison 
accuracy.  There is no single weight value that can result in the highest comparison accuracy for 
all the different methods.
	 The average accuracies obtained using the four different criteria are listed in Table 15.  
The proposed method(41) had an accuracy of 32.69%.  Considering the CPSNR(HSV), SSIM, 
and PSNR(V) methods, the average accuracy rate increased to 93.72, 91.94, and 83.58%, 
respectively.  The use of the PSNR measurements of H and S layers resulted in improved 
accuracies of 56.59 and 98.00%, respectively.  Compared with existing methods, the method 
proposed in this study yields a significant improvement.  In addition, the results with machine 
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Table 13
Score chart of machine learning PSNR(Sw) criteria.

Reference 
image

PSNR(Sw)
Dataset A compared 

with dataset B (W = 1.0)
 Dataset A compared 

with dataset B (W = 1.04)
 Dataset A compared 

with dataset B (W = 1.0)
 Dataset A compared 

with dataset B (W = 1.04)
1M1 	 100 	 100 	 100 	 100
1M2 	 100 	 100 	 100 	 100
2M1 	 100 	 100 	 100 	 100
2M2 	 100 	 100 	 100 	 100
2M3 	 100 	 100 	 100 	 100
2L1.5 	 100 	 100 	 100 	 100
2L2.5 	 84.62 	 100 	 84.62 	 100
2R1.5 	 100 	 100 	 100 	 100
2R2.5 	 92.31 	 100 	 100 	 100
3M1 	 96.15 	 100 	 92.31 	 100
3M2 	 96.15 	 100 	 92.31 	 100
3M3 	 100 	 100 	 100 	 100
3L1.5 	 100 	 100 	 100 	 100
3L2.5 	 100 	 100 	 100 	 100
3R1.5 	 100 	 100 	 100 	 100
3R2.5 	 100 	 100 	 100 	 100
4M1 	 100 	 100 	 100 	 100
4M2 	 96.15 	 100 	 76.92 	 96.15
4M3 	 100 	 100 	 100 	 100
4L1.5 	 96.15 	 100 	 100 	 100
4L2.5 	 92.31 	 100 	 96.15 	 100
4R1.5 	 100 	 100 	 100 	 100
4R2.5 	 100 	 100 	 100 	 100
5M1 	 100 	 100 	 100 	 100
5M2 	 100 	 100 	 100 	 100
5M3 	 100 	 100 	 100 	 100
Average 	 98.22 	 100 	 97.78 	 99.85

Table 14
Score of machine learning of SSIM(Hw, Sw, V) criteria.

Reference
image

SSIM
Dataset A compared 

with dataset B (W = 1.0)
 Dataset B compared 

with dataset A (W = 1.02)
Dataset B compared 

with dataset A (W = 1.0)
 Dataset B compared 

with dataset A (W = 1.02)
1M1 	 73.08 	 92.31 	 73.08 	 92.31
1M2 	 73.08 	 100 	 73.08 	 92.31
2M1 	 88.46 	 100 	 88.46 	 96.15
2M2 	 100 	 100 	 100 	 100
2M3 	 92.31 	 88.46 	 92.31 	 96.15
2L1.5 	 100 	 100 	 100 	 100
2L2.5 	 57.69 	 92.31 	 57.69 	 80.77
2R1.5 	 96.15 	 61.54 	 96.15 	 100
2R2.5 	 57.69 	 69.23 	 96.15 	 100
3M1 	 92.31 	 100 	 92.31 	 96.15
3M2 	 96.15 	 100 	 53.85 	 73.08
3M3 	 92.31 	 100 	 92.31 	 100
3L1.5 	 100 	 100 	 100 	 100
3L2.5 	 100 	 100 	 100 	 100
3R1.5 	 76.92 	 88.46 	 100 	 100
3R2.5 	 100 	 100 	 100 	 100
4M1 	 53.85 	 80.77 	 61.54 	 88.46
4M2 	 88.46 	 100 	 30.77 	 46.15
4M3 	 80.77 	 96.15 	 100 	 100
4L1.5 	 26.92 	 26.92 	 96.15 	 100
4L2.5 	 53.85 	 73.08 	 96.15 	 100
4R1.5 	 80.77 	 88.46 	 96.15 	 100
4R2.5 	 100 	 100 	 61.54 	 84.62
5M1 	 92.31 	 100 	 100 	 100
5M2 	 61.54 	 92.31 	 100 	 100
5M3 	 73.08 	 84.62 	 100 	 100
Average 	 81.07 	 89.79 	 86.83 	 94.08
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learning in each colorimetric calculation also improved the scores for PSNR(H) and PSNR(S) to 
97.64 and 99.93%, respectively.  As for the fuzzy decision method, the proposed method showed 
the best performance with 100% accuracy.
	 In Tables 12–15, the differences in scores are due to adding the different weighting 
coefficients after adding PSNR(H) and PSNR(S).  Moreover, Table 15 shows the results of the 
comparison of dataset B with dataset A.  Testing is repeated with all the methods and the results 
are listed accordingly.  Here, dataset B is used as the reference for comparing dataset A, and 
Table 16 shows the results when dataset A was used as the reference.  The results of the two 
comparison modes are averaged, as shown in Table 17.

