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To date, the aerodynamic coefficient of an aircraft has been obtained by computational fluid
dynamics (CFD) or wind tunnel experiments, which have a high cost. To reduce the cost and
period of analysis, we adopt big data analysis and Al techniques to build an artificial neural
network (ANN) and perform learning and training based on historical flight and wind tunnel
experiment parameters, so as to predict the aerodynamic coefficient of aircraft. Experimental
results show that the values obtained by the proposed method are close to those obtained by
wind tunnel experiments. Consequently, the proposed method can effectively reduce the
amount of simulation analysis by CFD and wind tunnel experiments.

1. Introduction

In general, the aircraft design procedure includes the design of the configuration, internal
arrangement, structure, control law, and each system function, which are closely bound up with
each other. The optimum design point to meet the required performance for missions is found
after an iterative trade-off.)’. The configuration design is the first part of the overall aircraft
design process, and the quality of aerodynamic analysis is also a key factor in the configuration
design. Once the first version of the configuration is obtained, the configuration is studied and
changed continuously to match the subsequent design requirements, acrodynamic analysis is
performed repeatedly, and a massive amount of aerodynamic data is calculated.

The complete aerodynamic data for an aircraft can be obtained by wind tunnel experiments
and computational fluid dynamics (CFD).%3 However, wind tunnel experiments are mainly
used to verify the design in the final phase of the aircraft design and are inapplicable to design
iteration because the hardware facilities of wind tunnel experiments are expensive, the testing
and analysis take a long time, and the overall cost is very high. CFD has a complex execution
process and many variation factors, such as different mesh-generating tools, e.g., POINTWISE
or Hypermesh business software, or different types of CFD software for analysis and
calculation, e.g., the SU2 open software of Stanford University, Fluent, and the CFX simulation
software of ANSYS. Different results might be obtained using different tools. Moreover, high-
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speed hardware is required for the large amount of calculation, and calculations take a long
time.

In 1993, Rokhsaz and Steck® used the angle of attack (AOA) and its derivative as the
input layer neurons of a back-propagation neural network (BPN) to predict the lift coefficient
(CL), drag coefficient (CD), and pitch moment (CM) of wings, so as to provide a reference
frame for high-AOA flight. In addition, they applied an artificial neural network (ANN) to
perform learning and training continuously based on the correlation between four parameters,
namely, pitch angle, pitch angle ratio, velocity, and thrust, to predict the thrust deflection angle.
Nevertheless, they only used the AOA and its derivative as eigenvalues and the prediction
accuracy was low.

Because the aerodynamic coefficient prediction model based on a complex interpolation
method requires a large amount of computer storage and a long computing time, in 2001,
Li et al® proposed a fuzzy neural network and used the Mach number and AOA as the input
values of the network, and the lift coefficient was the expected output value. The network
can approximate any nonlinear function rapidly because of its nonlinear processing capacity
and fault tolerance. However, the method might result in local optimization due to data
characteristics.

In 2002, Rajkumar and Bardina® adopted the AOA and Mach number as ANN eigenvalues
to predict the lift coefficient. The method can predict the lift coefficients of different Mach
numbers and AOAs effectively, but it cannot predict other acrodynamic coefficients. Thus, in
2003, they used the speed brake deflection and side slip angles as ANN input values in addition
to the AOA and Mach number to predict the lift coefficient, drag coefficient, pitch moment, roll
moment, side force, and yawing moment.

In recent years, with the advances in computational capability, the combination of an

L

ANN and different algorithms has increased the aerodynamic prediction accuracy.
2014, Tao et al®) combined a BPN with a hybrid optimization algorithm, wherein the hybrid
optimization algorithm comprises the genetic algorithm (GA) and a support vector machine (SVM).
The former selected a better ANN weight set for crossover to generate a better network weight
set and used mutation to avoid the weight falling into a local optimum. The latter classified
the ANN weight set into two groups to validate the correctness of the network weight. If the
correctness was lower than a threshold, then the correct network weight set was substituted in
the GA again to calculate an optimal weight set (global optimization).

