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 This paper presents an approach for context awareness in navigation for visually impaired 
persons via sensor-based obstacle detection, obstacle recognition, sensor fusion, and walking 
context analysis.  Sonar and vision sensor data are fused using a complementary sensor fusion 
approach.  A wearable belt has sonar and vision sensors that detect and recognize obstacles, 
respectively.  A fuzzy logic model is used for safety aspect handling during visually impaired 
navigation.  Walking context analysis handles decisions on the current walking status by using 
clues acquired from the smartphone application and obstacle detection process.  Feedback is 
provided via audio and tactile cues.  The usability evaluation experiment using the proof-of-
concept reveals positive results and other areas of investigation have been identified.

1. Introduction

 Various navigation systems have been developed to enhance the mobility of visually 
impaired persons.  Despite the fact that assistive devices for outdoor navigation systems have 
progressed relatively well, indoor navigation aids remain more challenging.  Outdoor navigation 
systems usually use the global positioning system (GPS); however, owing to the unavailability 
of the line of sight with satellites, the signal of GPS in an indoor environment is poor.  Most 
existing indoor navigation systems are based on supplementing physical infrastructure with tags 
such as beacons and radio frequency identifiers (RFIDs).(1)  This paper presents an approach 
for indoor visually impaired navigation that does not require establishing indoor setups and 
depends on inexpensive, lightweight, active, and passive sensors.  
 A single type of sensor, such as a range, vision, or inertial sensors, fails to provide adequate 
information on the surrounding.  Hence, an approach based on the fusion of homogeneous 
and heterogeneous sensors to harness the capabilities of different sensors while minimizing 
limitations has been considered viable.  Complementary sensor types are used to improve the 
accuracy of the proposed work.(2,3)  One of the key challenges is to determine their optimal 
use in terms of type and number of complementary sensory channels to aid visually impaired 
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persons over a wide range of environmental conditions.  The identification of appropriate 
complementary sensory channels and their strengths partially contribute to the novelty of 
proposed work.  The findings of the evaluation experiments provides insights into further 
research making contributions to the field.
 Work has been reported in the field of indoor navigation for visually impaired persons with 
the use of a multitude of sensors.(2–7)  Most studies are based on sonars as range sensors.(3–5)  
However, significant errors can persist owing to the broad beam width of sonar sensors and 
other factors due to weather conditions.
 Computer vision has been used for both obstacle detection and recognition.(6,7)  Preserving  
obstacle detection accuracy and maintaining real-time feedback to the user are challenging 
owing to the high computational demands of image processing.  Hence, sensor fusion can be 
used to overcome the limitations of individual sensors by complementing the strengths of sonar 
and vision sensors.(8–12) 
 Sensor fusion methods can be classified on the basis of the level of fusion as low, medium, 
or high,(13) the type of sensor as homogeneous or heterogeneous,(14) and the type of data as 
competitive, complementary, or cooperative.(15) 
 A fusion of vision and sonar sensors is in the proposed work.  The objective of sensor fusion 
is to combine sensor information into a single representational format.  However, converting 
sonar and vision sensor measurements to a single common representation format is expected to 
require considerable effort since the sonar sensor provides three-dimensional information and 
the vision sensor provides two-dimensional information.  
 Therefore, either high-level fusion or integration seems to be more practical than low-level 
sensor fusion.  Thus, both rule-based sensor fusion and integration are applied in this research 
accordingly.
 There have been a few attempts to integrate vision and sonar sensors in the field of visually 
impaired navigation.(8,9)  The amount of research in the area of combining multiple sensors for 
visually impaired navigation is minimal.  Among the reported studies, most of them targeted 
sensor integration but not sensor fusion.  Thus, the challenge of sensor fusion is that it has to 
blend at pieces of sensory information coming from different sensors in order to place them in 
one representation format.
 Visually impaired persons can gain certain benefits by using context space awareness in 
their navigation process.  Only a few studies on the context awareness of walking for blind 
navigation(16–18) targeted the assessment of the context on the basis of the changes in the 
existing environment(19–21) considering only the person when assessing the walking context.  
No work has been reported on the integration of both environmental changes and individual 
factors when determining the walking context for the next moment.  Therefore, we take into 
account both current environmental aspects (obstacle density and distance to nearby obstacles) 
and personalization factors when accessing the walking context of visually impaired persons.  
Therefore, a hybrid walking context estimation method has been proposed on the basis of  
environmental adaptation and personalization in this research.
 In summary, there is a significant gap in the literature regarding a single hybrid approach 
that can perform object detection, recognition, sensor fusion, and current context estimation.  
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Therefore, we propose a novel approach that can perform object detection, recognition, and 
context estimation using sensor fusion.  

