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 Many types of sensor have been utilized to monitor milling vibration, and many analysis 
methods are devoted to the investigation of milling vibration or milling dynamics.  In this work, 
a noncontact sensor and a time-frequency domain analysis method were applied to identify the 
state of milling vibration.  A microphone was employed in practical tests to record the milling 
dynamics.  The Teager–Huang transform (THT) was adopted for the acoustic signal analysis 
owing to its high resolution in the time-frequency domain.  The potential frequency range for 
the analysis of milling dynamics is reported in this work to improve the recognition accuracy 
of milling vibration limited by the effect of environmental noise.  The THT was used to 
distinguish the chatter state from the normal milling dynamics.  In addition, the statistical index 
called the coefficient of variation was applied to define the threshold of chatter occurrence.  
Milling experiments (including dry and wet cuttings) were performed to verify the proposed 
chatter detection method.  

1. Introduction

 The recognition of milling chatter should be discussed in two aspects: the disposed sensor 
and the signal processing method.  Dynamometers, accelerometers, and acoustic sensors are the 
main data sources against milling dynamics up to the present.(1)  There are two types of acoustic 
sensor, namely, the acoustic emission (AE) sensor and the microphone, which can be applied 
to record  variations in the milling process.  The main measurement frequency ranges of these 
four types of sensor are very different.  The signal frequencies measured by dynamometers and 
accelerometers are usually below 5 kHz (low frequency).  For microphones and AE sensors, 
the measured signal frequencies can be 0–80 kHz and beyond 400 kHz, respectively.  These 
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acoustic sensors are more sensitive to the energy variations inside the milling dynamics than the 
dynamometers and  accelerometers.  For example, the efficacy of cutter sharpness (tool wear) 
detection by the AE sensor was preliminarily validated.(2–5)  However, the competence to detect 
milling chatter using AE signals is still indefinite owing to the significant signal strength decay 
in the high frequency range.  As a result, a microphone was employed in this work owing to its 
high sensitivity against the milling dynamics, its sufficient signal bandwidth, and its passable 
signal strength decay.  
 The second part of the milling chatter identification is on the method of sensor signal 
processing.  Grossi et al. introduced an experimental approach to evaluate the optimal stable 
cutting parameters.(6)  The approach named spindle speed ramp-up (SSR) was applied to 
the tests, and the chatter occurrence was detected by the order analysis technique.  Only a 
few tests have to be performed and the entire stability lobe diagram (SLD) can be obtained.  
Lamraoui et al. proposed a chatter detection methodology by neural network classification and 
feature selection.(7)  Vibration signals were filtered by a multiband resonance filter to increase 
the signal-to-noise (S/N) ratio and the sensitivity of generated features.  The stability of selected 
features was finally determined by two neural network approaches.  A real-time chatter 
monitoring and suppression method was performed by Han et al.(8)  The estimation of signal 
parameters via the rotational invariance technique (ESPRIT) algorithm was adopted to extract 
the frequency characteristics of acceleration signals.  The cutting state was then categorized 
on the basis of the amplitude–frequency characteristics of identified acceleration signals with 
the aid of the hidden Markov model (HMM).  A study focused on timely chatter detection was 
published in 2018.(9)  The measured vibration signal was decomposed by the Gabor filter bank, 
and the Teager nonlinear energy operator was used to track signal variations in instantaneous 
frequency (IF) and amplitude.  A similar study based on the empirical mode decomposition 
(EMD) was published.(10)  The vibratory signals were decomposed by the EMD, and a series of 
intrinsic mode functions (IMFs) corresponding to instantaneous vibration frequencies were then 
obtained.  By selecting the primary IMFs, the chatter phenomenon was finally judged using 
the mean square frequency and self-correlation coefficient.  There are other methods devoted 
to the applications of online chatter detection, such as chatter identification based on wavelet 
transform (WT) and support vector machine (SVM),(11) Hilber–Huang transform (HHT),(12) and 
short-time Fourier transform (STFT).(13,14)

