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	 The increasing scale of plantation and production of foxtail millet (Setaria italica) has led to 
a strong demand to identify its varieties easily and quickly.  It is also important for researchers 
to find, screen, identify, protect, and collect new mutant species and germplasm resources of 
foxtail millet in the early stage of growth.  In this study, we present an innovative approach to 
identifying foxtail millet varieties using visible–near-infrared (VIS–NIR) spectral information 
from their growing leaves.  Seven varieties of foxtail millet were successfully identified.  Ten 
effective wavelengths (1440, 1660, 1775, 550, 410, 980, 1180, and 462 nm) were extracted.  
An accurate and stable prediction model for foxtail millet varieties was developed using the 
backpropagation (BP) neural network coupled with principal component analysis (PCA).  The 
model can completely classify the foxtail millet varieties with a minimal number of five hidden-
layer nodes.  Its predictive correlation coefficient (Rv) is as high as 0.9994.  Accordingly, the 
root-means-square error of prediction (RMSEP) and the standard error of prediction (SEP) are 
both 0.0026.  The results show that the VIS–NIR spectral technique can be used for identifying 
foxtail millet varieties.  

1.	 Introduction 

	 Foxtail millet (Setaria italica) is a gramineous annual crop.  The plant has a bulky root with 
a stem generally with a length of 1 m or larger and is wrapped by the leaf sheath.  The leaf blade 
is linear lanceolate in shape, 10–45 cm long, and 5–33 mm wide.  The panicle has a length of 
20–30 cm, bearing a few hundred to thousands of grains.  Foxtail millet has five growth stages: 
seedling, jointing, heading, flowering, and ripening.  
	 Foxtail millet is a nutrient-rich food and feed crop.  In China, it is a traditional, primary food 
crop, especially in dry northern areas, because foxtail millet has good quality and can tolerate 
drought, poor soil, and long-term storage.(1)  China is the first in foxtail millet production in the 
world.(2) 
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	 With increasing number of foxtail millet varieties, it is increasingly becoming difficult to 
distinguish them by color and form.  However, we must identify them accurately to guarantee 
the purity of germplasm resources and meet production demand.  Current methods of 
identifying foxtail millet are primarily based on morphological characteristics, biochemical 
indexes (such as proteins and isoenzymes), and DNA sequencing.(3)  These methods are all 
complex, tedious, and labor-intensive.  
	 Near-infrared (NIR) spectroscopy has attracted increasing attention owing to its 
noninvasiveness, reliability, speed, low cost, and nonpolluting nature.(4,5)  The NIR region is 
the range of the electromagnetic spectrum between 750 and 2500 nm, with spectra defined 
by absorption bands associated with overtones and combinations of fundamental vibrations 
arising from functional groups of molecules (e.g., C–H, N–H, O–H, and S–H) found in many 
biological samples.(6)  In agricultural production, NIR is widely used because it can provide 
abundant structural and compositional information from test targets.  It is used primarily for 
the online and field detection of the water, protein, and starch contents of cereals such as wheat 
and corn.(7–10)  In recent years, NIR has also been widely used to trace cereal quality(11) and in 
genetic breeding.(12,13)  However, it has rarely been applied to foxtail millet production.
	 In this study, an identification model for foxtail millet varieties was established by artificial 
neural network (ANN) techniques based on the spectral information from foxtail millet leaves.  
The aim is to explore an accurate, simple, and rapid identification method for foxtail millet.

