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	 We used the Markov process to impose parameter perturbation on affine transformations to 
overcome the self-similarity limitations of the fractal attractor of the classic iterated function 
system (IFS) and construct a fractal image with irregular shapes and features.  Then, a 
control method for the IFS system for fractal image generation was proposed.  This method 
decomposes the original IFS into several independent local subsystems.  Then, we defined a 
transition probability matrix of the Markov process for each of the different local subsystems, 
and carried out image shape operation of a perturbation function to increase the control of the 
fractal image.  This method can construct colorful fractal images effectively through computer 
image generation.  

1.	 Introduction

	 Fractal geometry uses its unique self-similarity to construct protean fractal images with an 
arbitrary high resolution, which has attracted great attention from the public.(1)  Fractal image 
integrates art with science.  It also has various technological applications, including sensor 
technologies.(2,3)  However, fractal images have mainly been used for their artistic value in a 
broad range of industries, including packaging and printing, fashion and fabrics, embroidery, 
ceramics, architecture, and advertisements.(4–6)  Nowadays, science and aesthetic impressions 
are generated by numerical calculation by computers.(7,8)  Advanced computer graphics 
technology creates designs for various types of artistic patterns automatically.  This has become 
the mainstream of modern art pattern design.  
	 Research on fractal images for art pattern designs has shown significant progress.(9,10)  
However, it is not easy to control the generation of fractal art images.  In order to improve the 
classic iterated function system (IFS) used to generate fractal art images, we applied the Markov 
stochastic process theory to fractal modeling using the IFS.  On the basis of the multilevel 
decomposition of the IFS affine transformation system, the IFS is decomposed into multiple 
independent subsystems to obtain IFS iterated codes of different local IFSs and desired depths.  
	 In accordance with preset control rules, shape changes of different local fractal images 
are controlled to realize the shape evolution of each subsystem image.  This is based on a 
local independent image operation that carries out deformation processing on a specific local 
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subimage without affecting other local subimages of the image.  We use a Markov random 
sequence to adjust the affine transformation family of the IFS local subsystem and combine   
the parameter perturbation method.  In this way, we can generate a large number of changeable 
fractal images by designing the shape modeling rules in an image drawing process.

2.	 Relevant Works 

	 The IFS is a representative system that can be used as a basis to simulate the scenery of a 
fractal nature to describe common fractal shapes, and its theory and practice have been widely 
applied in many fields.(11,12)  As the shape of an ordinary IFS fractal attractor is very regular, the 
attractor often seems to be “rigid” and does not significantly change  when the IFS attractor is 
directly used to simulate a natural landscape.  Garcla introduced a mutually recursive function 
system (MRFS), a popular form of the IFS, to obtain a balance between order and chaos in 
the IFS attractor image.(13)  Its basic idea is to use the affine transformation of IFS variables 
during the computation process of successive iterations.  As different changes are used for each 
recursion, attractors with different rules or irregular forms can be obtained.  
	 Several enhanced attractor control methodologies have been proposed through the 
development  of the IFS since the MRFS was introduced.  A modified method was introduced 
in which the parameters of the transformation depend on the number of iterations.  This 
method combined the IFS with a new approach to model compound objects.(14)  Sherman and 
Hart, and Radu introduced a Markov process into the study of an IFS to strengthen the control 
of the fractal attractor image, which has great practical value.(15,16)  An IFS with Markov 
characteristics has also been proposed, which overcomes the limitations of the traditional IFS 
methods to some extent.  Various studies have proposed a more generalized iterated function 
system (MIFS), and many concrete applications have been reported.  Sharif Ullah et al. 
proposed the design for manufacturing (DFM) of fractals created by a random walk, that is, the 
DFM of an IFS-created fractal called Barnsley’s fern leaf.  The IFS for creating virtual models 
of a fern leaf used a set of four strictly contracting affine mappings.(17) 
	 Stepien used a modular method to construct a fractal model of natural objects with spiral 
structures, such as takin horns and seashells.  The model was composed of a base module and 
an IFS with a compressed set (IFSc), where the IFSc attractor comprised a gradually shrinking 
copy sequence.(18)  Zhang put forward a method of modeling the fractal attractor of a Markov 
IFS based on a transition probability matrix that involved the multiple decomposition of the 
MIFS affine transformation.  Then, he used a Markov transition probability matrix to conduct 
deformation processing of the local subimages of the attractor.(19)  Zhang and Pan, and Flavian 
and Radu proposed an IFS based on the hidden Markov model.  They used the hidden Markov 
random process to control the modeling and coloring of fractal images, and then drew them 
with an irregular shape and color.(20,21)  Zhuang et al. proposed a texture-based IFS (TIFS) that 
introduced a method of texture synthesis into fractal image designs as a color rendering rule of 
fractal images to achieve a better rendering effect.(22)
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3.	 Local Control Algorithm for IFS Fractal Image 