 The time-frequency signal processing tools, such as STFT, WT, HHT, and Teager–Huang 
transform (THT), are gradually applied to dynamic signal analyses owing to their superior 
performance in both time and frequency domains simultaneously.  The signal–resolving 
powers of STFT and WT are limited by the time window function and the mother wavelet type, 
respectively.  In addition, the capability of signal analysis for the frequency and amplitude 
of THT is better than that of HHT.(15,16)  Consequently, THT was employed in this work to 
investigate the milling noise.
 The purpose of this work is to design an efficient analysis process to detect chatter by 
milling noise analysis.  A microphone was utilized to record the milling dynamics, and 
the measured acoustic signals were analyzed by THT.  Owing to the high sensitivity of the 
microphone against energy variation in the milling process, a slight variation of milling noise 
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during the early stage of chatter occurrence may be observed.  The frequency range for signal 
analysis was determined using  the THT results to decouple most of the environmental noise.  
The statistical index called the coefficient of variation (CV) was used to define the threshold of 
chatter occurrence on the basis of the THT results.  The performance of the proposed method 
was finally investigated by practical milling tests.  

2. Research Process and Methods

 The research process is shown in Fig. 1.  The first stage (Stage A) is to confirm the essential 
function of the microphone against the milling dynamics.  Two accelerators were deployed to 
be the comparison baseline of chatter detection.  Once the THT results of microphone signals 
are validated to be effective for milling monitoring, the CV of IF will be calculated.  The CV 
threshold for chatter detection was defined on the basis of the CV results of IF.  The second 
stage (Stage B) is to verify the performance of the proposed method.  The milling parameters of 
Stage B are different from those of Stage A.  The diagnosis of chatter occurrence by microphone 
signal analyses will finally be confirmed with the aid of accelerator signals and the SLD of the 
test rig.  Since the cutting fluid was involved in the milling tests, a waterproof device for the 
microphone(17) was used in this work.  The prototype of the waterproof device is shown in Fig. 2.  

Fig. 1. (Color online) Two-stage research procedure.



876 Sensors and Materials, Vol. 32, No. 3 (2020)

2.1 THT

 THT is an approach for nonstationary signal analysis.  This method is based on the EMD 
algorithm(18) and the Teager energy operator (TEO).(19)  The signal processing architecture of 
THT is shown in Fig. 3.(15)  The raw data is firstly decomposed by the EMD into IMFs.  IMFs 
represent the oscillation modes embedded in the signal, and the IMF in each cycle involves only 
one oscillation mode.  IMFs are then demodulated by the TEO into IF and the instantaneous 
amplitude (IA).  The TEO is the kernel of energy separation algorithm (ESA) demodulation, 
and it has been successfully applied to speech processing.(19)  Since the microphone signal is 
composed of the superposition of AM-FM signals such as the speech signal, THT could be 
sufficient for the milling noise analysis.  Finally, an energy-time-frequency representation of the 
input signal will be accomplished with the IF and IA results.  

2.2 Selection of frequency range for microphone signal analysis

 The THT results of the environmental noise and milling process are shown in Fig. 4.  Most 
of the environmental noise frequencies are below 7 kHz.  The frequency ranges of milling 
dynamics and environmental noise partially overlap, as shown in Fig. 4(b).  The frequency range 
of 8–10 kHz was finally determined for microphone signal analysis to improve the coupling of 
environmental noise and to avoid the attenuation of the high-frequency signal.
 
2.3 CV

 Since the frequency range and amplitude of the first IMF (IMF1) are the largest among 
all the IMFs, IMF1 was used to evaluate the stability of cutting force variation.(12)  However, 
some information within the other IMFs may be lost in the following analysis.  In this work, a 
statistical index called CV was adopted to observe the variation of milling dynamics, which is 
defined as 

Fig. 2. (Color online) Waterproof device for the microphone.(17)
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where N is the amount of data, xi is IF, and μ is the average frequency.  The data source of the 
CV calculation is the IF of THT results between 8 and 10 kHz.  As shown in Fig. 4(b), the 
dispersion degree of signal frequencies will vary along with the milling dynamics.  Therefore, 
the threshold for chatter detection can be defined using the CV.

