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	 Pedestrian detection is a high-profile topic in computer vision, in part because it has 
great relevance to autonomous driving and intelligent surveillance applications.  However, 
most pedestrian detection algorithms perform stably only during the daytime with sufficient 
illumination.  At night, there is still room for improvement and many challenges exist.  These 
challenges include occlusion caused by objects or crowds, and the problem of image background 
segmentation caused by environments with varying illumination.  In this paper, we propose a 
nighttime thermal image pedestrian detection system, which can be viewed as an extension of 
the Faster region-based convolutional neural network (R-CNN) method.  The proposed system 
can be used for static surveillance scenarios.  First, a part model branch is proposed to realize 
the learning of partial pedestrian block features.  Second, a segmentation branch is incorporated 
to strengthen the positioning of the pedestrian foreground.  Finally, the branches are integrated 
through the fused loss function to enable joint training and optimization of the detection model.  
To evaluate the performance of the proposed model, we tested the system with several nighttime 
surveillance scenes.  The experimental results show that the proposed method can effectively 
deal with the occlusion problem under challenging illumination environments and achieve 
performance levels superior to those of some state-of-the-art deep-learning pedestrian detection 
methods.  

1.	 Introduction

	 With the rise of autonomous driving systems, intelligent surveillance, and smart robots, 
image processing topics involving people have attracted the attention of academia and industry.(1–4)  
Because human beings are one of the most important objects in any consideration, pedestrian 
detection is an important challenge in computer vision.  Owing to the wide application of 
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convolutional neural networks (CNNs), especially Faster region-based CNN (R-CNN)(5) and 
its variants,(6) the pedestrian detection performance has markedly improved over the past few 
years.  However, most current pedestrian detectors are designed for daytime applications, i.e., 
under high illumination.  In other words, they may fail at night or on foggy days because the 
quality of the captured color images degrades significantly under low illumination.  The main 
reasons are the lack of stable natural light sources in these environments and the poor visibility 
of visible cameras at night.
	 Compared with daylight conditions, luminance under nighttime conditions is weaker, and 
many accidents occur at night due to poor visibility.(7)  Therefore, night pedestrian detection 
systems are very important for related fields.  In recent years, night pedestrian detection 
methods have been focused on by researchers.  By using other types of sensors, such as near-
infrared cameras, time-of-flight cameras, and long-wave infrared thermal cameras, the problem 
of the poor visibility of optical cameras at night (or under low lighting conditions) can be 
solved.  Among these new types of imaging sensors, thermal cameras are the most widely used, 
because they can maintain high visibility of pedestrian characteristics at night even when there 
is insufficient light, as shown in Fig. 1.  
	 However, nighttime pedestrian detection systems based on thermal images still have 
many challenges that must be addressed.  First, because thermal images are generated by far-
infrared sensing of the temperature of an object, in some bad weather, such as rain and snow, 
it is difficult to distinguish foreground objects from the background.  Some techniques have 
been proposed to address this challenge.  Among them, the pixel-level segmentation network 
is considered to be able to effectively deal with foreground and background segmentation 
problems.  Brazil et al.(8) improved Faster R-CNN in a semantic segmentation network, where 
the feature fusion method was used to increase the segmentation feature information and 
improve the foreground and background segmentation performance of the system.  However, 
although this type of method improves the pixel boundary segmentation between different 
classes of objects, it is difficult to segment objects of the same class, e.g., the problem of crowd 

Fig. 1.	 (Color online) Comparison between images from (a) a visible camera and (b) a thermal camera.