Differing from the method of Tao et al., Gomec and Canibek"” combined an ANN and the
GA to predict six aerodynamic coefficients: the drag coefficient, roll moment, left aileron hinge
moment coefficient (CHMAIL), lift coefficient, pitch moment coefficient, and left elevator
hinge moment coefficient (CHMEL). The method uses the GA to adjust ANN parameters, i.e.,
the number of neurons in the hidden layer, the upper and lower limits of the initial hidden layer
weight vector, the upper and lower limits of the initial input layer weight vector, the upper limit
of the difference, and the initial learning rate. After the GA adjusts these parameters, a more
accurate ANN prediction model is obtained.

The method of Tao ef al. can avoid the ANN weight falling into a local optimum, but it does
not have normalized parameters, so a parameter with a large value has a greater effect than that
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with a small value, making the learning and training procedures more difficult. For example,
most AOAs are larger than the Mach number, so the Mach number becomes an unimportant
input value and the AOA determines the lift coefficient. To avoid this problem, here we propose
a normalization method and an appropriate learning termination condition based on experiments
to further improve the prediction accuracy. Moreover, in contrast to Gomec and Canibek, who
only used multiple aerodynamic data for training and prediction without considering changes in
the aircraft mock-up, we have considered the modification of the mock-up design to derive more
accurate lift and drag coefficients in the iterative design of the aircraft development process.

2. Related Literature

In the 1980s, Searle divided artificial intelligence (Al) into two classes: strong Al and weak
Al In the former, machines and humans have the same complete cognitive ability. In the latter,
machines do not have the cognitive ability equivalent to that of the human brain and only have
self-learning ability. 1112

Al aims to give computers the ability to think and learn similarly to humans. Machine
learning involves the substitution of mass data in algorithms for training and learning to
generate a model. It can be the basis of new data prediction and be divided into three classes,
i.e., supervised learning, unsupervised learning, and reinforcement learning, as shown in Fig. 1.
In supervised learning, data features and labels are substituted in the algorithm for training
and learning to build a prediction model. Any new data can be substituted in the model for
prediction.

Different from supervised learning, unsupervised learning performs learning and training
without labels. An example of unsupervised learning is clustering analysis, which performs
clustering according to the correlation coefficient or dissimilarity of data, so that data in the
same cluster have a higher correlation and the correlation between clusters is low.

In 1975, Holland proposed the GA,1*¥) which simulates the evolution rule of the survival
of the fittest, where superior species are selected from the current iteration. Its genetic
characteristic is exchanged randomly to generate more superior species. The gene information
of the optimal species can be obtained after several iterations.

Binary classification I

Classification

Supervised learning

: : Multiclass classification |
Regression analysis |

Unsupervised learning I—I Clustering I

Machine learning

Reinforce learning I

Fig. . Machine learning classifications.
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A convolutional neural network comprises convolution, pooling, rectified linear unit, and
fully connected layers, as shown in Fig. 2.5 There are two convolution layers, two rectified
linear unit layers, one pooling layer, and one fully connected layer. Generally, the number
and order of layers are determined by data features; there are more layers for more complex
nonlinear problems. The convolution layers are used to extract eigenvalues. As the number of
convolution layers increases, high-level features can be extracted from low-level features.

In the sky, an aircraft is subjected to four forces,!® i.e., lift force, drag force, gravity, and
thrust, as shown in Fig. 3. The following explains the four forces. The airflow is separated,
where the speed of airflow on the wing’s upper surface is high, thus the pressure is low. In
contrast, the speed of airflow on the wing’s lower surface is low, thus the pressure is high. This
phenomenon induces lift force. Drag force is the reverse aerodynamic of the forward direction
of an aircraft and depends on factors including friction, shape, induced drag, and air wave.
Gravity depends only on the aircraft weight and atmosphere. A low gravity means that the
aircraft is light, and it can enhance the performance of aircraft. Thrust is determined by the
engine and increases with the performance of the engine.