3.1	 Overview of Markov iterative function system 

	 Definition 1: The mapping family {X; ω1, ω2, ..., ωN} composed of complete metric 
space (X, d) and N compressed mappings ωi: X → X is called an IFS.  For each mapping 
ωi, there is a probability pi > 0, 1 1N

ii p
=

=∑ .  x0 ∈ X is obtained independently by recursion 
xn ∈ {ω1(xn−1), ω2(xn−1), ..., ωN(xn−1)}, n = 1, 2, ... .  If a sufficiently large integer Nmax is selected, 
the sequence {xn, n ≥ Nmax} converges to the attractor of the IFS.
	 The compressed mapping ωi usually selects the affine transformation in the following form:
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Scaling parameters ri and si of the above formula are the compression scaling factors in the x 
and y directions, respectively, which determine the scaling down and scaling up of the fractal 
attractor along these two directions.  Rotation parameters θi and φi determine the rotation angles 
of the fractal attractor around the x and y directions, respectively.  Displacement parameters ei 
and fi represent the translation along the x and y directions, respectively.
	 Definition 2: The random process {xn, n = 0, 1, 2, ...} is called the Markov chain, and it only 
takes a finite or countable number of values e1, e2, ... . Here, {1, 2, ...} is used to mark e1, e2, ..., 
which are called states of the process, and its subset is denoted as S and is called a state space of 
the process.  For any n > 0 and states i, j, i1, ..., in−1, we have the following formula:

	 1 1 1 1{ | , , } { | }n n n nP x j x i x i P x j x i− −= = = = = = .	 (2)

	 Definition 3: The conditional probability P{xn = j | xn−1 = i} in Eq. (2) is called the transition 
probability of the Markov chain.  If pij = P{xn = j | xn−1 = i} (n > 0), the matrix P = (pij)N×N is 
called the transition probability matrix, which meets the following two conditions: (1) pij ≥ 0, i, j ∈ S; 
(2) 1,ijj S p i S

∈
= ∀ ∈∑ .

	 Definition 4: If the compressed mapping of the entire space (X, d) is ωi: X → X , i = 1, 2, ..., N, 
letting P = (pij)N×N be the Markov transition probability matrix, which satisfies pij ≥ 0, 

1 1N
ijj p

=
=∑ , i = 1, 2, ..., N where pij represents the probability of mapping ωj at this time when 

the mapping ωi is selected the last time, then {X; ω1, ω2, ..., ωN, P} is a Markov IFS.

3.2	 Affine transformation decomposition theorem 

	 Theorem 1: Let ω1, ω2, ..., ωN be the IFS codes of the fractal image f and 1
iω
−  be the inverse 

of ωi.  The operator “ 1
i j iω ω ω−
 ” is defined as ( 1

i j iω ω ω−
 )(x) = ωi(ωj(x)), and then 1

i j iω ω ω−
  , j = 1, 2, …, 

N is the IFS code of subimage ωj( f ).
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	 The transformation formula of a subimage ωj( f ) transformation matrix is as follows:

	 1 1 1( )( ) ( )i j i i j i i i j i j i ix A A A x B A B A A A Bω ω ω− − −= + + −  , j = 1, 2, ..., N.	 (3)

	 According to Eq. (3), the generation can be decomposed into several subimages, and the 
decomposed subimages can be further decomposed into smaller subimages, which can be 
gradually decomposed to the required level.  By applying the decomposition theorem of the 
affine transformation, the IFS is decomposed layer by layer to generate multiple independent 
subsystems to obtain the IFS decomposition codes of local subimages.