(a) (b)
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occlusion.  In contrast, He et al.(9) proposed the Mask R-CNN method, which has a relatively 
stable performance in distinguishing similar classes of objects from each other.  The Mask 
R-CNN method improves the original Faster R-CNN network by establishing a Mask branch, 
fusing it with multitask loss functions, and thus achieving better performance in detection 
tasks.  Inspired by the Mask R-CNN method, in this study, we propose a semantic segmentation 
branch, which uses a newly defined fusion loss function for optimization.  In addition to 
solving the problem of background and foreground segmentation, we also aim to improve 
the segmentation of objects from the same class and the performance of pedestrian detection 
systems at night.
	 Another challenge in pedestrian detection is occlusion.  In many scenes, this problem is 
inevitable.  In this work, the occlusion problem can be divided into two categories: (1) object 
occlusion: occlusion by other objects, such as a car, rock, or umbrella; (2) crowded occlusion: 
occlusion by a group of people.  Either of these occlusion categories will lead to detection 
failure.  Because some parts of a body are missed when occlusion occurs, the discriminability 
of a pedestrian detector will degrade significantly.  In this case, global appearance features 
that are trained from the entire pedestrian are insufficient to detect a partially occluded body 
precisely.  A technique called the deformable part model (DPM)(10) and its related methods 
have been proposed to deal with this problem.  The DPM has an inherent advantage in handling 
occlusion because the detection process is separated into the detection of individual body parts 
by the histogram of oriented gradients (HOG) method, and therefore, the occluded parts can still 
be handled individually at the decision stage.  Recently, Tian et al.(11) proposed the DeepParts 
method, which constructs a part pool consisting of 45 prototypes, and changed the original 
HOG feature extraction method to the CNN in the training stage.  In this paper, we combine the 
part model with Faster R-CNN to solve the problem of occlusion through convolutional layers 
of different scales and custom block layers based on the concept of the part model.  
	 To overcome the above-mentioned limitations of some related works, we present a 
new thermal pedestrian detection method.  First, we integrate a part-model branch in the 
classification network stage, which divides the pedestrian features into nine custom layers based 
on the Faster R-CNN.  Second, multiscale convolutional layers are used to obtain pedestrian 
features at different scales, and the Dropout layer is used to simulate random occlusion features 
as high-dimensional data to obtain the loss corresponding to the result of classification and 
the use of a bounding box.  In addition, we propose a semantic segmentation branch, which is 
trained synchronously during the model training process.  Finally, all the classification results, 
the bounding box results, and the segmentation losses are used to synchronize the optimization 
through the loss fusion procedure.  In summary, the contributions of this study are as follows.
(1)	We built a new static nighttime thermal pedestrian dataset, that is, we constructed a thermal 

pedestrian dataset by using a fixed thermal camera.  Currently, most popular thermal 
databases, such as the Flir(12) and KAIST(13) datasets, are dynamic thermal pedestrian 
datasets.  In the future, we plan to make this dataset publicly available to researchers.

(2)	We proposed a thermal-based R-CNN model for nighttime pedestrian detection and 
simultaneously solved the problems of occlusion and background segmentation, which occur 
in nighttime pedestrian detection.
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(3)	We proposed a new loss fusion function that enables the models to be trained jointly, making 
the training process more efficient.  From the experimental results, the proposed thermal 
R-CNN method outperforms state-of-the-art methods.  

2.	 Proposed Thermal R-CNN for Nighttime Pedestrian Detection

	 As shown in Fig. 2, the proposed nighttime pedestrian detection method is based on the 
structure of Faster R-CNN, and the backbone network used is VGG-16.  The reason why 
VGG-16 is used is because it has good network scalability, which enables the proposed branch 
network to be integrated into our architecture.  First, through the region proposal network (RPN), 
the preliminary classification and bounding box regression results (of foreground objects and 
the background) are obtained.  To achieve better detection accuracy, the original RoIPooling 
step is changed to the RoIAlign step for resizing.  Then, we proposed the following extended 
branch network, which consists of three parts: part model head, segmentation head, and loss 
fusion.

2.1	 Part model head

	 In view of the occlusion problem in pedestrian detection, we use a part model architecture, 
where the aspect ratio and block model are redefined, and the region discard block (RDB) is 
proposed to strengthen the network’s generalization to occluded pedestrians.  As shown in Fig. 3, 
first, we perform RoIAlign on the pedestrian feature map of the area obtained by the backbone 
network and RPN, and resize it to 3 × 6 × 512.  Compared with the size used in the original 
Faster R-CNN (i.e., 7 × 7 × 512), the new size with a different aspect ratio more closely fits the 
properties of pedestrians and also helps the model to learn finer details.  The features are then 
analyzed by two parts, a full body branch and a region decomposition branch.