2.	 Data and Methods

2.1	 Data acquisition

	 Seven varieties of foxtail millet Jingu-33, Jingu-29, Jingu-21, Changsheng-6, Zhangza-3, 
Zhangza-10, and Zhangza-9 were planted in a standard test field with a row distance of 30 cm 
and a line distance of 10 cm.  Samples were collected three times during the millet’s heading 
stage; each time, twelve leaves were randomly collected from each variety, yielding a total of 84 
samples per collection.  The collected leaves were grouped by variety and placed into zip-lock 
bags.  Within half an hour, these leaves should be tested in a spectrograph lab; otherwise, the 
moisture loss in the leaves may affect the accuracy of the test results.
	 In this study, FieldSpec3, a portable visible–near-infrared (VIS–NIR) spectrometer 
developed by Analytical Spectral Device Company was used.  Its wave band ranges from 350 
to 2500 nm, with resolutions of 3, 10, and 10 nm at 700, 1400, and 2100 nm, and sampling 
intervals of 1.4 and 2 nm at 350–1000 and 1000–2500 nm, respectively.  The data interval, 
wavelength accuracy, and wavelength repeatability were 1, ±1, and ±0.02 nm, respectively.  The 
field view angle was 25°.  
	 To avoid environmental light interference during measurement, a plant probe and a leaf-clip 
assembly were used, referred to collectively as a leaf detector.(14)  The effective spot diameter of 
the detector is 10 mm and its maximum mirror reflectance loss is 5%.   At room temperature, 
for every sample, its spectral information was collected from three spots in the middle of the 
foxtail millet leaf blade with a width of greater than 10 mm by the leaf detector.  We got 252 
spectral data and all the data were analyzed and processed together in MATLAB 7.6.
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2.2	 Data preprocessing

	 The obtained spectral data is large and redundant.  We must preprocess the data to gain 
representative spectral information.  
	 First, the process of obtaining spectral data is easily disturbed by the surrounding 
environment, such as background, light, and high-frequency signals.  Although the leaf detector 
can avoid some of the environmental noise, systematic errors still exist.  
	 Second, the overlapping of spectral lines can lead to the low-content component spectrum 
lines being masked by the high-content component in testing materials.  
	 Third, it will be impossible to establish a good identification model on the basis of high-
dimensional data.  Therefore, it is necessary to preprocess spectral signals by denoising and 
extracting the feature spectra.(15)  In this process, Savitzky–Golay smoothing (SGS) was used 
to reduce random noise, multiple scattering correction (MSC) was used to correct the baseline 
shift, and wavelet transformation (WT) was used to remove high-frequency noise.  WT is 
a useful tool for time–frequency signal analysis and processing.  It can automatically adapt 
to the requirements of time–frequency signal analysis by a changing the “time–frequency” 
window with frequency.  Moreover, it can focus on any detail of the signal by performing time 
subdivision at a high frequency and frequency subdivision at a low frequency.  It compensates 
for the defect of Fourier transform (FT) and is considered as a major breakthrough in scientific 
methods since Fourier transformation.  

2.3	 Feature spectral extraction

	 Figure 1 shows the average reflection spectrogram of the seven varieties of foxtail millet leaf 
after preprocessing.  There are clear peak and valley points indicated by dashed lines (Fig. 1).  
The peak and valley points corresponding to the functional groups are shown in Table 1.
	 In the visible spectrum (bands 1 to 5), the response wave band of folic acid is at 365 nm.(16) 
The absorption peaks of chlorophyll a are at 410 and 675 nm, whereas that of chlorophyll b is at 
462 nm;(17) the strongest reflection peak of chlorophylls a and b is at 550 nm.(18)

	 In the near-infrared spectrum (bands 6 to 12), as shown in Table 1, the response wave 
band corresponds to the functional groups of green leaves of foxtail millet according to 
Siesler et al.(19)

	 The reflectivity above all of the response wave bands were subjected to principal component 
analysis (PCA).  It is a multivariate statistical data compression technique to reduce the number 
of dimensions of data while retaining information by choosing a reduced number of new 
variables to replace the original variables.  In this manner, it can be used to solve the problem of 
overlapping in NIR spectral bands while eliminating the effect of random factors.(20)

3.	 Backpropagation (BP) Neural Network Identification Models 

	 The BP neural network is a multilayer feedforward neural network that is trained using an 
error-reverse propagation algorithm.  It is composed of input, hidden, and output layers.  BP 
models were built to identify foxtail millet varieties with the following parameters: 
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• logsig is the input layer neuron transfer function.
• purelin is the output layer neuron transfer function.
• trainlm is the Levenberg–Marquardt training algorithm implemented.