These forces depend on the environment and the state of the aircraft, determined by the
Mach number, Reynolds number, AOA, and angle of slide, where the Mach number is the ratio
of the speed of the aircraft (}) to the acoustic velocity (a), i.e., Ma = V/a. The Reynolds number
is determined by the flight altitude. When the Reynolds number is small, the flow is stable. It
is the ratio of the inertia of the flow to the viscosity. A low Reynolds number is suitable for
flight. The AOA is the angle between the relative wind and the chord of the wing as shown in

Convolution Rectified Convolution
Data > > : N
layer linear unit layer
Fully connected |, Pecing biiei 1e Rectified
layer g lay linear unit

Fig.2. Convolutional neural network architecture.
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Fig. 3. (Color online) Four forces.
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Fig. 4. In general, the lift coefficient increases with the AOA. However, if the AOA is higher
than the stall AOA, then the lift coefficient decreases. Therefore, finding the stall AOA is
important. In Fig. 5, the angle of side slide is the angle between the longitudinal axis of the
body and the forward direction, thereby changing the flight situation.

In aircraft shape design, different calculation tools and tests give different results with
different costs and accuracies. In general, considerable amounts of labor and resources are
needed to obtain design parameters. Thus, the use of Al technology in aircraft shape design to
reduce costs and increase accuracy is the subject of our research.

3. Proposed Method
3.1 System architecture

Figure 6 shows a block diagram of the proposed method. In accordance with the
performance and mission specifications, the aircraft size is calculated by considering the wing
area and aerodynamic coefficients. The obtained results can be used to generate the outer
model line. To obtain the aerodynamic coefficients of an aircraft, three analysis techniques
can be used: panel code simulation, CFD simulation, and wind tunnel experiments. Different
techniques give different simulation results and have different computational costs. For
example, the panel code simulation can efficiently but inaccurately derive the aerodynamic
coefficients. In contrast, CFD simulation and wind tunnel experiments can be used to find
aerodynamic coefficients with high accuracy. Furthermore, these aerodynamic coefficients can
be used as the training parameters for the Al model in our proposed method. The coefficients
can also be used as decision information in the design of a flight controller. However, wind
tunnel experiments require expensive equipment and CFD simulation requires large amounts of
computational resources. To overcome these shortcomings, we used the parameters and results
mentioned in Sect. 2 to establish an ANN model for predicting the aerodynamic coefficients
to obtain more accurate and useful parameters with less labor. Such data can also be used as
decision information during the design of a flight controller.

\

Wing chord . _

Relatively wind ————————» ———
_

Fig. 4. (Color online) Illustration of AOA. Fig. 5. (Color online) Illustration of angle of side
slide.
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Fig. 6. (Color online) Block diagram of the proposed application.

3.2 Multilayer neural network establishment phase

Figure 7 shows a flowchart of the BPN. Firstly, the war-plane configuration parameters and
target values (aerodynamic coefficients) are substituted in the BPN for training and learning.
The war-plane configuration parameters include the aspect ratio (4R), AOA, Mach number (Ma),
angle of slide (f), Reynolds number, size of tank, taper ratio, and sweepback. The target values
of our method are the lift and drag coefficients. After these values are substituted, the weight is
adjusted continuously to reduce the prediction error.

Figure 8 shows that the BPN comprises three layers, i.e., input, hidden, and output layers,
wherein the input layer comprises eight neurons, i.e., the war-plane configuration parameters;
the numbers of hidden layers and neurons determine the BPN weight. A more complex problem
requires more layers and neurons. The output layer neuron is the target value, i.e., acrodynamic
coefficients, such as the lift and drag coefficients.

