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 The increasing population of stroke survivors naturally produces needs for more effective 
rehabilitation systems for both patients and therapists.  Robotic therapies are widely studied and 
practiced in various fields since they enable intense exercise as well as numerical evaluations.  
In this paper, along with the rehabilitation robot we developed, we propose a quantitative 
evaluation method for wrist paralysis in stroke patients using kinematic coefficients estimated 
from the joint model and machine learning.  Through experiments on five hemiplegic patients, 
we observed the spring–damper characteristics of their paralyzed wrists and computed 
the coefficients that represent stiffness and viscosity.  During wrist extension, a patient at 
Brunnstrom stage 3 showed a high average stiffness of 4.453 Nm/rad and viscosity of 4.533 
Nms/rad toward the rest position, whereas a patient at Brunnstrom stage 4 showed smaller 
coefficients of 1.135 Nm/rad and −0.669 Nms/rad, respectively.  We applied a support vector 
machine and a k-means method to the estimated stiffnesses and viscosities to classify the 
patients into three different clusters.  The two coefficients not only helped discriminate patients 
in accordance with their Brunnstrom stage, but also revealed that patients at the same stage 
could be more finely categorized.

1. Introduction

 A stroke occurs when brain cells are damaged owing to a lack of oxygen caused by either 
a blocked or ruptured blood vessel in the brain.  Although the death rate has been gradually 
declining since the 1990s owing to advancements in medical treatments, the prevalence rate 
is increasing mainly because of unhealthy diets or low physical activity.(1)  As a result, the 
population of stroke survivors naturally and inevitably grows.  According to worldwide statistics 
of early 2010, about 15 million people suffer a stroke every year and two-thirds of them survive.(1,2)  
The loss of motor functions after brain injury makes the activities of daily living difficult for 
the survivors.  More than 45% of the survivors experience semipermanent disabilities, including 
musculoskeletal paralysis.(1,3)  To increase the quality of life, months or years of rehabilitation is 
necessary.(4–6)



982 Sensors and Materials, Vol. 32, No. 3 (2020)

 Repetitive joint movements and muscle stretches are carried out in hospitals to stimulate 
neuroplasticity so that neighboring normal neurons can take over the lost motor functions of 
damaged neurons.(7–9)  Conventional treatments involve the application of external forces on 
a patient’s paralyzed joints by a therapist to help improve the patient’s muscle tone.  However, 
such treatments are constantly pointed out as being unsatisfactory because the patient’s 
participation is passive and the amount of quantitative data on the results of daily exercise is 
sparse.(10,11)  As a solution to the first limitation, we proposed the robot-assisted bilateral wrist 
exercise shown in Fig. 1(a) in our previous research, in which the advantages of intense exercise 
in robotic therapy and the active involvement of patients in mirror therapy are combined.(12)  
In this paper, as a solution to the second limitation, we suggest a quantitative evaluation of the 
wrist paralysis of stroke patients by applying kinematic coefficients estimated using the spring-
damper joint model and the robot sensor readings.  Research studies have been conducted to 
estimate the stiffness and viscosity of paralyzed joints such as ankles, arms, or wrists using 
personalized rehabilitation robots.(13–16)  However, the results seem to differ from paper to paper 
and are not in agreement with the results of conventional evaluations by doctors and therapists.  
Thus, for our estimated coefficients, we applied both supervised and unsupervised machine 
learning methods and compared the results  with the subjects’ Brunnstrom stages to check 
whether our results concur with the conventional stroke assessment.