2. Methodology

 A constructive research methodology has been followed, and a proof-of-concept system has 
been developed as an experimental testbed to develop a navigation aid that makes prime use of 
multiple sensors for smooth and continuous navigation.

Design Assumptions
 The prototype is evaluated within selected in-house areas with a small number of barriers 
to detect stationary obstacles only.  Only micronavigation, where there is no travel between a 
source and a destination is considered.  The smartphone is placed close to the sensor belt as 
it is connected to the feedback systems through a Bluetooth connection.  The user shall keep 
the tactile feedback device with vibration motors in contact with the body.  The user wears an 
earphone on one side correctly to hear the voice feedback.  
 The architecture of the proof of the concept prototype is shown in Fig. 1 consisting of key 
components shown below.
 

Fig. 1. (Color online) High-level architecture of the system.
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A set of sonar sensors: Obstacles appearing from different directions are detected by sonar 
sensors.  
Processing of sonar signals: The time-of-flight method is used to calculate the distances to the 
obstacles.
Vision sensor: This identifies the obstacles detected via sonar sensors.
Homogeneous sensor fusion: The fusion of a few sonar sensors is carried out to overcome 
limitations that arise owing to the broad beam width of the sonar.  
Heterogeneous sensor fusion: Whenever obstacle detection occurs, the vision sensor that 
captures a snapshot, which in turn provides additional information about the obstacle.
Cloud server: The snapshot taken by the smartphone camera is sent to the cloud for image 
processing, which returns a label identifying the objects of the image.
Personalization smartphone app: This app, which is shown in Fig. 2(b), is used to input facts 
about the user such as age, gender, height, and visual status, which will be later used to compute 
the current walking context of the user.
Walking context analysis: This determines whether it is safe or dangerous to walk in a 
particular direction in the current context on the basis of the outputs of the obstacle detection 
module and the personalization app.  A detailed description of the approach to walking context 
analysis can be found in our previous publication.(22)

Audio feedback: Feedback corresponding to the vision sensor is prompted via the audio 
feedback method.
Haptic feedback: The detection of obstacles by sonar sensors is performed via tactile units.

Fig. 2. (Color online) (a)  Experimental waist strap and (b) personalized Android application.

(a) (b)
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3. Proof of Concept Prototype

3.1 Obstacle detection 

 A waist belt, with five ultrasonic sensors, as shown in Fig. 2(a), is used to detect obstacles.  
Two sonar sensors positioned on the left and right of the belt distinguish left-, and right-
side obstacles, respectively.  There are three sensors positioned in the middle of the belt: one 
to detect front obstacles and the other two are tilted at a certain angle to the floor to detect 
ground-level obstacles.  A microcontroller processing module called Arduino is used to process 
measurements acquired from sonar sensors.  
 The system uses coin vibration motors to generate tactile feedback.  The wearable sensor 
belt consists of five coin vibration motors.  Sensors are placed outside of the belt, where they 
face the surrounding environment, and tactile units are attached to the belt such that they are 
in contact with the body (around the waist).  The vibration motors change the intensity of the 
vibration concerning the gap between the waist strap and the obstacle.  Ultrasonic sensor and 
vibration motor specifications are shown in Tables 1(a) and 1(b), respectively.

3.2 Obstacle recognition 

 The obstacle recognizer uses a built-in camera of the mobile phone with an Android 
operating system and an image recognition algorithm running on Google Cloud.  The use of 
cloud computing-based processing overcomes the limitations in the computational power of 
mobile and embedded devices.  A smartphone is used for image capture and streaming to cloud 
servers for image recognition.
 The camera is triggered only when an object is detected, which will, in turn, optimize 
computational resources without continuously triggering the camera, leading to redundant 
image processing operations.  Google Cloud-based image processing uses a label detection 
algorithm.
 This audio is used as the feedback mechanism in the image identification.  The output of 
obstacle recognition is received as a text message to the cloud vision application running on a 
smartphone.  This text message is converted to a voice using text to speech and is sent to the 
earphone worn by the user.  