The BPN training stage is divided into forward propagation and back-propagation. The
former calculates the sum of the product of each eigenvalue and its corresponding weight to
obtain the prediction value. The latter adjusts the weight according to the prediction output so
as to increase the forecast accuracy. The computing equation is expressed as

Zx,-wiyj +b, ifg=1,

M)

i
ﬂ .= .
L 2wy, + b, otherwise,
J

where x; is the ith neuron of the input layer and w;; is the connection weight of the ith neuron of
the input layer when g is equal to 1. For the jth neuron of the hidden layer, Z ;- is the output of
the kth neuron in the previous layer, w;, is the connection weight between the jth neuron of the
input layer and the nth neuron of the hidden layer, and b is the bias. The higher the value of u



Sensors and Materials, Vol. 32, No. 10 (2020)

: BPN
Eigenvalue
3 Calculate the error
Forward 3 i Back
T between the expectation cocasatisan
propaganc and prediction propag

Target value

Prediction
Model

Weight adjustment;

Fig. 7. BPN flowchart.

Fig. 8. BPN architecture.
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the easier to be activated by a neuron. Y, ; is the jth neuron of the gth layer with g =1 or ¢ > 1.
Then, Y, ; is substituted in the activation function so that the BPN can solve a complex linear or

nonlinear problem, i.e.,

Yq/,] zf(Yq,j):

@

where f(*) is the activation function, which may be a linear, hyperbolic tangent sigmoid, or

sigmoid function, as shown in Fig. 9, whose equations are respectively expressed as

JE)D=Y,

1
S, )=
P e e
2
)
" (1+e‘2Yq~f)—1

©)

@

©)

Finally, the products of ¥/ ; and the connection weight are summed up to obtain the

prediction value

Ozf(ZYq',an,m +bJ .

©)
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Fig. 9. (Color online) Activation function. (a) Linear function. (b) Sigmoid function. (c) Hyperbolic tangent
sigmoid function.

After the forward propagation process is completed, the phase II back-propagation
procedure is performed and the weights are adjusted to increase the precision of the prediction
value. Finally, the mean square error (MSE) between the output value O and target value G is
calculated as

1 2
MSE=NZ(OZ~—G,-) , ()
i=1

where N is the number of engine data.

If the MSE is smaller than a predetermined threshold, the learning and training processes are
stopped because there is no significant difference between the prediction and target values. The
BPN contains many neuron weights and biases. Here, we assume two weights for simplicity.
We adopt the gradient steepest descent method to adjust the weights to reduce the MSE, as
shown in Fig. 10, where w;; and w) ; are the two weights. To find the minimum value, the local
optimization information must be used along with the gradient of the descent toward the global
optimal solution.

The adjustment method calculates the error vector J,; of the hidden layer and the error
vector J; of the output layer as

8= 20 ¥ g% (1Y) ®
J
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Fig. 10. (Color online) Schematic diagram of gradient descent method.
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The error vector is multiplied by the predetermined learning rate (1), and the connection
weight correction vector is obtained as follows:

Aw, ,, =11 %0y ><Yq”j, (10)

(1)

nxé‘j’nxx;, ifg=1,

nx8;,xY, iy ifg>1l

Then, the connection weight is updated using the connection weight correction vector, i.e.,

w,;’m =W T AW, (12)
W},n =W, + ij’n . (13)

These steps are repeated until the MSE is smaller than the threshold so as to complete the
construction of the BPN to obtain a high-accuracy forecast.

3.3 BPN prediction phase

After the BPN is constructed, the war-plane configuration parameter eigenvalues are
imported into the BPN to predict the aerodynamic coefficient, as shown in Fig. 11. Figure 12
shows an example of aerodynamic coefficient prediction, where two eigenvalues {0.3, 0.5} are
multiplied by the corresponding weights {0.3, 0.2}, i.e., Y11 =03 x 0.3+ 0.5 x 0.2 + 0.2 = 0.39,
and substituted in the activation function f(Y1;) =1/ (1 + e %3% = 0.59628. Then, the second
neuron of the first hidden layer is calculated in the same way, i.e., Zj» = 0.3 X 0.3 + 0.5 x 0.1
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Fig. 11. Flowchart of aerodynamic coefficient prediction.
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Fig. 12. (Color online) Example of aerodynamic coefficient prediction.