2. Materials and Methods

2.1 Mirroring robot

 The mirroring robot proposed in our previous study is shown in Fig. 1(a).  A worm-geared 
DC motor with a rated torque of 4.41 Nm was chosen to guide the stroke patient’s wrist flexion 
and extension exercises.  To monitor such exercises, a torque sensor of 49.03 Nm capacity and a 

(a) (b)

Fig. 1. Experimental setup with the wrist mirroring robot.  (a) Paired set of robots with a 1-DOF range of motion 
and (b) wrist mirroring exercise of a representative patient.
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position sensor were coupled with the motor.  The hand support and handle were customized to 
the shape of each user’s hand and fabricated by 3D printing.  A robot was provided to each side 
to induce bilateral wrist exercises at the user’s will.  The robot on the normal side can be freely 
rotated by the user’s voluntary wrist movement toward either the flexion or extension direction.  
Then, the robot on the paralyzed side rotates to an angular position symmetric to that of the 
normal side to produce the same flexion or extension exercise.

2.2 Experimental setup

 Five hemiplegic patients at Brunnstrom stages between 3 and 5 participated in this study, as 
listed in Table 1.  All the participants were informed of the purpose and procedure of the study 
in advance and their written consent was obtained.  The protocol was carried out in accordance 
with the ethical standards of the Declaration of Helsinki.  The participants were asked to 
perform the wrist flexion–extension exercise using the mirroring robot for 10 min, as shown 
in Fig. 1(b).  Using the robot, we measured the torques and angular positions of the patient’s 
paralyzed wrist throughout the exercise.  Data were collected using NI-6009 at a sampling rate 
of 200 Hz and digitally processed with a 3rd-order Butterworth low-pass filter with a cutoff 
frequency of 5 Hz, using MALTAB 2019a.
 
2.3 Data processing

 After the exercise, we calculated damping (B) and spring constants (K) of the subject’s 
paralyzed wrist, using the following simplified wrist joint kinematic model.(17)

 −τ ≈ [ω θ][B K]T (1)

Since the torque, angular velocity, and angular position vectors are known from the sensor 
measurements, the kinematic coefficients can be estimated by the least squares method.  We 
have included the negative sign on the torque to reflect its reflexive characteristics against the 
joint movement.  
 After the linear regression, we applied a support vector machine (SVM) for supervised 
machine learning and a k-means method for unsupervised machine learning to categorize 
the subjects into three classes on the basis of the two parameters.  For the SVM, we used the 
‘fitcsvm’ function in MATLAB 2019a.  After standardization, each class was linearly separated 
from the others using a radial basis function (RBF) as a kernel function.  We coded a k-means 

Table 1
Patient information.
Patient Age Sex Brunnstrom stage Affected side
1 63 Female 4 Left
2 61 Female 4 Left
3 66 Female 3 Right
4 59 Female 5 Right
5 55 Female 3 Right
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function ourselves in MATLAB 2019a since the algorithm is very simple compared with that of 
the SVM.  The process of calculating the centers of three clusters and regrouping nearest data 
points into newly defined clusters was repeated 10000 times until the machine learning reached 
convergence.

3. Results

 Figure 2 illustrates two representative patients’ wrist positions and torques against time 
during the flexion–extension exercise.  We observed that the positions and torques are 
completely out of phase.  Therefore, we inferred that patients’ wrists show reflexive torques 
against robot rotations toward the rest positions as if the joints were spring–damper systems.  
The magnitudes observed for the subjects at Brunnstrom stage 3 [Fig. 2(a)] were higher than 
those observed for the subjects at Brunnstrom stages 4 and 5 [Fig. 2(b)], as expected, since 
their wrists and fingers had more severe paralysis.  In addition, greater reflexive torques were 
measured, particularly during wrist extension than during flexion, because musculoskeletal 
contracture is a common symptom of hemiparesis after a stroke.  Thus, we proceeded to 
compute spring and damping constants from the joint kinematic model only during each 
extension exercise to obtain a clearer estimation.

(a)

(b)

Fig. 2. (Color online) Wrist position and torque during flexion–extension exercise depicted from 0 to 180 s out of 
10 min.  (a) Patient at Brunnstrom stage 3 and (b) patient at Brunnstrom stage 4.
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3.1 Estimation of kinematic parameters using wrist joint model

 During the 10 min exercise, each patient performed more than 15 sets of wrist flexion and 
extension.  After discarding data with discontinuities or too many fluctuations, we collected 
measurements of at least 12 wrist extensions from each patient.  During extension, we computed 
the damping constant B and spring constant K by applying the least squares method to the wrist 
joint model [Eq. (1)], since the reflexive torque, angular position, and angular velocity vectors 
are known through the robot sensors.