Table 1
Specifications of (a) ultrasonic sensors and (b) coin vibration motors.
(a)
Frequency 40 Hz
Range (Max) 4 m
Range (Min) 2 cm
Input signal (Trigger) 10 uS TTL pulse

Output signal (Echo) Input TTL lever signal and the 
range in proportion

Dimensions 45 × 20 × 15 mm3

 

(b)
Frequency 10–55 Hz 
Vibration speed 15000 rpm 
Motor body diameter 12 mm 
Motor body length 2.7 mm 
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3.3 Sensor fusion 

3.3.1 Fusion of sonar sensors

 A recursive Bayesian filter called the extended Kalman filter (EKF) is used to combine two 
ultrasonic sensors tilted to the floor to enhance ground level obstacle detection. 

3.3.2 Vision and sonar sensor fusion

 The data from sonar and vision sensors are two complementary types of sensor that 
provide information on different aspects of the environment, i.e., sonar gives the distances to 
obstacles and the vision sensors provide more descriptive information on the detected obstacles.  
Therefore, rule-based fusion fuses data arriving from vision and sonar sensors.  During this 
fusion process, the vision sensor activates only when the sonar indicates a detection of an 
obstacle.  Therefore, only the snapped frame of the scene is sent for further processing to 
identify the object rather than send all the frames to the image processor, which would overload 
the task of processing.  In this way, the use of sonar sensors accelerates the process of acquiring 
visual data and reduces the computational power required for video image processing.  More 
importantly, this method enables real-time data processing.  

3.4 Walking context analysis module

 Hybrid walking context analysis, which is used to improve the safety of the present walking 
situation, is based on environmental adaptation and individual personal preferences.  Therefore, 
the hybrid walking context analysis module consists of two parts: an adaptation module and a 
personalization module.
 The inputs to the adaptation module are acquired through the distance measured by sonar 
sensors attached to the waist belt.  The outputs of the adaptation module are the density of 
obstacles and the distance to the nearest obstruction.  The smartphone application provides the 
inputs to the personalization module.  A smartphone is used to calibrate the walking aid for the 
user’s personal data (age, gender, height, and visual status).  The output of the personalization 
module is the walking speed of the visually impaired navigator.
 The hybrid walking context analysis module is built as a fuzzy inference system (FIS) 
in MATLAB (Fig. 3).  The Mamdani approach-based fuzzy logic controller is used, and the 
centroid method is used in defuzzification.  Triangular and trapezoidal linear functions are used 
to define the membership functions of the inputs since their domains cover a wide range of 
values.  The output of the hybrid walking context module, which is whether it is safe or not to 
travel the next few steps under the current walking conditions, is converted into voice messages 
and rendered to the user.  

4. Evaluation of Approach

 The subjects of the evaluation were 10 users of both genders (four female users and six male 
users) with two different age ranges (eight young users with ages of around 22–37 years and two 
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older users with ages around 70).  Seven of the subjects were blindfolded, and their visual status 
was assumed to be blind.  The other three subjects had age-related vision loss.  All participants 
confirmed that they did not have disabilities related to mobility or hearing.  
 The evaluation environment was a previously adjusted free space consisting of different 
types of static object scattered in different directions, including a staircase, a corridor, and drop-
offs.  
 The ethical consideration was taken into account during the evaluation experiment.  During 
the experiment, both physical well-being and privacy were well protected.  Safety measures 
were taken to minimize risks such as falls during the experiment.  Extensive training was given 
to all the participants of the study to maintain the consistency of the results between them.  
Close attention was paid to the comfort of the subjects allowing them to pause the experiment 
any time they felt tired.

4.1 Pilot study 

 A pilot study was conducted using the prototype system.  It was assessed whether the 
prototype system functioned correctly and posed any problems, and the subjects were trained 
on different configurations of the experimental test.

4.2	 Observations	and	modifications	based	on	the	pilot	study

 Several improvements shall carry out prior to the enhanced final user evaluation experiment, 
on the basis of the results obtained from the pilot study.  Certain areas for the improvement of 
the prototype were revealed during the pilot study.  It was necessary to increase the frequency 
of vibrations generated by the motors in the tactile belt and to increase the feedback duration 
from 500 to 1000 ms.  