5.	 Conclusions

	 The S-CIELAB index combines luminance, red–green positions, and yellow–blue positions 
into one index.  In addition to using a mixed index (including luminance and color information), 
26 dental shadow tabs were classified into the two dimensions of luminance and chroma for 
selecting a color space.  Therefore, using the indexes PSNR(H), PSNR(S), and PSNR(V) 
increased the accuracy of shadow matching because the focus of the proposed method is on one 
color space of the image without affecting the information in the other color spaces.

Table 15
(H, S, V) vs (Y, Cb, Cr) (31) .  Accuracy results for four different criteria for shade matching.

SCIELAB 
(Y,Cb,Cr) (27) 

CPSNR  
(Y,Cb,Cr)(27)     

Fuzzy Decision 
(Y,Cb,Cr)(27) 

SCIELAB 
(H,S,V)

CPSNR 
(H,S,V)

Fuzzy 
Decision

Dataset A compared 
with dataset B

26.92% 30.77% 92.31% 87.28% 89.65% 84.91%

Dataset B compared 
with dataset A

38.46% 53.85% 92.31% 91.86% 91.43% 91.57%

Average 32.69% 42.31% 92.31% 89.57% 90.53% 88.24%

Table 16
Numbers of accurate shade matching pictures for different methods.

SCIELAB 
(H,S,V)

CPSNR 
(H,S,V)

SSIM 
(HW,SW,V)

PSNR 
(HW)

PSNR 
(SW)

PSNR 
(V)

New Fuzzy 
Decision

Dataset A compared 
with dataset B

18 19 16 24 26 12 23

Dataset A compared 
with dataset B

22 20 21 23 25 13 24

Table 17
Average accuracies of four different criteria for shade matching.

Test image
This Work

SCIELAB 
(H,S,V)

CPSNR 
(H,S,V)

SSIM
(HW, SW, V)

PSNR
(HW)

PSNR
(SW)

PSNR
(V)

Fuzzy 
Decision

Dataset A compared 
with dataset B

87.28% 89.65% 84.91% 98.52% 100.00% 82.69% 98.96%

Dataset B compared 
with dataset A

91.86% 91.43% 91.57% 96.75% 99.85% 84.47% 99.56%

Average 89.57% 90.53% 88.24% 97.64% 99.93% 83.58% 99.26%
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	 As shown in Table 13, the average score of S-CIELAB (H, S, V) was 94.53%.  For CPSNR 
(H, S, V), the average score increased to 93.72%, as shown in Table 3.  The average scores were 
significantly improved to 97.64 and 99.93% by using PSNR(Hw) and PSNR(Sw), respectively, 
as shown in Tables 7 and 8.
	 Finally, the proposed fuzzy decision was found to show the best performance, with an 
average score of 99.26%, as shown in Table 8.  The use of the H and S image layers for tooth 
color matching together with the proposed fuzzy decision making method yielded excellent 
results compared with the other methods.
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