2.4 Experimental design

 The test rig is shown in Fig. 5 and the employed hardware is listed in Table 1.  Two 
accelerators were deployed on the spindle along the X- and Y-axis directions of the CNC 
machine.  The distance between the microphone and the cutter along the Y-axis is 85 mm.(17) 

Fig. 4. (Color online) THT results of (a) environmental noise and (b) milling process.

Fig. 3. Signal processing architecture of THT.(15)

(a) (b)
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2.5 Cutting path design

 The SLD for the milling setup is shown in Fig. 6(a).  For the purpose of inducing the chatter 
phenomenon, a bevel cutting path was specially designed as shown in Fig. 6(b).  Since there 
are always certain degrees of errors inside the SLD, the maximum axial cut depth is set to be 
6 mm to ensure the occurrence of chatter.  There are six bevel cutting paths in one workpiece as 
shown in Figs. 6(c) and 6(d), three paths for dry cutting tests and the others for wet millings.  In 
total, 12 millings were performed and the corresponding cutting parameters are listed in Table 2.

Fig. 5. (Color online) Test rig.

Table 1
Experimental hardware specifications.
Item Brand/Model Remarks
Microphone PCB / 378C01 Bandwidth: 20–80 kHz
Accelerometer PCB / 601A01 Bandwidth: 0.27–10 kHz
Laptop computer HP / ProBook 430 G1 For signal recording
Data acquisition module NI / USB-4431 4-port and USB interface
CNC machine tool FEELER / VMP-40A Experimental machine

Cutter WEENIX / End mill
Material: cobalt high-speed steel

Number of teeth: 4
Diameter: 6 mm

Workpiece — Material: S50C carbon steel
Size: 50 × 65 × 200 mm3
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(a) (b)

(c) (d)

Fig. 6. (Color online) Cutting path design: (a) SLD for the experimental setup, (b) top view of workpiece design, (c) 
side view of workpiece design, and (d) practically prepared workpiece.

Table 2
Milling test parameters.

Group No. Spindle speed 
(rpm)

Feed rate 
(mm/min)

Axial cut depth 
(mm)

Waterproof 
device Cutting fluid

Stage A A1 6600 2640 0–6 (ramp) Yes No
Stage A A2 6600 2640 0–6 (ramp) Yes No
Stage A A3 6600 2640 0–6 (ramp) Yes No
Stage A A4 6600 2640 0–6 (ramp) Yes Yes
Stage A A5 6600 2640 0–6 (ramp) Yes Yes
Stage A A6 6600 2640 0–6 (ramp) Yes Yes
Stage B B1 4900 1960 0–6 (ramp) Yes No
Stage B B2 4900 1960 0–6 (ramp) Yes Yes
Stage B B3 5600 2240 0–6 (ramp) Yes No
Stage B B4 5600 2240 0–6 (ramp) Yes Yes
Stage B B5 6100 2440 0–6 (ramp) Yes No
Stage B B6 6100 2440 0–6 (ramp) Yes Yes
Remarks: Feed rate is determined on the basis of Ref. 20.

2.6 Sensor signal processing and result comparison

 Accelerators were employed to be the comparison baseline of chatter detection.  The 
accelerator output is processed by STFT to observe the tooth passing frequency (TPF) and 
its multiple frequencies.  Once frequencies of high energy intensity other than TPFs are 
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observed, the milling dynamics is considered to be unstable.  In other words, these high-energy 
frequencies result from the unexpected cutting vibration.  In Stage A, the STFT of accelerator 
output is utilized to affirm the time interval of the milling process, to check the occurrence of 
chatter, and to verify the detective capability of the microphone for the milling process.  For the 
simplification of chatter occurrence detection, the CV of IF is utilized to define the diagnostic 
threshold for microphone signals.  In Stage B, the diagnosis results using the CV threshold 
will be double-checked on the basis of STFT results of accelerator signals and the SLD of the 
test rig, where the accelerator is used to confirm the chatter occurrence and the SLD is used to 
estimate the approximate time of chatter occurrence.