Fig. 3. (Color online) Hybrid FIS for walking context.
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4.3 Componentwise evaluation

 It was identified that obstacle detection, obstacle recognition, sensor fusion, and current 
context analysis can be further enhanced for better usability via several directions of research.

4.4 Obstacle detection

 Obstacles are categorized as left, right, front, constrained spaces, stairs, and drop-offs.  
Three chances are given to each user to complete one local navigation.  When the user was 
successful in avoiding an obstacle, it was classified as a “hit”.  Otherwise, it was classified as a 
“miss”. 

4.4.1 Results of the evaluation of obstacle detection

 Figure 4 shows the obstacle detection rate for each type of obstacle as a percentage.  
According to the chart in Fig. 4, 93% of the left obstacles, 88% of right obstacles, 100% of frontal 
obstacles detection rate, and 81% of stairs and walls were identified with an accuracy of 100%.

4.5 Obstacle recognition

 The two most important aspects of obstacle recognition are the speed and accuracy of the 
response.  Evaluation experiments focused on measuring the response time since it is necessary 
to have a rapid response of less than 1 s to preserve the real-time performance of the system.  
Images taken at different indoor locations were used as the test data.  The camera embedded 
in the smartphone was used to take pictures of the scenes, which were sent to the cloud server 
for image classification.  The mobile phone was connected to the internet through a wireless 
network in the indoor premises.  

4.5.1 Results of obstacle recognition

 The average feedback period between sending and receiving the captured image was 
determined for pictures with different resolutions.  The feedback times corresponding to 
different resolutions are shown in Fig. 5.

Fig. 4. (Color online) Obstacle detection rates as percentages.



Sensors and Materials, Vol. 32, No. 4 (2020) 1505

 This response time indicates real-time feedback since it is less than 1 s.  The lower 
resolutions obtained by compressing the same set of frames had shorter response times than the 
default resolution.  

4.6 Sensor fusion

 Homogeneous fusion between two ultrasonic sensors that were tilted to detect the ground-
level obstacles was carried out.  An extended Kalman filter was used to carry out the fusion of 
ultrasonic sensors.
 The blue line in Fig. 6 illustrates the outcome of the fusion, whereas the red and green lines 
represent the data from the two ultrasonic sensors.

4.7 Evaluation of walking context analysis

4.7.1 FIS model used for adaptation

 As shown in Fig. 7, the membership functions of the object density (small, medium, 
and large) are based on left, right, and front ultrasonic sensor readings.  Figure 8 shows the 
membership functions of the “nearest obstacle” variable, which consists of three fuzzy sets 
called near, medium, and far.  The range of the distance to the nearest obstacle is from 0 to 4 m.

4.7.2 FIS model for personalization

 The customization of the assistive travel based on individual personal factors was performed 
through a user review.  The assistive prototype was tested with and without calibration 
according to individual factors such as age, gender, height, and visual status.  After the 
evaluations, subjects were asked whether calibration concerning individual factors improved 
their mobility.  
 Figure 9 illustrates user responses on whether the customization of the prototype according 
to the above four factors affected their navigation.

Fig. 5. (Color online) Change in response time with the resolution.
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Fig. 7. (Color online) Membership functions of the obstacle density.

Fig. 8. (Color online) Membership functions of the output variable of the nearest obstacle.

Fig. 9. (Color online) Effect of personalization.

Fig. 6. (Color online) Homogeneous fusion of two ultrasonic sensors.
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 According to Fig. 9, the personalization of all four factors was considered by all or nearly all 
the users to improve their navigation.  Figure 10 shows the output of the personalization model 
based on the inputs of age, gender, height, and visual status.

4.7.3 Hybrid FIS model 

 The hybrid fuzzy inference model for walking context analysis was developed by combining 
adaptation and personalization models.  The output of this hybrid FIS is the walking context, 
which is used to investigate whether it is safe to proceed with walking under the given 
conditions.  The inputs to this hybrid model are the outputs of the adaptation model (obstacle 
density and distance to the nearest obstacle) and the personalization model (walking speed).  
Walking context is output as the final result when the obstacle density, distance to the nearest 
obstruction, and walking speed are inputted to the hybrid fuzzy system as shown in Fig. 11.

4.8 Evaluation of feedback

 When giving feedback to visually impaired persons, alternative sensory skills, such as 
auditory and tactile sensing, were taken into consideration.  Users were provided feedback 
during user training to evaluate only the feedback identifying ability.  Each command was given 
10 times in a random order to the users as shown in Fig. 12.  Feedback was presented in periods 
of 5 and 10 s.  