	 The size of a network is determined by the number of hidden-layer nodes (m), which is 
generally calculated using the following empirical equation:(21)

	 tlnm ++= ,	 (1)

where m is the number of hidden-layer nodes; n is the number of input-layer nodes; l is the 
number of output-layer nodes, and t is a constant between 1 and 10.  

Table 1
Response wave bands and functional groups.

Wavelength (nm) Substance and functional groups
1 365 Folic acid
2 410 Chlorophyll a
3 462 Chlorophyll b
4 550 Chlorophylls a and b
5 675 Chlorophyll a
6 980 NH2，OH
7 1180 CH2 
8 1440 CH
9 1660 C=C

10 1775 CH，CH2，CH3
11 1930 CONH，COOH，H2O
12 2210 CH，NH2，CHO

Fig. 1.	 (Color online) Average spectral reflectivity 
after denoising.
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	 Here, n is the number of principal components, l is the number of varieties of foxtail millet: 
Jingu-33, Jingu-29, Jingu-21, Changsheng-6, Zhangza-3, Zhangza-10, and Zhangza-9.  Thus, l 
was set as 7.  By calculating and rounding, the value of m was obtained from 5 to 14.  
	 We selected randomly 168 for the training set and 84 for the test set among the 252 spectral 
data.  Table 2 lists the evaluation parameters of the prediction models for different numbers of 
hidden-layer nodes.

3.1	 Models 

	 To verify the advantages of WT, we established the two models PCA-BP and WT-PCA-BP.  
The evaluation parameters of the two models are shown in Table 2.
	 From the perspective of prediction parameters, both models have high prediction correlation 
coefficient above on 0.97 and small prediction error below to 0.11.  On the whole, WT-PCA-BP 
is better than PCA-BP.  The average Rv, root-means-square error of prediction (RMSEP), and 
standard error of prediction (SEP) were 0.9939, 0.0299, and 0.0299, respectively, in the PCA-BP 
model.  In the WT-PCA-BP model, the average Rv, RMSEP, and SEP were 0.9962, 0.0284, and 
0.0188, respectively.  Thus, WT is effective for improving the model’s prediction accuracy.  It 
is clear that the WT-PCA-BP model showed higher correlation and smaller prediction error and  
was thus chosen as the prediction model for this study.

3.2	 Hidden-layer nodes 

	 In a BP neural network, the number of hidden-layer nodes is an important parameter.  If 
there are very few hidden layers, the network prediction accuracy will be low; if there are too 
many hidden layers, the network study time will increase and cause the training to fall into a 
local minimum-point trap.  

Table 2
Prediction models’ evaluation parameters.

HLN PCA-BP WT-PCA-BP
Rv RMSEP SEP Rv RMSEP SEP

5 0.9765 0.1176 0.1102 0.9994 0.0026 0.0026
6 0.9952 0.0215 0.0216 0.9972 0.0142 0.0134
7 0.9995 0.0027 0.025 0.9958 0.0195 0.0193
8 0.9989 0.0054 0.0052 0.9996 0.0018 0.0017
9 0.9992 0.0049 0.0039 0.9957 0.0201 0.0198

10 0.9995 0.0023 0.0023 0.9976 0.0109 0.0109
11 0.9976 0.0107 0.0108 0.994 0.0285 0.0278
12 0.9956 0.0214 0.0207 0.996 0.0201 0.019
13 0.9987 0.0061 0.006 0.9899 0.0536 0.0495
14 0.9784 0.0912 0.0933 0.9966 0.0165 0.016

