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 We propose an interface for the tele-operation of a laparoscope-holder robot via head 
movement using facial feature point detection.  Fourteen feature points on the operator’s face 
are detected using a camera.  The vertical and horizontal rotation angles and the distance 
between the face and the camera are estimated from the points using deep learning.  The 
training data for deep learning are obtained using a dummy face.  The root-mean-square error 
(RMSE) between the estimated and directly measured values is calculated for different numbers 
of nodes, layers, and epochs, and suitable numbers are determined from the RMSE values.  
The trained data are evaluated with four subjects.  The effectiveness of the proposed method is 
demonstrated experimentally.

1. Introduction

 In the tele-operation of a robot relying on indirect vision from a camera, the view angle of 
the camera affects the operation.(1–6)  An interface to control the camera to provide a suitable 
view to the operator through head motion is effective.  A laparoscope-holder robot named 
EMARO is used in minimally invasive surgery.  The robot is operated by the head motion 
of the operator (a surgeon wearing a cap with a gyroscope).  The pitch and yaw motions are 
controlled by the movement of the head while pushing the foot pedal.(7,8)  However, the wiring 
of the gyroscope may interfere with the operation.  The use of eye tracking for control is one 
solution.  Interfaces that can be used to operate robots using eye tracking have been proposed.(9–14)  
However, controlling zoom in and out of the camera is difficult with eye tracking.  
 We have proposed an interface for the tele-operation of a camera, in which images of 
two markers attached to the operator’s head are tracked by visual odometry.(15)  However, 
misalignment of the markers leads to a risk of malfunction.  To solve this problem, we 
previously proposed an interface for robotic tele-operation involving head movement and facial 
feature point detection.  The feature points on the operator’s face were detected using a camera 
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and the position and posture of the face were calculated using these points.(16)  Although the 
effectiveness of the interface has been experimentally demonstrated with a laparoscope holder, 
improvements in estimation accuracy are desired.  
 In this paper, we propose a method of improving the accuracy using deep learning.  We 
set 14 feature points on the operator’s face as the input for deep learning.  The outputs are the 
horizontal and vertical rotation angles of the operator’s head and the distance between the 
camera and the face.  The training data for deep learning are obtained using a dummy face.  
The root-mean-square error (RMSE) between the estimated and directly measured values 
is calculated for different numbers of nodes, layers, and epochs, and optimal numbers are 
determined from the RMSE values.  The rotations and the distance are estimated with four 
subjects.

2. Interface Using Detection of Facial Feature Points

2.1 Setup of interface 

 Figure 1 shows the setup of the interface.  A USB camera (HD Pro Webcam C920, Logicool, 
USA) is installed on the monitor to capture the operator’s face.  The face image is transmitted 
to a PC (MB-W830S2-SSD2, Mouse Computer, JPN).  Fourteen feature points on the face, as 
shown in Fig. 2, are detected using the software libraries of OpenCV and DLIB.  The 14 feature 
points (x1–14, y1–14, z1–14) are detected as the input for the deep neural network.  Considering 
the application of the interface in surgery, the operator wears a mask.  However, if we put some 
markers on the mask as feature points, our interface can be applied.
 The horizontal and vertical rotations of the operator’s head (θH and θV) and the distance 
between the camera and the face (L) are calculated using deep learning.  The gazing point on 
the monitor is calculated from θH and θV.  The point is displayed on the monitor as a red dot.  
The diameter of the dot is inversely proportional to L.  
 The monitor is divided into a 3 × 3 grid.  The operator controls the laparoscope holder 
robot while gazing at the monitor.  The robot remains in the same position when the dot is in 
the center area of the monitor.  When the operator gazes at other squares of the grid, the robot 

Fig. 1. (Color oneline) Setup of the interface. Fig. 2. (Color online) Feature points on operator’s 
face.
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moves at a constant velocity until the target object enters the center area.  If the estimation 
accuracy of θH and θV is low, the intuitiveness of the operation deteriorates.  Improving the 
accuracy of angle estimation will improve task efficiency.  The initial distance between the 
monitor and the operator is 600 mm.  The robot starts to zoom in when the distance becomes 
shorter than 550 mm and starts to zoom out when the distance becomes longer than 650 mm.  

2.2 Estimation of face motion using deep learning 

 In this section, we explain the method of estimating the face motion from the 14 feature 
points using deep learning.  We used a dummy face for the input of the deep learning.  The 
height and width of the dummy face shown in Fig. 2 were 210 and 115 mm, respectively.  The 
dummy face was sinusoidally rotated for horizontal and vertical directions at a frequency of 
0.25 Hz.  The rotational range was determined to be −30 to 30 deg for the horizontal direction 
and −25 to 25 deg for the vertical direction.  The experiments were performed at L = 450, 500, 
and 550 mm.  This is because the size of the dummy face is about 5/6 that of an adult face.  
 Figure 3 shows the structure of deep learning.  Chainer (Preferred Networks, Inc.) was used 
for deep learning.  The input data were 14 facial features detected during both horizontal and 
vertical motions, totaling 28 facial points.  The output data were θH, θV, and L.  The input and 
output data were recorded at 30 frames per second.  Of the recorded data, 3600 are used as 
training data and 1200 are used as validation data after learning.  Rectified linear unit (ReLU) 
and adaptive moment estimation (Adam) were used for the activation function and the optimizer.  
To learn the optimal weighting data by deep learning, it is necessary to set appropriate numbers 
of layers, nodes, and learning times.  The optimal numbers of layers and nodes were determined 
from among 1, 2, 4, 8, and 16 layers and 10, 20, 30, and 50 nodes
 Figure 4 shows the calculated θH and θV for different numbers of nodes with two layers.  The 
horizontal axis shows the number of nodes and the vertical axis shows the root of square error 
(RSE) for the calculated angles.  The calculation error is minimized with 30 nodes.  The same 
tendency can be observed for different numbers of layers.  Figure 5 shows the calculated results 
of L for the different numbers of nodes with two layers.  The horizontal axis shows the number 
of nodes and the vertical axis shows the RSE for the calculated length.  We determined  the 
optimal number of nodes to be 30 from the calculated results.