3.3	 Construction of probability distribution sequence 

	 Definition 5: Supposing that probability set P = {p1, p2, ..., pN} and subscript set 
I = {1, 2, ..., N} satisfy 1 1N

ii p
=

=∑ , pi > 0, i = 1, 2, ..., N, then each determined set pi (i = 1, 2, ..., N), 
{p1, p2, …, pN} is a probability distribution in the probability set.
	 Definition 6: Supposing that R is the real number field and set subscripts σ, η ∈ I, with 
ξ(σ, η) = a · σ + b · η + c (real parameters a, b, c ∈ R, a > 0, b > 0, c ≥ 0), then ξ(σ, η) is called 
the probability variable in I.  The corresponding function F(x) > 0 defined on the real number 
field is the distribution function of ξ(σ, η), and *

, ( ( , ) ) ( ),p x F x x Rσ η ξ σ η = = ∈(ξ(σ, η) = x) = F(x), x ∈ R is the likelihood 
probability of probability variable ξ(σ, η).
	 When selecting an appropriate distribution function F(x) to calculate the likelihood 

probability *
,pσ η (σ, η ∈ I), the likelihood probability set is normalized as * *

, ,p pσ η σ η
σ η
∑∑  

(σ, η = 1, 2, ..., N), and the probability distribution {pσ,η, 1 ≤ σ, η ≤ N} can be obtained.
	 The factors that determine the probability distribution of an IFS are (1) the distribution 
function and (2) the probability variables ξ(σ, η) = a·σ + b·η + c.  Different probability 
distribution sequences can be obtained by adjusting the values of parameters a, b, c, or selecting 
different forms of the function F(x).

3.4	 Perturbation of affine transformation parameters 

	 To further improve the controllability of the IFS attractor image shape change, we used 
a random number sequence as the control factor to perturb the parameters of the affine 
transformation randomly within a specific range of numerical values to realize the evolution 
control of the fractal local shape structure of the IFS.
	 The perturbation function is set as Dk(p, q, r, k) = p + (q + r × rand) × g(k), where {p, q, r} 
are the perturbation variables; k is the iterative cyclic variable of the calculation procedure; 
rand is a random factor with a uniform distribution in the interval [0, 1]; function g(k) is the 
allocation function of k.  Its purpose is to allocate the form of the perturbation function of 
the system.  By using the perturbation function Dk(∙), the proportion parameters of the affine 
transformation of the IFS adopt multiplication perturbation, and the rotation parameters and 
displacement parameters use additive perturbation.  That is,
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3.5	 Proposed algorithm

	 The IFS is a classical system of fractals.  In the iterative process, the transfer method of an 
iterative calculation between various parts of an image is associated with a certain probability.  
The method uses the processing mode of “oneness” for various parts composing the image, so 
it lacks local controllability.  To implement a corresponding control mode at different parts of 
the image and construct the fractal image with a changeable shape and features, we proposed 
a method that separates various parts of the image for independent operation.  The method can 
process only a particular local subimage without affecting the other local subimages.  First 
of all, we used the decomposition theorem of the affine transformation to decompose the IFS 
into several mutually independent subsystems.  Then, the images of each subsystem were 
constructed by applying the generation method of different rules.  Finally, we collaged the local 
subimages generated by each subsystem to form the whole image.
	 When using the IFS to construct a fractal image, we applied the Markov double random 
process to control the form evolution of the local fractal image of the IFS, in addition to using 
the parameters of the affine transformation controlled by the defined perturbation function.  
Among the two processes, one Markov process participated in the calculation of the affine 
transformation family, while the other Markov process determined the presentation state of 
pixels obtained by the IFS iteration calculation.  These two random processes are achieved by 
using two corresponding transition probability matrices.
	 It is assumed that P = (pij)N×N, 1 ≤ i, j ≤ N represents the transition probability matrix that 
controls the selection state of the affine transformation family {ω1, ω2, ..., ωN} in the IFS and 
Q = (qjk)N×M, 1 ≤ j ≤ N, 1 ≤ k ≤ M denotes the transition probability matrix.  The condition 
{Om: m = 1, 2, ..., M} of the corresponding iterative pixel when the transformation is selected as 
ωj, and P, Q satisfies

	
1

1

0, 1,  = 1, 2, ..., ,

0, 1,  = 1, 2, ..., .