+ 0.43 = 0.57, and substituted in the activation function, i.e., f(Y12)=1/(1 + e %37y =0.6387.

The two activated values (0.59628, 0.6387) are substituted in the first neuron of the second
hidden layer to compute the sum of the products, i.e., Y21 = 0.59628 x —0.1 + 0.6387 x 0.43
+ 0.7 = 0915, and substituted in the activation function for the calculation, i.e., f(Y21) =
1/(1+e %) =0714. Then, the second neuron of the second hidden layer is Y>,=0.59628 x (.22
+ 0.6387 x 0.5 + 0.4 = 0.8505, which is substituted in the activation function to obtain f{(¥> >)
=1/(1+ e %%%) =07006. These values (0.714, 0.7006) are substituted in the output layer
neuron for the calculation, i.e., O = 0.714 x 0.9 + 0.7006 x 0.66 + 0 = 1.104. As shown above,
the BPN prediction method is implemented in our research. As reported in the next section, we
use wind tunnel data for training and compare the results of different functions to find the best
solution.

4. Experimental Results

To measure the efficiency effectively, we adopt the mean absolute error (MAE) for
evaluation, whose equation is

N
MAE =iZ|Al. -4, (14)
N i=l1

where N is the number of test data, 4; is the aerodynamic coefficient, e.g., lift or drag
coefficient, and 4/ is the prediction value of the proposed method.
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Table 1 shows the high-speed dynamometer check matrix of an F1 aircraft wind tunnel
test, which has many variables, such as AOA (o), angle of slide (f), and control surface (LEF,
TEF, DH, DR, SB). For each Mach number, the test includes a set of data, and every test is
named with a different number such as 97, 98, 99, ... etc. For example, round 99 is the test data
including the Mach number 0.9, AOA (a) of —4 to 15°, and nose flap and rear flap angles of 10°.
We use round 99 as testing data, and data of other rounds are used as training data to verify the
proposed method.

In the first experiment, we compare the lift coefficient forecast accuracies of different
activation functions: a linear function, a sigmoid function, and a hyperbolic tangent function.
The number of hidden layers is fixed to 1 and the number of neurons is set as 5 to compare the
forecast accuracies. Figure 13 shows the prediction value obtained by the proposed method and
the aerodynamic coefficient from the wind tunnel experiment. The lift coefficient predicted by
the linear function in our method is significantly different from that obtained by the traditional
wind tunnel experiment. Because the prediction of the aerodynamic coefficient is a highly
nonlinear problem, the linear activation function is not suitable for aerodynamic coefficient
prediction. In addition, the numerical error of the hyperbolic tangent function is larger than that
of the sigmoid function, so we choose the sigmoid function as the activation function for the
next phase.

Table 1
(Color online) F1 aircraft high-speed dynamometer check matrix.
CONF, @« B LEF TEF DH DR SB MACH number
) 0.6 0.8 0.9 0.95 1.05 1.2
F1 A2 0 0 0 0 0 0 97 os BB 100 100 101
| 114 113
| 256 257 258 259
| 10 117 191 118 119
| 189
| A3 200 235
| 236
| 15 12.5 192
| 20 12.5 231
| 20 12.5 195
| 30 12.5 232
g ;_"i’:“;:;rf‘i“:‘“cﬂm 0.6 ;Wind Tunnel Experiment
e i  Simoid mcon
< ~ 04 Hypcrbolic tangent function
g
5 02
3
=l
g o
0 5 10 15 2 5 0 5 10 15 20
AOA AOA
(@) (b)

Fig. 13. (Color online) Aerodynamic coefficients with different activation functions and AOAs. (a) Lift coefficient
under different AOAs. (b) Drag coefficient under different AOAs.
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In the second experiment, we compare the forecast accuracies obtained for different
numbers of neurons in the hidden layer. As shown in Figs. 14(a) and 15(b), we use four, five,
and six neurons in the hidden layer to obtain the lift and drag coefficients for different AOAs,
respectively. The figure shows that the lift and drag coefficients are proportional to the AOA.
By adjusting the number of neurons to evaluate the effect of neuron number on the MAE,
it is shown that the MAE of the lift coefficient is significantly greater than that of the drag
coefficient; thus, the MAE of the lift coefficient can be used as a basis to determine the number
of neurons.