Full body branch: This branch inherits the original Faster R-CNN, which flattens the original 
feature map of the whole pedestrian shape, and learns the depth features of the whole pedestrian 

Fig. 2.	 Architecture of the proposed thermal R-CNN.



Sensors and Materials, Vol. 32, No. 10 (2020)	 3161

in two fully connected (FC) layers of 4096 dimensions.  The output 1 × 1 × 1 feature can be 
considered as the pedestrian information for the whole body.  

Region decomposition branch:  In this branch, we convolve the pedestrian feature maps with 
convolutional layers of different scales, including 5 × 5, 3 × 3, and 1 × 1.  Among them, we add 
a padding procedure to the 5 × 5 convolution layer to maintain an aspect ratio consistent with 
the output feature map.  The obtained features are divided into 54 parts of pedestrian features 
representing individual scales by using different deformation layers.  Finally, the RDB is used 
to simulate different occlusion cases; the RDB is a block composed of the Merge layer and 
the Dropout layer.  Inspired by the CutOut(14) method, the Dropout scheme is utilized during 
the training process, which randomly discards 54 neurons representing pedestrian features 
previously arranged with the Merge layer.  Compared with training with occlusion and non-
occlusion on the input layer, the proposed method can not only achieve the purpose of learning 
occlusion features without adding pedestrian data, but also avoids the confusion of the model 
caused by the direct training of two pedestrian features (occlusion and non-occlusion).  Finally, 
we use the Merge layer to fuse the features obtained from the two branches, and obtain the 
scores from the full body branch and region decomposition branch for classification.  

2.2	 Segmentation head

	 At night, thermal-based pedestrian detection often encounters the problem of segmenting 
individual foreground objects in crowded scenes, which will degrade the performance of the 
RPN.  To address this problem, we propose adding a segmentation branch network (Fig. 4) to 
incorporate the segmentation information when selecting the bounding box and distinguishing 
between foreground and background.  The main path consists of four consecutive convolutional 
layers and one deconvolutional layer.  Each convolutional layer is composed of 128 3 × 3 filters, 
and the deconvolutional layer up-samples features with a factor of 2.  In addition, to increase 
the accuracy of the bounding box, we add FC layers of the main path, and to enhance the 
distinguishability between foreground and background, we design a short path dominated by 
the FC layer architecture after the third convolution layer.  The previous convolution layer has a 

Fig. 3.	 (Color online) Detailed structure of the part model head.
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size of 3 × 3 × 64, which is mainly to reduce the dimension of features to reduce the calculation 
time of subsequent FC layers.  The mask size used in this study is 28 × 28.  Finally, we connect 
the two path features in series and obtain weak box-based masks.  Note that we use weak box-
based masks, as shown in Fig. 4(a).  In contrast to the pixelwise segmentation masks of Mask 
R-CNN, we do not need pixel-level annotation data, which makes the model easier to train, and 
the lightweight design makes the network easier to implement.

2.3	 Loss fusion

	 To jointly train the models, the proposed thermal Faster RCNN is trained by minimizing the 
following joint loss function with five terms:

	 1 2 3 4 5
rpn rpn part part seg
cls bbox cls bbox maskL L L L L Lλ λ λ λ λ= + + + + .	 (1)

	 Considering the ratio rates, we set λ1, λ2, λ3, and λ4 to 1 and λ5 to 2.  In addition, rpn
clsL  

and rpn
bboxL  represent the classification loss and the bounding box regression loss in the RPN, 

respectively.  part
clsL  and part

bboxL  represent the classification loss and the bounding box regression 
loss in the part model head, respectively.  By letting ,i jGT  and ,i jP  respectively represent the 
ground-truth and the predicted weak box-based masks, the image-level pixel loss can be 
expressed as

	 * *
, , , , , ,

,

1 log[ ( )( )]seg
i j i j i j i j i j i jmask

i j
L P P GT P GT P

S
= − + − −∑ ,	 (2)

where S is the size of the feature map.  Finally, we can perform simultaneous training through 
the fusion loss function.  Note that we only use segmentation branch networks for training, and 
the branch network is used to optimize the overall detection performance.