Note: HLN is the hidden-layer nodes.  Rv is the predictive correlation coefficient.  RMSEP is the root-mean-square error of 
prediction.  SEP is the standard error of prediction.
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	 In general, increasing the number of hidden layers can reduce network error and improve 
accuracy; however, the increase in network complexity will in turn increase the network 
training time and cause the likelihood of “overfitting”.  Therefore, the prediction results of WT-
PCA-BP need further comparison.  Figure 2 shows the prediction results for the model with 
the smallest number of hidden-layer nodes (m = 5) and the model with the greatest Rv and the 
smallest errors (m = 8).  
	 The two models identified the foxtail millet varieties with 100% success.  The absolute error 
is close to zero for both models.  There were no clear differences between WT-PCA-BP5 and 
WT-PCA-BP8, except that there are some small fluctuations on the line of absolute error of the 
model with five hidden layer nodes.  
	 The two models produced nearly identical values of evaluation parameters.  Comparison 
of their evaluation parameter values (Table 2) showed that the number of hidden-layer nodes 
increased from 5 to 8, Rv is increased by 0.0002, whereas RMSEP and SEP are decreased by 0.0008 
and 0.0009, respectively.  
	 Nevertheless, these changes are not significant, and WT-PCA-BP5 has the minimum number 
of hidden nodes and the shortest running time.  Thus, WT-PCA-BP5 was chosen as the model 
for identifying foxtail millet.  As shown in Table 2, the Rv is up to 0.9994, and the RMSEP and 
SEP evaluation parameters are both 0.0026.

3.3	 Characteristic wave points 

	 The WT-PCA-BP5 model obtains seven principal components.  Its coefficient matrix 
is shown in Table 3.  The coefficient matrix shows the correlations between the principal 
components and the variables, with higher coefficients indicating better correlation between the 
principal component and the spectral reflectance.  The first principal component contains the 
largest amount of information.  Its coefficients are all positive.  We discover that 0.3721 and 0.3700 

Fig. 2.	 (Color online) Prediction results with (a) five hidden-layer nodes and (b) eight hidden-layer nodes.

(a) (b)
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are the larger coefficients by comparison.  Its main representative wave points are 1440 (CH) 
and 1660 nm (C=C).  The higher correlations for the second principal component are 1775 
(CH, CH2, CH3) and 550 nm (chlorophylls a and b, respectively).  Similarly, the third principal 
component correlation maximum is still 1660 nm (C=C) and similar observations were made 
for the other principal components.  Other wave points show the following order: 410, 980, 1180, 
and 462 nm.  There are no clear correlations between 365 and 675 nm.  
	 Besides, a coefficient close to zero indicates the wave point that is redundant and can be 
deleted.  Clearly, the wave points 1930 and 2210 nm can be eliminated from the characteristic 
wave points for the identification of foxtail millet.  It is shown that the functional groups (Table 1) 
at the two wave points are insensitive to the variety of foxtail millet.
	 Thus, the eight characteristic bands were gained for the identification of foxtail millet 
varieties in the following order: 1440, 1660, 1775, 550, 410, 980, 1180, and 462 nm.  

3.4	 Identification model PCA

	 The WT-PCA-BP5 model obtains seven principal components whose contribution rates and 
cumulative contribution rates are listed in Table 4.  Figure 3 shows the score figure of the first 
three principal components.
	 In the figure, 1 to 7 represent the foxtail millet varieties Jingu-33, Jingu-29, Jingu-21, 
Changsheng-6, Zhangza-3, Zhangza-10, and Zhangza-9, respectively.  The foxtail millet samples 
were clearly separated from each other, whereas almost all the samples of the same variety were 
clustered densely together.  The first three principal components accounted for 89.5% of the 
sample information.  The total cumulative contribution of the seven principal components was 
up to 99.9%.  Thus, these principal components successfully replaced the original data and were 
used to identify the seven varieties of foxtail millets.
	 The above results confirm that WT-PCA-BP5 is an ideal identification model with a 
prediction accuracy of 100%.  In the model, WT is an advanced and ideal tool in terms of 

Table 3
Principal component coefficient matrix of WT-PCA-BP5.