As shown in Fig. 14(a), when the AOA is larger than 13°, there is a significant difference
between the lift coefficient obtained with the sigmoid function with five or six neurons and that
obtained in the wind tunnel experiment. A similar problem for the drag coefficient with four,
five, and six neurons is shown in Fig. 14(b). As shown in Fig. 15, the MAEs are 0.02 for four
neurons, 0.0238 for five neurons, and 0.94 for six neurons, indicating that the MAE is roughly
proportional to the number of neurons. This is because more neurons may result in overfitting.
The number of neurons in the hidden layer should be set as four such that the training and
prediction times can be shortened.

In the third experiment, we compare the lift and drag coefficients for different numbers of
neurons in the hidden layers. Figure 16 shows that if the number of hidden layers is increased,
then the error between the expected value obtained by our method and that obtained in the wind

< Wind Tunnel Experiment

o
4
H
g
g
3
Z
=3
O

°
3

Drag coefficient
(=]
W

o
%)

o

O
o
v
=
O
8
O
=3
wn
=
[y

Lo

20

Fig. 14. (Color online) Aerodynamic coefficients for different numbers of neurons and AOAs. (a) Lift coefficient
under different AOAs. (b) Drag coefficient under different AOAs.

0.045
0.04
0.035
0.03
50025 -
= 0.02
0.015
0.01
0.005

4 neurons 5 neurons 6 neurons

Fig. 15. (Color online) MAE:s of lift coefficient for different numbers of neurons.
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Lift coefficient
o
©
Drag coefficient
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Fig. 16. (Color online) Aerodynamic coefficients with different numbers of hidden layers and AOAs. (a) Lift
coefficient under different AOAs. (b) Drag coefficient under different AOAs.

Table 2
(Color online) Dynamometer check matrix for configuration optimization of F1 aircraft with tank.

MACH Number
CONF. “ B LEF TEF  DH DR SB 0.6 0.8 0.9 095 1.05 1.2
F1+CTK-1 A2 0 0 0 106 105 104 103 102
| 10 124 125
F1+CTK-4 0 107 108 109 110 111
| 112
| 261 262 263 264 265 260
| 10 126 127 128
| 141 266 267
F1+CTK-5 -10 120
Table 3
Tank dimensions.
Form fit tank code Height x Width x Length (inch)
CTK-1 1.643 x 1.908 x 14.401
CTK-4 1.667 x 1.908 x 13.879
CTK-5 1.631 x 1.961 x 13.698

tunnel experiment is also increased. The main cause of this is data overfitting. The MAE for
one hidden layer is 0.02, and the MAE for three hidden layers is increased to 0.03. Thus, the
number of hidden layers is set to one in this research.

Table 2 shows the dynamometer check matrix for the configuration optimization of F1
aircraft with different tank sizes. Similarly to Table 1, the check matrix uses many variables
and different Mach numbers to obtain a set of test data. Our fourth experiment adopts the
optimal training parameters in the former three experiments to predict the aerodynamic data
for different tank sizes (different configurations); F1 aircraft have several types of tanks with
different mount points, and the configuration affects the accuracy of aerodynamic coefficient
prediction. The tank size is used as an input parameter in this experiment, as shown in Table 3.
Tanks CTK-1 and CTK-4 are taken as training data. Round 120 CTK-5 is used as the test data.