Fig. 4.	 Detailed structure of the segmentation head. (a) Visualization of the similarity between pixelwise 
segmentation masks (from Mask R-CNN) and weak box-based masks. (b) Architecture of the segmentation 
network.

(a) (b)
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3.	 Experiments

3.1	 Nighttime thermal dataset

	 In this section, in order to effectively evaluate the feasibility and effectiveness of the 
proposed method, we constructed a complete nighttime pedestrian detection system, which 
included software implementations of original algorithms and hardware with a distinctive 
architecture.  The hardware equipment includes a thermal camera, a computer, a frame 
grabber, and a camera tripod.  The thermal camera used in this study had a length of 25 mm 
and its effective detection distance was approximately 10 to 60 m.  The thermal camera was 
firmly mounted on a camera tripod so that we could simulate the actual situations of different 
surveillance scenarios for data collection and performance testing.  
	 Although many public pedestrian databases exist, most of them are based on optical cameras 
and mobile platforms.  As presented in Table 1, we collected a database using our thermal 
camera; the database has five different scenes with a resolution of 640 × 480; the dataset 
includes approximately 5000 images and depicts 8000 pedestrians.  In addition, we defined 
challenging categories for different scenes as follows:

Scale: We used this data category to test whether the model retained a stable performance in 
an environment with considerable complexity of scale.  We mined the dataset for statistics and 
used them to define the aspect ratio as 0.4 and to divide the data into three intervals based on 
length: near (10–30 m and ~100 pixels), medium (30–50 m and 50–100 pixels), and far (~50 m 
and ~50 pixels).  Any video sequence that contained a pedestrian in all three intervals was 
considered to be in a scale-challenging category.

Clutter: For thermal imaging, different light sources and heat sources may degrade the quality 
of the captured images, which may cause the captured images to have muted foreground and 
background differences.  If differences are muted, the algorithm has difficulty distinguishing 
between foreground and background objects.  Therefore, we analyzed the background 
complexity of each scene and defined this type of challenge category.

Object occlusion and crowded occlusion: T occlusion is a crucial challenge in pedestrian 
detection.  With reference to the Caltech Pedestrian Dataset,(15) which is one of the most widely 

Table 1
Features of each video sequence.

Location Resolution Frames Objects Scale Clutter Object
occlusion

Crowd
occlusion

Video 1 640 × 480 640 471
Video 2 640 × 480 770 845  

Video 3 640 × 480 986 2611  

Video 4 640 × 480 470 259   

Video 5 640 × 480 2025 3574   



3164	 Sensors and Materials, Vol. 32, No. 10 (2020)

used datasets for visible pedestrian detection, we marked each pedestrian with two boxes.  As 
shown in Fig. 5(a), the red box indicates the visible region (BB-vis) and the green box indicates 
the complete shape of a pedestrian (BB-full).  Given BB-vis and BB-full, the pedestrian 
occlusion rate can be calculated.  When the occlusion rate is over 80%, the appearance of 
the pedestrian is almost lost, which indicates a completely occluded pedestrian.  Therefore, 
in our dataset, we only considered pedestrians who had occlusion rates between 1 and 80%.  
In addition, we defined BB-full as the ground truth (GT), which is convenient and objective 
when comparing with other methods.  In this paper, two types of occlusion are defined: object 
occlusion (i.e., occluded by an object such as an umbrella) and crowd occlusion (i.e., occluded by 
other people).  Overall, the occlusion set includes 300 crowd occlusion cases and approximately 
200 object occlusion cases.  To refine the distribution of the actual occlusion, we quantized the 
bounding box to a 3 × 6 matrix.  Figure 5(b) presents the statistics of the six types of occlusion 
that appeared most frequently in the dataset.