Wave point (nm) Principle component
1 2 3 4 5 6 7

365 	 0.2690 	 0.0952 	 −0.4748 	 −0.026 	 −0.0224 	 0.2410 	 0.0704
410 	 0.2982 	 0.1906 	 0.0709 	 0.7541 	 −0.1166 	 −0.1178 	 −0.1211
462 	 0.3265 	 −0.4489 	 −0.2851 	 0.1957 	 0.0054 	 0.0260 	 0.6781
550 	 0.2655 	 0.4491 	 −0.3217 	 −0.5028 	 −0.2213 	 −0.0234 	 0.0797
675 	 0.2919 	 −0.0947 	 −0.3268 	 0.0913 	 −0.2329 	 −0.2425 	 −0.5644
980 	 0.3546 	 −0.3351 	 0.1347 	 −0.2688 	 0.6039 	 −0.3544 	 −0.1747

1180 	 0.3061 	 −0.0602 	 −0.1170 	 0.026 	 0.3219 	 0.5631 	 −0.3082
1440 	 0.3721 	 −0.2330 	 0.3028 	 −0.2091 	 −0.5144 	 −0.2867 	 0.0267
1660 	 0.3700 	 0.0619 	 0.5764 	 −0.0893 	 −0.1542 	 0.5012 	 0.0294
1775 	 0.2859 	 0.6070 	 0.1488 	 0.0814 	 0.355 	 −0.3031 	 0.2618
1930 	 0 	 0 	 0 	 0 	 0 	 0 	 0
2210 	 0 	 0 	 0 	 0 	 0 	 0 	 0
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time scale and multiresolution signal analysis; PCA reduced the spectral data dimension 
and extracted foxtail millet characteristic waves; the BP neural network can realize complex 
nonlinear mapping.  This unique combination of artificial intelligence and other data processing 
methods is the key to obtaining an ideal model.

4.	 Conclusions and Suggestions 

	 In this paper, an innovative method of identifying foxtail millet varieties was established by 
VIS–NIR spectroscopy.  This method has the following advantages: it is noninvasive, highly 
accurate, and pollution-free, and the measurement methodology does not affect the normal 
growth of foxtail millet plants.  
	 There are two key factors that guarantee the accuracy and reliability of the predication 
model.  One is that the leaf detector apparatus can decrease the effect of environmental 
illumination and ensure the uniformity of experimental conditions.  The other is the adoption of 
a set of appropriate data processing methods.  
	 The WT-PCA-BP5 model for the identification of varieties has a relatively simple structure 
and a higher running speed owing to the small number of hidden-layer nodes.  WT-PCA 

Table 4
Contribution rates of WT-PCA-BP5

Component Contribution rate（%） Cumulative contribution rate（%）

1 69.4851 69.4851
2 11.2691 80.7542
3 8.7511 89.5053
4 4.9343 94.4396
5 2.8283 97.2679
6 1.7811 99.0490
7 0.8745 99.9235

Fig. 3.	 (Color online) PCA scores for NIR spectra of seven varieties of foxtail millet.
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processing guaranteed the model accuracy, removed redundant information, and extracted 
feature spectra.  
	 The extracted feature spectra, in the order from the most important to the least important, 
were 1440, 1660, 1775, 550, 410, 980, 1180, and 462 nm.  There are five characteristic spectra in 
the near-infrared spectrum region.  The CHa (a = 1, 2, 3) and C=C groups played an important 
role in distinguishing the varieties of foxtail millet.  There are three characteristic spectra in 
the visible spectral region.  The spectral information of chlorophylls a and b play a key role in 
identifying the varieties of foxtail millet.  
	 However, the robustness and adaptability of the model will require further validation before 
it can be used in the actual production of the detector.  In future work, we will focus on two 
primary issues: we will increase the sample size to verify the feasibility of the prediction model, 
and we will look at developing an inexpensive instrument for identifying foxtail millet varieties.
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