3. Experimental Results and Discussion

 The spindle speed for Stage A is 6600 rpm so that the corresponding TPF is 440 Hz.  The 
STFT results of milling Nos. A1 (dry cutting) and A4 (wet cutting) are shown in Fig. 7.  The 
TPFs, i.e., 440 and 880 Hz, can be clearly noted, and the time interval of the milling process 

(a) (b)

(c) (d)

Fig. 7. (Color online) STFT of accelerator signals: (a) No. A1 in X-axis, (b) No. A1 in Y-axis, (c) No. A4 in X-axis, 
and (d) No. A4 in Y-axis.
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can be approximately estimated (between the two vertical dotted lines).  The chaos in the upper 
parts of the STFT results refers to abnormal vibrations, e.g., chatter.  Although the occurrence 
of chatter can be detected on the basis of the STFT results, the time point of the beginning of 
chatter can hardly be clarified.  The microphone signals and the corresponding THT results of 
test Nos.  A1 and A4 are shown in Fig. 8.  The number marks in Figs. 8(b) and 8(d) are defined 
as follows:
 zone 1: spindle motor starts
 zone 2: spindle speed up
 zone 3: spindle speed remains in the test speed without cutting
 zone 4: initial phase of milling process
 zone 5: chatter phase
 zone 6: end phase of milling process (cutter just left the workpiece)
 zone 7: spindle speed remains in the test speed without cutting
 According to the cutting path design, the milling process includes zones 4 and 5.  However, 
zones 4 to 6 should be the practical milling process owing to the errors of milling parameters 
and the milling complexity of the cutting path end.  A thin wall was met in the end of the 
cutting path so that the practical material removal rate (MRR) can hardly be maintained, and 
therefore the milling dynamics becomes more complex.  That is why zone 6 is also part of the 
milling process.

Fig. 8. (Color online) Microphone signals and THT results of tests: (a) and (b) No. A1, and (c) and (d) No. A4. 

(a) (b)

(c) (d)
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 The frequencies of the chatter phase for six tests (Nos. A1–A6) are mainly between 8800 
and 9600 Hz.  In other words, the frequency range will decrease and the strength of certain 
frequencies will increase during the chatter phase.  On the other hand, the time length of the 
chatter phase of wet milling is shorter than that of dry milling owing to the lubrication by the 
cutting fluid.  The CVs of IF of THT results for six tests are shown in Fig. 9.  On the basis of the 
CV results of six tests, the threshold of the CV for chatter detection is set as 13%.  The lower 
CV of IF refers to the lower dispersion degree of signal frequencies, i.e., the reduced frequency 
range.
 Three groups of milling parameters were tested, i.e., test Nos. B1–B6, to verify the efficacy 
of the proposed method.  The CVs of IF of THT results for test Nos. B1–B6 are shown in 
Fig. 10.  The starting time point of the milling process was affirmed on the basis of the STFT 

Fig. 9. (Color online) CVs of IF of THT results for test Nos. A1–A6.
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results of accelerator signals, i.e., to observe the TPFs.  The chatter phenomena in these six tests 
have also been confirmed using the accelerator, and the starting time point of the chatter phase 
was estimated on the basis of the SLD.  For example, the critical axial cut depth is 2.72 mm for 
test Nos. B5 and B6 (see Fig. 6) and the given feedrate is 2440 mm/min.  Therefore, the chatter 
may occur in 2.23 s after the milling starts.  However, there are certain degrees of errors among 
the SLDs; thus, the occurrence of chatter should be estimated as a time interval instead of a 
time point.  The efficacy of the proposed method for chatter detection based on the microphone 
signal has been practically confirmed.

Fig. 10. (Color online) CVs of IF of THT results for test Nos. B1–B6.
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4. Conclusions

 A microphone-signal-based chatter detection method has been proposed in this work.  THT 
was employed to decompose the microphone signal into IF and IA.  The variations of milling 
dynamics can be clearly observed in the energy-time-frequency representation by THT.  For 
simplification, CV was employed to define the threshold for chatter detection, and the frequency 
range of 8–10 kHz was selected for the microphone signal analysis to isolate the environmental 
noise and maintain the proper signal intensity at the same time.  According to the results of 
practical cutting tests, the dispersion degrees of signal frequencies decreased during the chatter 
phase.  A CV threshold of 13% was therefore chosen and verified by various milling tests.  
The proposed method is capable of chatter detection by a microphone regardless of dry or wet 
milling.
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