 [B K]T = ( [ω θ]T[ω θ] )−1 [ω θ]T (−τ) (2)

After the estimation of the coefficients, by multiplying them with the state vectors, an estimate 
of the torque vector was calculated to determine its correlation with the actual torque vector.  
The results in Fig. 3 suggest the validity of B and K, since the estimated torque reflects the 
actual torque well with a high correlation of more than 0.9.
 Table 2 summarizes each patient's average B and K and the Brunnstrom stage provided 
by physical therapists.  First, we observed that the average correlations are quite high with a 
minimum value of 0.810.  Also, note that the magnitudes of B and K are in accordance with the 
Brunnstrom stage.  In other words, subjects at stage 3 with severe paralysis show greater B and K, 
suggesting that these kinematic parameters are valid indices for describing the wrist condition 
of hemiplegic patients.

(a) (b)

Fig. 3. (Color online) Estimations of kinematic coefficients during wrist extension exercise. The signs are 
negative because in Fig. 2 we had set the signs of the reflexive torque vector τ and state vectors ω and θ opposite to 
each other. During wrist extension, angular positions are negative whereas torques are positive to be reflexive.  (a) 
High viscosity and stiffness with a correlation of 0.970 shown by a patient at Brunnstrom stage 3 and (b) relatively 
low viscosity and stiffness with correlation of 0.960 shown by a patient at Brunnstrom stage 4.
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3.2 Pattern recognition for quantitative analysis of wrist paralysis

 The kinematic parameters of patients during each extension exercise are plotted on the B–
K plane, as shown in Fig. 4.  Using the SVM, we classified the patients in accordance with 
their Brunnstrom stage.  Patients at Brunnstrom stage 3, thus in region 1 in Fig. 4, tend to have 
higher stiffness and viscosity, as expected.  However, we observe that the boundaries between 
the consecutive Brunnstrom stages are unclear because there are some overlapping data points.  
Furthermore, there exist wide gaps between data points even within the same Brunnstrom stage.
 Using k-means, an unsupervised classifier, we identified the severity of wrist paralysis 
of patients on the basis of only their Bs and Ks regardless of their Brunnstrom stage.  By 
setting the cluster size as 3, we get Fig. 5, which shows a different result from Fig. 4.  The 
boundaries are now placed in the middle of the wide gaps, thus merging patients with different 
Brunnstrom stages.  We rated each cluster “severe”, “moderate”, or “light” in accordance with 
the magnitudes of stiffness and viscosity.  From Fig. 5, we discovered that the severity of wrist 
paralysis may vary within the same Brunnstrom stage.

4. Discussion

 In this paper, we proposed a quantitative method for analyzing wrist paralysis in hemiplegic 
patients.  Using torque and angular position vectors measured during the robot-assisted wrist 

Fig. 4. (Color online) Borders between Brunnstrom stages on the B–K plane discriminated using the SVM.

Table 2
Average kinematic coefficients and correlations between actual and estimated torques.

Patient Brunnstrom stage Extension sets Viscosity, B 
(Nms/rad)