N

ij ij
j

M

jk jk
k

p p i N

q q j N

=

=

≥ =

≥ =

∑

∑
	 (5)

	 The presentation condition of the iteration point of each affine transformation is defined as 
one of the following five cases.
	 O1 Represents “growth”: The iterative calculation is performed and coordinate points are 
drawn.  Its probability value is denoted by qj1.
	 O2 Represents “death”: The points generated last time do not participate in the iterative 
calculation this time.  Its probability value is denoted by qj2.
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	 O3 Represents “pause”: It only participates in the iterative calculation and does not draw the 
coordinate points.  Its probability value is denoted by qj3.
	 O4 Represents “repeat”: The iteration calculation is carried out and the coordinate points are 
drawn, then the previous step is returned to.  Its probability value is denoted by qj4.
	 O5 Represents “branch”: The iterative calculation is carried out without drawing the 
coordinate points, and other graphs are drawn instead of drawing points.  Its probability value is 
denoted by qj5.
	 The local control algorithm is described as follows:
Step 1:	We set an IFS {X; ω1, ω2, ..., ωN} and its associated probability vector (p1, p2, ..., pN) 

satisfying pi > 0, 1 1N
ii p

=
=∑ .

Step 2:	We select some affine transformations from the affine transformation family 
{ω1, ω2, ..., ωN}, decompose them step by step to the set orders (set as n) according 
to transformation formula Eq. (3), and then obtain the IFS decomposition code 

1 2

( ) { , 1,2, ..., }
n

n
i i i i jIFS j Nω =



  of subimage ωi( f ).

Step 3:	For the first n − 1 levels of the affine transformation sequence obtained by 
decomposition, 

1 1 2 1 2 1
, , ...,

ni i i i i iω ω ω
−

, these affine transformations only participate in the 
iteration without drawing points.

Step 4:	Using the method in Sect. 3.3, set and select the transition probability matrix of affine 
transformation family 

1 2
{ , 1,2, ..., }

ni i i j j Nω =


 as P(pij) and the transition probability 
matrix of the presentation condition of iterative pixel points as Q(qjk).  These satisfy the 
following conditions:
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Step 5:	Using the method in Sect. 3.4, we determine the perturbation function Dk(p, μ, ν, k) 
= p + (μ + ν × rand) × g(k) and multiply or add the affine transformation family of the 
system 

1 2

( ) { , 1,2, ..., }
n

n
i i i i jIFS j Nω =



 :

	 ( ), ( ), ( ), ( ), ( ), ( )i k i k i k i k i k i kr D s D D D e D f Dθ φ× ⋅ × ⋅ + ⋅ + ⋅ + ⋅ + ⋅ .	 (7)

Step 6:	We select affine transformation 
1 2 ni i i jω


 according to the row probability distribution 
{pi1, qi2, ..., piN} of the matrix P(pij) and determine the presentation condition 
{O1, O2, O3, O4, O5} of affine transformation points according to the row probability 
distribution {qj1, qj2, ..., qjM}, M = 5 of the matrix Q(qjk).

Step 7:	The local subimage of each part of the iteration output system is produced.
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4.	 Experimental Results and Discussion

4.1	 Basic experimental setting

	 We chose the Poisson distribution or the Gaussian distribution for the probability distribution 
function F(x) in the experiment.
	 Poisson probability distribution formula:

	  ( ) ( , 0)
!

x
e R

x
λλπ λ λ λ−= ∈ > 	 (8)

	 Gaussian probability density function:

	

2

2
( )

21( , ) ( , , 0)
2

x

N e R
µ
σµ σ µ σ σ

π

−
−

= ∈ > 	 (9) 

	 The parameter space formed by the two distributions combined with the value of the 
probability variable ξ(σ, η) = a · σ + b · η + c is as follows:

	 {( , , , ) | , , , , 0}, {( , , , , ) | , , , , , 0}a b c a b c R a b c a b c Rλ λ λ µ σ µ σ σ∈ > ∈ > .	 (10)

	 In the perturbation function Dk(p, q, r, k) = p + (q + r × rand) × g(k), variables 
{( , , , ) | , , , , 0}p q r k p q r R k N k∈ ∈ >  and random factors rand ∈ [0, 1] are random numbers with a 
uniform distribution.
	 The transformation of IFS affine transformation parameters (a, b, c, d) and (r, s, θ, φ) is as 
follows:

	

/ cos[ tan( / )],
/ cos[ tan( / )],
tan( / ),
tan( / ).

r a a c a
s d a b d

a c a
a b d

θ
ϕ

=
 = −
 =
 = −

	 (11)

	 The fern and tree fractals are taken as test examples of the algorithm in the experiment.  The 
initial IFS codes of these three fractal images are listed in Table 1, and schematic diagrams of 
the generators of these three fractal images are shown in Fig. 1.