Fig. 10. (Color online) Membership functions of outputs of walking speed factor.

Fig. 11. (Color online) Membership functions of the walking context.
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4.9 Analysis and interpretation of the feedback evaluation

 In the user evaluation, higher scores were given for voice input evaluation as pictorially 
depicted in Fig. 12.  Therefore, the voice input module has earned higher user satisfaction and 
was considered more convenient.  
 The audio and haptic cues showed comparable scores.  Therefore, the fusion of the audio and 
tactile techniques improved the feedback of the proof-of-concept system.  

4.10 User evaluations

 Contextual inquiry was also part of each experiments.  Subjects were asked questions 
regarding their experiences during the experiment.  When they faced any inconveniences, it 
was hoped that they would express them in an interview and they were also encouraged to think 
of modifications or improvements of the prototype.  

4.10.1 Analysis and interpretation of user evaluations

 Subjects of the experiment provided positive feedback on the ability to personalize based 
on their age, height, gender, and visual status.  It was observed that the wearable system is 
more accurate and user-friendly than a white cane.  However since there is a need to make 
surrounding persons aware that the person is visually impaired, it is necessary to have the white 
cane as the symbol.  In addition users will feel more comfortable to have augmented support by 
using dual methods.  
 
5. Conclusion

 Developing navigation aids for visually impaired persons increases their independence in 
their day-to-day life activities.  The results indicate that the prototype system allows visually 
impaired persons to navigate indoors without requiring any infrastructure to be set up in 
the environment.  The work provided an insight into the functionality of homogeneous and 
heterogeneous sensors and their fusion with wearable microprocessors.  

Fig. 12. (Color online) Voice feedback vs tactile feedback.
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 In this research, vision and ultrasonic sensors were used in synergy for efficient navigation 
in an indoor environment.  The usage of computer vision allows users to determine the objects 
around them, which was not possible when using an ultrasonic sensor alone.
 Context awareness affects the assistance of visually impaired persons in traversing local 
pathways safely and efficiently.  A hybrid fuzzy inference module was developed by integrating 
personalization and adaptation fuzzy inference modules.  The acoustic method was used to 
alert the user of the current context, i.e., whether it is safe or not to continue navigation.  Tactile 
feedback was generated to inform users about the closest objects on the path.  The results of the 
hybrid FIS proved the safety by understanding the potential dangers during the navigation.  
 There is a considerable scope for future improvements to the proposed approach.  Further 
work is underway in both indoor and outdoor environments.  The current focus investigates 
whether feedback mechanisms can be improved to adjust their walking speed according to the 
current context.

References

 1 Infsoft GmbH: (2019).  https://www.infsoft.com/Portals/0/Images/solutions/basics/whitepaper/infsoft-
Whitepaper-EN-Indoor-Positioning_download.pdf

 2 F. Shahdib, W. U. Bhuiyan, K. Hasan, and H. Mahmud: IJCA 66 (2013) 6.  https://doi.org/10.5120/11114-6074
 3 Y. Priyadarshana and G. Wimalaratne: IJSCE 3 (2014) 1.  http://www.ijsce.org/wp-content/uploads/papers/

v3i6/F1992013614.pdf
 4 C. Gearhart, A. Herold, B. Self, and L. Slivovsky: Proc. Sensors Applications Symposium (IEEE, 2009). 

https://doi.org/10.1109/SAS.2009.4801815
 5 A. Rodríguez, J. Yebes, P. Alcantarilla, L. Bergasa, J. Almazán, and A. Cela: Int. J. Sens. 12 (2012) 17476. 

https://doi.org/10.3390/s121217476
 6 D. Kim, K. Kim, and S. Lee: Sensors 14 (2014) 10412. https://doi.org/10.3390/s140610412
 7 Y. Lee and G. Medioni: Advanced Reasoning with Depth Camera Workshop (2016). https://doi.org/10.1016/

j.cviu.2016.03.019 
 8 G. Koshmak, M. Lindén, and A. Loutfi: J. Sens. 10 (2016) 1. https://doi.org/10.1155/2016/6931789
 9 S. W. Yoon, S. B. Park, and J. S. Kim: J. Sens. 2015 (2015) 1. https://doi.org/10.1155/2015/347379
 10 B. Mocanu, R. Tapu, and T. Zaharia: Sensors 16 (2016) 1807. https://doi.org/10.3390/s16111807 
 11 S. Y. Hwang, J. T. Park, and J. B. Song: Proc. of IEEE Workshop on Advanced Robotics and Its Social Impacts 