Stiffness, K 
(Nm/rad) Correlation

1 4 19 −0.669 1.135 0.851
2 4 22 −7.872 1.846 0.834
3 3 12   4.533 4.453 0.925
4 5 16 −9.582 0.717 0.810
5 3 16   0.866 2.024 0.910
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extension exercise, we computed the kinematic coefficients—viscosity B and stiffness K—using 
the simplified joint model.  The parameters were then plotted on the B–K plane to perform 
pattern recognition and redefine the severity of wrist paralysis.
 Since we only had data from five hemiplegic patients, the validity of the results is quite 
weak.  Our robot is currently under review for medical licensing, after which it will be installed 
at a local hospital to collect more patient data.  A study using a larger number of data will 
confirm the reliability of our quantitative evaluation through the use of many machine learning 
methods other than the SVM method or K-means method, such as the use of an artificial neural 
network.  Once our assessment can provide more reasonable results, therapists and doctors will 
be able to utilize it as a more specific rehabilitation guide together with existing qualitative 
indicators including the Brunnstrom, Fugl–Meyer, or Jepsen assessment scale.  In addition, 
long-term studies will show how these parameters change as patients rehabilitate over time.  
Hopefully, the indices can be used as navigation parameters.
 In this paper, we have used the word ‘paralysis’ to refer to both stiffness K (springlike, 
position-dependent) and viscosity B (dampinglike, speed-dependent) of the wrist.  In the field 
of rehabilitation, we noticed, after several meetings with therapists and doctors, that terms 
such as ‘muscle tone’ or ‘spasticity’ are frequently used to indicate the patient’s joint paralysis 
to emphasize musculoskeletal viscosity.  Therefore, we realized that doctors and therapists 
are more concerned with the speed-dependent characteristics of a paralyzed joint.  Moreover, 
from Figs. 4 and 5, we see that our optimal estimation method—the least squares method—
has a limitation, since the viscosity data of each subject is relatively widespread.  In order to 
decrease the deviation of viscosity, other estimation methods, such as the use of the Kalman 
filter, can be chosen.  Such methods would increase the low correlations under 0.9 in Table 2.  
As an alternative solution, we could try surface electromyography of the participants to estimate 
stiffness and viscosity on the basis of muscle activity.  In this case, a more detailed definition of 
musculoskeletal paralysis would be possible.
 For us, the change in the sign of viscosity B was a subject of vigorous debate because a 
physical constant with a negative sign is unreal in natural mechanical systems.  However, 
the fact that the change in the sign appeared between Brunnstrom stages 3 and 4 caught our 

Fig. 5. (Color online) Severity of wrist paralysis quantitatively redefined  on the B–K plane using k-means.



988 Sensors and Materials, Vol. 32, No. 3 (2020)

attention, prompting us to analyze our data more thoroughly.  We soon discovered that patients 
at Brunnstrom stages 4 and 5 actively performed the wrist extension exercise with their own 
wrist extension torque.  However, at extreme angles at the extension position, the direction of 
the torque data changed from extension to flexion, as shown in Fig. 6.
 We interpreted the borders between the shaded regions as transitions from active to passive 
extension.  In the field of rehabilitation, the combination of active and passive extension 
exercises is called an active-assistive method and is considered to be one of the most effective 
methods for stimulating neuroplasticity.  In many other studies, viscosity and stiffness were 
also used as joint kinematic parameters for poststroke patients, but only for passive exercises.  
In our study, the active-assistive exercises with the mirroring robot allowed us to calculate the 
viscosity coefficient B with negative values for subjects at Brunnstrom stages 4 and 5.  Owing 
to the expansion of the variable space, the machine learning results in Figs. 4 and 5 were 
reliable and intuitively understandable.  We expect that consistent outcomes will be obtained 
from planned joint studies with rehabilitation experts at hospitals and human motor control 
professionals at international research institutions.

5. Conclusions

 In this paper, using a rehabilitation robot we developed, we quantitatively evaluated the 
severity of wrist paralysis in stroke hemiplegic patients.  Stiffness and viscosity constants 
were estimated on the basis of the torque, angle, and angular velocity vectors of the paralyzed 
wrist measured by the robot sensors during 10 minutes of flexion–extension exercises.  The 
results showed the high correlation between these constants.  Through machine learning, the 
two parameters were found to be in accord with the Brunnstrom stages of the patients, and 
musculoskeletal paralysis could be more finely analyzed within the same stage.

Fig. 6. (Color online) Wrist position and torque of a patient at Brunnstrom stage 4 during the flexion–extension 
exercise from 110 to 180 s out of 10 min. During extension, the sign of the torque changes from negative to positive 
as reflexive characteristics appear at the extreme extension position.
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