3.2	 Evaluation of system performance
	
	 The extended model used in the experiment was based on the Faster R-CNN framework, 
which was implemented with Tensorflow.  The network was initialized with the Glorot uniform 
initializer and was trained by the stochastic gradient descent (SGD) solver for 80000 iterations 
with a learning rate of 0.0001 and a batch size of 128.  In addition, we did not use the data 
augmentation technique in the experiments.  All experiments were performed on a machine 
with a single 2080Ti GPU and an Intel Core i7 8700 4.6 GHz CPU.
	 To confirm the feasibility of the proposed method, we adopted various metrics to evaluate 
the output of the pedestrian detection methods; the set of metrics included the number of true 
positives (TP), the number of false positives (FP), and the number of false negatives (FN).  
Using these quantities, the precision, recall, and F1-measure were calculated.  As listed in Table 2, 
we analyzed the network architecture, including Modified Faster R-CNN (base), Base + Part 

Fig. 5.	 (Color online) Definition of occlusion. (a) BB-full (green rectangle) and BB-vis (red rectangle). (b) Top six 
pedestrian occlusion types.

(a) (b)
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branch, Base + Segmentation branch, and Thermal R-CNN (proposed).  From the experimental 
results, it can be observed that the expansion of Faster R-CNN on the basis of whether it is 
part branch or segmentation improves the performance.  Base + Part branch has higher recall 
than Base + Segmentation.  The main reason is that part branch is designed to manage multiple 
levels of scale and multiple pedestrian part features.  It has high sensitivity to detailed and 
regional features, so it enables the system to distinguish numerous possibilities easily, but this 
ease tends to limit the precision because it is also relatively easy to misjudge images.  However, 
Base + Segmentation uses the semantic segmentation feature to enhance the information of the 
complete pedestrian bounding box, so that the bounding boxes output by the network are more 
accurate and realistic, resulting in higher precision.

3.3	 Comparison with state-of-the-art methods

	 Using the same benchmarks, we compared the proposed method with other published 
methods on the metrics mentioned in the previous section.  As shown in Table 3, the methods 
used for comparison were Faster R-CNN, Mask R-CNN, and YOLOv3.(16)  For the experiment, 
we used all the original parameters and code for data training and testing, where the number of 
training samples was 3261 and the number of test samples was 1630.  The results revealed that 
our method achieved the highest performance.  Note that the performance difference between 
Faster R-CNN and Mask R-CNN was small, mainly because the dataset used in this study 
did not contain complete semantic segmentation in labeling.  That is, the label of semantic 
segmentation we used only included the segmentation features of the bounding box; therefore, 
it may degrade the superior performance of mask R-CNN segmentation.  Table 4 shows several 
examples of detection results, which demonstrate the effectiveness of the proposed method.

Table 2
False alarm and missed rate of detection.
Method TP FP FN Precision Recall F1-score
Modified Faster R-CNN 1069 752 918 0.587 0.538 0.561
Base + Part branch 1135 588 852 0.658 0.571 0.611
Base + Segmentation branch 1037 450 950 0.697 0.521 0.597
Thermal R-CNN (proposed) 1317 334 670 0.797 0.662 0.724

Table 3
Comparison of detection results of different methods.
Method TP FP FN Precision Recall F1-score
Faster R-CNN   992 740 995 0.572 0.499 0.533
Mask R-CNN 1050 720 937 0.593 0.528 0.558
YOLOv3 1250 954 734 0.567 0.630 0.661
Thermal R-CNN (proposed) 1317 334 670 0.797 0.662 0.724
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4.	 Conclusions

	 In this study, we provided two contributions to nighttime pedestrian detection.  First, in the 
later stage of network classification, we added a part structure and proposed an RDB to allow 
the network to randomly learn about pedestrians.  Masking was implemented to mitigate the 
decline in detection rate caused by occlusion.  Second, we designed a segmentation branch 
based on weak box-based masks.  This branch optimizes the network only through the training 
phase, allowing it to more accurately classify and locate pedestrians.  This branch cannot be 
trained without pixel-level polygon data set annotations, but because it was used only in the 
training phase, it did not increase the performance burden during actual testing.  Experimental 
results prove that the proposed thermal R-CNN delivered stable performance under occlusion 
and different illumination conditions.  It is also superior to the state-of-the-art pedestrian 
detection methods on the collected static night pedestrian detection dataset.  In the future, we 
will develop more datasets for indoor and outdoor surveillance scenarios.
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