(IEEE, 2010). https://doi.org/10.1109/ARSO.2010.5679632
 12 C. Fernández: https://www.diva-portal.org/smash/get/diva2:852457/FULLTEXT01.pdf
 13 F. Castanedo: Sci. World J. 2013 (2013) 1. http://doi.org/10.1155/2013/704504
 14 W. Elmenreich: An Introduction to Sensor Fusion 47 (2001) 1. https://www.academia.edu/649942/An_

introduction_to_sensor_fusion
 15 H. F. Durrant-Whyte: IJRR 7 (1988) 97. https://doi.org/10.1177/027836498800700608
 16 Q. Lin and Y. Han: Sensors 14 (2014) 18670. https://doi.org/10.3390/s141018670
 17 Q. Lin and Y. Han: Sensors 16 (2016) 667. https://doi.org/10.3390/s16050667
 18 V. Yer uband i , Y. Reddy, and M. Ku mar : I JSR P 5 (2015) 2. ht t ps: //pd fs .semant icschola r.

org/73ab/07ce475bb3bd8b0361469391d2c07dcc01cd.pdf
 19 N. Rahman, I. Abustan, S. Talib, M. Abustan, M. Ali, and H. Gotoh: ICCEE 34 (2018) 1. https://doi.

org/10.1051/e3sconf/20183401023 
 20 Daily Nation: https://www.nation.co.ke/lifestyle/How-we-walk-depends-on-who-we-walk-with/1190-4774810-

awkjfd/index.html (accessed September 2019).
 21 M. Fenton: The Complete Guide to Walking for Health, Weight Loss, and Fitness (Lyons Press, 2008).
 22 C. S. Silva and P. Wimalaratne: Sens. Mater. 31 (2019) 4. https://doi.org/10.18494/SAM.2019.2232

https://www.infsoft.com/Portals/0/Images/solutions/basics/whitepaper/infsoft-Whitepaper-EN-Indoor-Positioning_download.pdf
https://www.infsoft.com/Portals/0/Images/solutions/basics/whitepaper/infsoft-Whitepaper-EN-Indoor-Positioning_download.pdf
https://doi.org/10.5120/11114-6074
http://www.ijsce.org/wp-content/uploads/papers/v3i6/F1992013614.pdf
http://www.ijsce.org/wp-content/uploads/papers/v3i6/F1992013614.pdf
https://doi.org/10.1109/SAS.2009.4801815
https://doi.org/10.3390/s121217476
https://doi.org/10.3390/s140610412
https://doi.org/10.1016/j.cviu.2016.03.019
https://doi.org/10.1016/j.cviu.2016.03.019
https://doi.org/10.1155/2016/6931789
https://doi.org/10.1155/2015/347379
https://doi.org/10.3390/s16111807
https://doi.org/10.1109/ARSO.2010.5679632
https://www.diva-portal.org/smash/get/diva2
http://doi.org/10.1155/2013/704504
https://www.academia.edu/649942/An_introduction_to_sensor_fusion
https://www.academia.edu/649942/An_introduction_to_sensor_fusion
https://doi.org/10.1177/027836498800700608
https://doi.org/10.3390/s141018670
https://doi.org/10.3390/s16050667
https://pdfs.semanticscholar.org/73ab/07ce475bb3bd8b0361469391d2c07dcc01cd.pdf
https://pdfs.semanticscholar.org/73ab/07ce475bb3bd8b0361469391d2c07dcc01cd.pdf
https://doi.org/10.1051/e3sconf/20183401023
https://doi.org/10.1051/e3sconf/20183401023
https://www.nation.co.ke/lifestyle/How-we-walk-depends-on-who-we-walk-with/1190-4774810-awkjfd/index.html
https://www.nation.co.ke/lifestyle/How-we-walk-depends-on-who-we-walk-with/1190-4774810-awkjfd/index.html
https://doi.org/10.18494/SAM.2019.2232


1510 Sensors and Materials, Vol. 32, No. 4 (2020)