Figure 17 shows the experimental results. The mean error of the lift coefficient is 0.0046
and the maximum error is 0.0128. These values are smaller than the tolerable error of 0.03. The
mean error of the drag coefficient is 0.0028 and the maximum error is 0.0055, indicating that
the proposed method has a reasonably high predication accuracy and the error can be controlled
in all cases.
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Fig. 17. (Color online) Predicted aerodynamic coefficients for different gas tanks. (a) Lift coefficient under different
AOAs. (b) Drag coefficient under different AOAs.

5. Conclusions

The proposed method predicts the lift coefficient more accurately as the number of neurons
in the hidden layer is increased. The experimental results also show that the proposed method
has a smaller error if the learning rate is increased. The proposed method can be used as
an alternative to CFD software and the wind tunnel test to reduce the experimental cost and
shorten the design period of the aerial vehicle configuration. In addition, the parameters are
first normalized before the lift coefficient is predicted. Our method only predicts the lift
coefficient instead of predicting the lift and drag coefficients simultaneously since the lift
coefficient is more important than the drag coefficient. In addition, many important features
such as the Mach number, full AOA, pitch angle, and Reynolds number are selected as the input
of the proposed ANN model, increasing the accuracy of the estimated lift coefficients.

This method is applicable to aerodynamic analysis for different aerial vehicles. The
proposed prediction method is established on the basis of big data analysis and Al technology to
reduce the development cost, labor, and design period.

In the future, we will add more shape parameters as inputs for training such as the wing
area, airfoil, and size of fuselage. We hope that the shape parameters can be used to describe
the shape of aircraft more clearly. Moreover, we expect that the training results can specifically
reflect the effects of shape changes and accelerate the design of aircraft.

References

1 P. R. Daniel: Aircraft Design: A Conceptual Approach, 6th ed. American Institute of Aeronautics and
Astronautics Inc (1992) 515-552. https://doi.org/10.2514/4.104909

2 A. A.dePaula, F. D. Magalhdes Porto, and M. S. Sousa: AIAA Modeling and Simulation Technologies Conf. (2016)
4133. https://doi.org/10.2514/6.2016-4133

3 F. Nicolosi, D. Ciliberti, P. Della Vecchia, and S. Corcione: 2018 Applied Aerodynamics Conf. (2018) 2855.

https://doi.org/10.2514/6.2018-2855

K. Rokhsaz and J. E. Steck: J. Guidance Control Dynam. 16 (1993) 934. https://doi.org/10.2514/3.21104

S.L.Li, F. T. Zhang, Z. Li, and K. H. Wei: Acta Simulata Systematica Sinica 4 (2001) 24.

T. Rajkumar and J. E. Bardina: FLAIRS Conf. (2002) 242-246.

S. I. Horikawa, T. Furuhashi, and Y. Uchikawa: IEEE Trans. Neural Netw. 3 (1992) 801.

C. T. Lin and C. G. Lee: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems (Prentice

Hall, 1996).

(eI o) QUL TN N


https://doi.org/10.2514/4.104909
https://doi.org/10.2514/6.2016-4133
https://doi.org/10.2514/6.2018-2855
https://doi.org/10.2514/3.21104

Sensors and Materials, Vol. 32, No. 10 (2020) 3183

10
11

12
13
14

15
16

17
18

C. Tao, D. Chen, W. Songyan, and Y. Ming: Proc. 11th World Congr. Intelligent Control and Automation (2014)
4961-4964.

F. S. Gomec and M. Canibek: Proc. 7th European Conf. Aeronautics and Space Sciences (2017).

S. J. Russell and P. Norvig: Artificial Intelligence: a Modern Approach (Malaysia, Pearson Education Limited,
2016).

D. K. Lin: Practical Application of TensowFlow+Keras Deep Learning AI (DrMaster Press, 2017).

L. Davis: Handbook of Genetic Algorithms (Van Nostrand Reinhold, 1991).

M. T. Su, and H. T. Chang: Machine Learning: Artificial Neural Network, Fuzzy System and Genetic
Algorithm (Chuan Hwa Books, 2016) 4th ed.