Fig. 3. Structure of deep learning.
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 Figures 6 and 7 respectively show the RSEs of the angles and the length calculated for 1, 2, 4, 
8, and 16 layers with 30 nodes.  The horizontal axis shows the number of layers and the vertical 
axis shows the RSE for the calculated values.  We determined the optimal number of layers to 
be two from the calculated results.  Figure 8 shows the learning situation.  Since the accuracy 
peaked when the number of epochs approached 500, this number of epochs was selected.  The 
training in deep learning was performed with 3600 data values using 30 nodes, 2 layers, and 
500 epochs.  Then, we performed the validation using 1200 data values.  
 Figure 9 shows the estimated results of θH for L = 300 mm.  The same distance as in Ref. 16 
was selected for comparison.  The RMSE was 4.36 deg.  In Ref. 16, we obtained the position 
and posture of the face by solving the perspective-n-point (PnP) problem.  The results are 
shown in Fig. 10.  The RMSE was 6.42 deg.  The phase delay observed in Fig. 10 is due to 
the computation time to solve the PnP problem.  In Fig. 9, the phase delay cannot be observed 
because the computation time is less than 1 ms.  It is clear that the proposed method is more 
accurate by comparing Figs. 9 and 10.  

3. Experiments with Interface

 Four subjects were tested with the interface trained using the dummy face, as described in 
Sect. 2.

3.1 Experimental procedure

 The proposed interface shown in Fig. 1 was tested with four subjects using the data trained 
with deep learning.  A gyro sensor (MPU9250/6500, HiLetgo, China) was mounted on the 
subject’s head as a reference for the estimated angles.  The experiments were performed with 
the lengths of 550, 600, and 650 mm.
 The subjects were asked to rotate their face horizontally by −10, −20, 10, and 20 deg while 
watching the output of the gyro sensor from the initial posture facing forward.  The clockwise 
motion was set to be the positive direction.  Then, the subjects rotated their face vertically by 
−10, −20, 10, and 20 deg, where the upward direction was set to be the positive direction.

Fig. 4. (Color online) RSE values of angles for 
different numbers of nodes.

Fig. 5. RSE values of length for different numbers 
of nodes.
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3.2 Experimental results

 Figure 11 shows the experimental results of the horizontal rotation for lengths of 550, 600, 
and 650 mm.  The average RMSE of four subjects was plotted on the longitudinal axis.  The 
value was minimum when L = 600 mm.  Figure 12 shows the experimental results of the 
vertical rotation for the three different lengths.  The estimation accuracy was high for the 

Fig. 6. (Color online) RSE values of angles for 
different numbers of layers.

Fig. 7. RSE values of length for different numbers 
of layers.

Fig. 8. (Color online) Learning situation.

Fig. 9. (Color online) RMSE value of θH obtained 
using deep learning.

Fig. 10. (Color online) RMSE value of θH obtained 
by solving PnP problem.
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vertical rotation.  This is considered to be due to the arrangement of the feature points.  The 
heights of the feature points 2–14 were larger than the widths of points 1–4.  Since the height 
was larger than the width, the feature points were markedly changed upon vertical rotation 
of the face.  Therefore, the estimation accuracy was higher in the vertical rotation than in the 
horizontal rotation.  
 Next, the subjects performed sinusoidal rotational motion.  The initial length from the 
camera was 600 mm.  The subjects rotated their face by about 20 deg while watching the 
output of the gyro sensor.  Figures 13 and 14 respectively show the experimental results of the 
horizontal and vertical rotations.  The black line shows the output of the gyro sensor.  The red 
line shows the results estimated from the feature points of the face using deep learning.  The 
RSE values were 4.78 and 3.53 deg, respectively.  The calculation delay resulting from the time 
taken to solve the problem(16) was about 75 ms compared with only 25 ms for the proposed 
method with deep learning.  There was a slight phase delay in the vertical rotation.  The dummy 
face was smaller than the subject’s face; therefore, the detection accuracy of the feature points 
on the chin was low.  The accuracy can be improved by changing the size of the dummy face.  
However, the black and red lines are in good agreement.  The effectiveness of the proposed 
method was confirmed from the experimental results.  
 

Fig. 11. RMSE values of horizontal rotation for 
different lengths.

Fig. 12. RMSE values of ver t ical rotat ion for 
different lengths.

Fig. 13. (Color online) Experimental results of 
horizontal rotation.

Fig. 14. (Color online) Experimental results of 
vertical rotation.
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4. Conclusions

 In this paper, we proposed an interface for the tele-operation of robots via head movement 
using facial feature point detection.  The vertical and horizontal rotation angles and the distance 
between the face and the camera were estimated from 14 feature points on the operator’s face 
using deep learning.  The training data for deep learning were obtained using a dummy face.  
The RMSE between the estimated values and the values directly measured using sensors was 
calculated for different numbers of nodes, layers, and epochs.  We found that 2 layers, 30 nodes, 
and 500 epochs were suitable for deep learning.  The trained data were evaluated with four 
subjects.  We confirmed that sinusoidal head motion is effective for training in the proposed 
method.
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