4.2	 Algorithm implementation results

	 In the following algorithm implementation process, the Gaussian distribution function 
is adopted to define the transition probability matrix P(pij) with its parameter values 
(a, b, c, μ, σ) = (2, 1, 8, 6, 2), while the Poisson distribution function is adopted to define the 
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transition probability matrix Q(qjk) with its parameter values (a, b, c, λ) = (2, 3, 6, 7).  However, 
the perturbation of each local affine transformation parameter adopts different combinations.
	 Figure 2 shows the evolution of the fern fractal.  Figure 2(a) is the original image, whose 
generator is shown in Fig. 1(a).  Figure 2(b) is the result obtained by the local subimage ω2( f ) by 
using multiplication perturbation of the scale parameter and additive perturbation of the rotation 
angle.  With increasing compression processing carried out by the ratio parameter, the local 
feature changes to a thin line.  Figure 2(c) is the image formed by carrying out the perturbation 
of the subimages ω2( f ), ω3( f ), and ω4( f ).  In the perturbation process, if the rotation angle 
remains unchanged and multiplication perturbation is carried out on the scale parameters, then 
the random factor rand is used in the perturbation function.  Figures 2(d)–2(f) are the images 
generated by carrying out different perturbations of the subimages ω2( f ), ω3( f ), and ω4( f ), 

Table 1
IFS initial codes of fern fractal and tree fractals. 

(a) Fern
a b c d e f

	 0 	 0 	 0 	 0.16 	 0 	 0
	 0.85 	 0.04 	 −0.04 	 0.85 	 0 	 1.6
	 0.2 	 −0.26 	 0.23 	 0.22 	 0 	 1.6
	 −0.15 	 0.28 	 0.26 	 0.24 	 0 	 0.44

(b) Tree 1
a b c d e f

	 −0.058 	 −0.07 	 0.453 	 −0.111 	 0.598 	 0.097
	 −0.035 	 0.07 	 −0.469 	 −0.022 	 0.488 	 0.509
	 0.195 	 −0.488 	 0.344 	 0.443 	 0.443 	 0.245
	 −0.637 	 0 	 0 	 0.501 	 0.856 	 0.251

(c) Tree 2
a b c d e f

	 0.05 	 0.6 	 0 	 0 	 0 	 0
	 0.05 	 −0.5 	 0 	 0 	 0 	 1.0
	 0.55 	 0.4 	 −0.698 	 −0.698 	 0 	 0.7
	 0.5 	 0.55 	 −0.524 	 −0.524 	 0 	 1.0
	 0.5 	 0.45 	 0.349 	 0.349 	 0 	 1.1
	 0.6 	 0.5 	 0.698 	 0.698 	 0 	 0.6

Fig. 1.	 Generators of three fractal images. (a) fern, (b) tree 1, and (c) tree 2.

(a) (b) (c)
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respectively.  The left and right branches of subimage ω2( f ) are subjected to multiplication 
perturbation of the scale parameters and additive perturbation of the rotation angle.  Meanwhile, 
the left, right, and upper branches of subimages ω3( f ) and ω4( f ) are subjected to multiplication 
perturbation of the scale parameters and additive perturbation of the rotation angle.  With  
increasing angle of rotation used for subimage ω2( f ), it can be seen that the local image 
becomes deformed.
	 Figure 3 shows the evolution of fractal image tree 1.  Figure 3(a) is the original image, 
whose generator is shown in Fig. 1(b).  Figures 3(b) and 3(c) show the results obtained 
by local subimage ω3( f ) by using multiplication perturbation of the scale parameter and 
additive perturbation of the rotation angle.  Meanwhile, the random factor rand is used in the 
multiplication perturbation, while only additive perturbation of the rotation angle is carried 
out for local subimage ω4( f ).  Figures 3(d) and 3(e) are the results of applying multiplication 
perturbation of the scale parameter and additive perturbation of the rotation angle to local 
subimage ω5( f ), and the remaining parts are unchanged.  Figure 3(f) is obtained when the 
parameters of the affine transformation of the local subimage are kept unchanged.  In addition, 
the transition probability matrix Q(qjk) is used to control the presentation condition of affine 
transformation point ωi(x), namely, among five conditions: “growth,” “death,” “pause,” “repeat”, 
and “branch.”  The “branch” effect is to replace the drawing dots with red circles to represent 
the fruits on the tree and simulate a tree laden with fruits.
	 Figure 4 shows the evolution of fractal image tree 2.  Figure 4(a) is the original image, and 
its generator is shown in Fig. 1(c).  Figure 4(b) is the result obtained by local subimages ω4( f ) 
and ω5( f ) by multiplication perturbation of the scale parameter and additive perturbation of 