J. Long, E. Shelhamer, and T. Darrell: IEEE Conf. Computer Vision and Pattern Recognition (2015) 3431—
3440.

Y. Kim: Convolutional neural networks for sentence classification. arXiv preprint arXiv (2014) 1408.5882.

S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back: IEEE Trans. Neural Netw. 8 (1997) 98.

A. Sobester and A. 1. Forrester: Aircraft Aerodynamic Design: Geometry and Optimization (John Wiley &
Sons, 2014).

About the Authors

Der-Chen Huang received his B.S. degree in electronic engineering
from Fung Chia University, Taiwan, in 1983, his M.S. degree in computer
engineering from Florida Institute of Technology, U.S.A., in 1991, and his
Ph.D. degree in computer engineering from the Department of Computer
Science and Information Engineering, Chung-Cheng University, Chiayi,
Taiwan, R.O.C. in 2000. From 1983 to 1989, he worked as a design engineer
with the Computer Communication Lab (CCL)/Industrial Technology
Research Institute (ITRI) and National Chung-Shan Institute of Science
and Technology (CSIST) when he was assigned to a partnership project at
General Dynamics, Fort Worth, Texas, U.S.A. He was an associate professor
with the Department of Electronic Engineering, National Chinyi Institute of
Technology, Taichung, Taiwan, R.O.C. from 1991 to 2004. In 2004, he joined
the Department of Computer Science and Engineering, National Chung Hsing
University, Taichung, Taiwan, R.O.C. He was a director of the Computer and
Information Center of Chung Hsing University from 2007 to 2011. Currently,
he is a professor of Chung Hsing University. Dr. Huang served as a reviewer
for various technical journals and conferences and a member of the editorial
board of Journal of Internet Technology. He received the Best Paper Award
from the 5th International Conference on Future Information Technology,
Korea, in 2010. His research interests include VLSI design for testability and
diagnosis, VLSI digital signal process, communication, image, and artificial
intelligence. (huangdc@nchu.edu.tw)



3184 Sensors and Materials, Vol. 32, No. 10 (2020)

Yu-Fu Lin received his M.S. degree in 2012 from the Institute of Computer
and Communication Engineering, National Cheng Kung University, Tainan,
Taiwan. He is currently pursing his Ph.D. degree in Computer Science and
Engineering at National Chung Hsing University, Taichung, Taiwan. He has
been working at National Chung-Shan Institute of Science & Technology
(NCSIST) in the area of intelligent computing technologies since 2012. He
is currently the leader of the Unit of Data Application at the Aeronautical
Systems Research Division of NCSIST. His current research is aimed at
aircraft design and military application in artificial intelligence.
(yufu3S@gmail.com)

Lee-Jang Yang received his M.S. degree from the Institute of Applied
Mechanics at National Taiwan University (NTU) of Taiwan, in 1991, and his
Ph.D. degree from the Department of Computer Science and Engineering
at National Chung-Hsing University (NCHU) of Taiwan, in 2015. He has
been working at the National Chung-Shan Institute of Science & Technology
(NCSIST) in the area of intelligent computing technologies since 1991. He is
currently the chief of the Department of Information & Network Technology
at the Aeronautical Systems Research Division of NCSIST. His current
research is aimed at the creation and study of Semantic Web technology for
Linked Data, military information fusion technology, and military application
in artificial intelligence. (calsasrd@hotmail.com)

Wei-Ming Chen is currently a professor in the Department of Information
Management at National Dong Hwa University. He was a professor in the
Department of Computer Science and Information Engineering and the
Chairman of Computer Science and Information Engineering at National Ilan
University. He received his M.E. and Ph.D. degrees in Computer Science and
Information Engineering from National Chung Cheng University. His current
research interests include image processing, computer networks, multimedia
systems, and artificial intelligence. (wmchen88@gms.ndhu.edu.tw)