Fig. 2.	 (Color online) Local control of fern fractal image.

(a) (b) (c)

(d) (e) (f)
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the rotation angle.  Changing the scale parameter only causes compression in the horizontal 
direction.  Figure 4(c) is the result obtained by the multiplication perturbation of the scale 
parameter and the additive perturbation of the rotation angle on local subimages ω4( f ) and 
ω5( f ).  Meanwhile, the perturbation of the scale parameter for subimage ω4( f ) only causes 
compression in the horizontal direction, while the scale parameter of subimage ω5( f ) causes 
compression in both the horizontal and vertical directions simultaneously.  Therefore, it can 
be seen that the compression degree of the subimage is more significant than ω4( f ) from 
the experimental results.  For Fig. 4(d), local subimages ω4( f ) and ω5( f ) use the transition 
probability matrix P(pij) to control the deformation, while local subimages ω3( f ) and ω6( f ) 
adopt the “branch” treatment, as shown in Fig. 3(d), which also simulates a tree laden with 
fruits.

Fig. 4.	 (Color online) Local control of tree 2 fractal image.

Fig. 3.	 (Color online) Local control of tree 1 fractal image.

(a) (b) (c)

(d) (e) (f)

(a) (b) (c) (d)
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	 If the parameters of the Gaussian and Poisson distribution functions are adjusted, Fig. 3(b) 
becomes Fig. 5(a) with (a, b, c, μ, σ) = (2, 1, 0, 8, 2) as the parameter of the Gaussian distribution 
function and (a, b, c, λ) = (2, 3, 1, 6) as the parameter of the Poisson distribution function.  When 
the parameters of the Gaussian and Poisson distribution functions are (a, b, c, μ, σ) = (3, 1, 0, 2, 3) 
and (a, b, c, λ) = (5, 2, 1, 2), respectively, Fig. 4(b) becomes Fig. 5(b).
	 Compared with the standard fractal iteration systems referred to previously, the new method 
in this research can modify the local shapes of fractal images more easily.  It can not only 
maintain the basic characteristics of the same image but also develop them into new shapes.  In 
addition, this method can give different colors to local images, enabling local color rendering.  

5.	 Conclusions

	 Although the IFS has become an essential method in the computer generation of fractal 
images, the difficulty in the coding of the IFS affine transformation still remains.  An effective 
way to overcome this difficulty is to add other processes to the existing IFS to control and 
produce fractal images with more desirable forms.  We introduced the Markov random process 
into the fractal structure of the IFS to decompose the affine transformation of the IFS and to 
obtain the IFS decomposition code of a local subimage.  By defining the transition probability 
matrix and the perturbation function for the evolution control of the local subimage’s shape 
modeling, various images with irregular local forms are generated from the basic geometric 
structures of the original image.  The proposed system further increases the ability to construct 
IFS fractal images.  The new ideas in this research are as follows:
(1)	The Markov double random process is used to control the morphology of a fractal image.
(2)	Each local deformation operates independently.  
(3)	Localized interference does not affect the overall shape.  
	 Even with the improved results shown in this research, the new method lacks the effective 
regulation of fractal image color changes as the random number sequence cycle is not long 
enough.  We discussed the fractal structure of a single IFS, but the ability of a single IFS to 
construct complex images is still limited.  Therefore, it must be discussed in future research 
whether a multimodal IFS can be merged to construct a multibranch system and generate a 
fractal image with a more complex structure.  

Fig. 5.	 (Color online) Effect of the distribution function.
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