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	 In the seafood industry, a large amount of salt is added to preserve seafood products.  During 
processing, it is necessary to desalt the products for the sake of customers’ health.  Unlike a 
large-scale factory, many small enterprises lack tools and methods for desalting and measuring 
the efficiency of the desalting process.  We have developed a rapid prototype salt-sensing 
system that can measure the desalting efficiency.  Dried salted jellyfish are used as testing 
materials to evaluate the system.  The rapid prototype comprises a microcontroller, a wire, and 
a liquid crystal display.  Using a simple mapping between electrical conductivity and actual 
data obtained from the measurement of samples, the sensing system is successfully calibrated.  
A method of desalting the salted jellyfish material is also proposed.  This desalting method and 
the newly developed simple sensing system for the desalting process are expected to make a 
significant contribution to the seafood processing industry.  

1.	 Introduction

	 Cured jellyfish is a delicacy with high demand in Japan and other Asian countries.  In the 
curing process, salt acts as a preservative by reducing the moisture content and maintaining 
microbial stability.(1)  The addition of salt is performed within a few hours of catching the 
jellyfish, while the animals are still alive.  The salt content of salted jellyfish in Thailand is 
around 25–27%,(2–4) whereas it is around 16–25%(2,4) in some countries.  The salting process 
generally takes around 20–40 days and the final moisture content is around 60–70%.(4)  
Examples of processed jellyfish are shown in Fig. 1.
	 Reversely, the preparation of ready-to-use (RTU) products requires an overnight desalting 
procedure, which is a burden for busy individuals and even for modern industry.  This problem 
may be overcome by adding sauces and flavors to the shredded RTU products.  For example, 
for Japanese consumers, sliced RTU products are prepared with wasabi or mustard together 
with vinegar.(3)  However, the typical desalting process in industry of rinsing the jellyfish with 
fresh water until an acceptable salt content is reached is inefficient and time-consuming.  In this 
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paper, we propose an efficient and effective method for desalting cured jellyfish and report our 
newly developed salt-sensing system to detect the salt content of products.  
	  This paper is organized as follows.  In Sect. 2, we provide a brief review of the anatomy 
and physiology of jellyfish as a food material, the thermodynamics of desalting NaCl, the 
development of a smart salt sensor, and the construction of a desalting machine suitable for 
small-scale enterprises.  In Sect. 3, we present the results of our evaluation of the proposed 
system and a discussion.  In Sect. 4, we give our conclusion.

2.	 Materials and Methods

2.1	 Anatomy 

	 Jellyfish are invertebrates with no brains.  Around 17 species of jellyfish are edible,(5–9) 
only three of which are consumed in Thailand: Rhopilema hispidum, Lobonema smithii, and 
Mastigias sp.(7)  The animals come in a wide range of forms.  Nevertheless, their bodies are 
similar.  The body of an adult jellyfish, shown upside down in Fig. 2(a), comprises a bell-shaped 
body hood with an internal structure and an umbrella from which tentacles are suspended.  As 
shown in Fig. 2(b), on the underside of the bell along the x-axis, four oral arms are connected 
to the manubrium in most species.  The umbrella-shaped bell is a hollow structure consisting of 
a mass of transparent jellylike matter functioning as the hydrostatic skeleton of the animal, and 
95% or more of these tissues consist of water.(9)  The high percentage of water contained in the 
cells implies that there is a water transport mechanism and corresponding optional conditions 
for water transport, which will be discussed in Sect. 2.2.
	
2.2	 Physiology 

	 According to previous research,(11) there is evidence for aquaporin-mediated water transport 
in the jellyfish.  This means that the water channels of cells can be used to transport water and 
regulate the volume of water in cells.  In addition, further study by the same research group 

Fig. 1.	 (Color online) Processed jellyfish: (a) umbrella and (b) body.

(a) (b)
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revealed that seawater acidification affects osmotic swelling, regulatory volume decrease 
(RVD), and discharge in the nematocysts of jellyfish.(12)  In an acidic environment, both the 
osmotic phase and the RVD are impaired.  This implies that the alum (mixed with NaCl) 
used for jellyfish preservation affects the water channels.  This is due to the fact that when 
alum dissolves in water, it forms an acidic solution.  In the design of a desalting process, it 
is necessary to reduce the proton concentration in the acid state caused by dissolved alum 
by adding a sufficient amount of fresh water to open the water channels of the cells as far as 
possible.  

2.3	 Thermodynamics

	 To ensure that the problem of jellyfish desalting is solvable, let us quickly examine whether 
the NaCl in the cells of dried salted jellyfish can dissolve in water when the jellyfish is placed in 
water.  This is because we plan to use a conductive solution as an indicator of the salt quantity 
in water, which has an inverse relationship with the amount of salt remaining in the jellyfish.  
As known from thermodynamics,(13) the dissolution of salt is an entropy-driven process.  For a 
solution to form, the change in Gibbs free energy (ΔG) must be negative for dissolution.  Recall 
that

	 ΔG = ΔH − TΔS,	 (1)

where ΔH is the change in enthalpy and ΔS is the change in entropy.  By molecular simulation 
with a simple solubility model of NaCl in water,(14) it has been revealed that ΔG is negative and 
has good agreement with the experimental value.  This means that a salt-sensing system can be 
realized.  The design and implementation of such a system are described in Sect. 2.4.  

2.4	 Salt sensor

	 Salinity is a measure of the amount of salt in water.  The concept of the newly developed 
salt sensor is based on the fact that the salt that dissolves in water dissociates into negatively 

Fig. 2.	 (Color online) Anatomy of jellyfish:(10) (a) side and (b) top views.

(a) (b)
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and positively charged ions.  Conductivity is the ability of water to conduct an electrical 
current, where the dissolved ions are the conductors.  The positively charged ions in salt 
water are sodium (Na+) and the negatively charged ions are chloride (Cl−).  If the temperature 
increases, the movement of ions also increases, and so does the conductivity.  To compensate 
for temperature changes, the conductivity is commonly corrected to the value at a reference 
temperature.  The measured conductivity is the sum of the conductivity from the water and that 
from the sodium and chloride ions.  Because conductivity is a measure of the total concentration 
of ions, the method can be applied to indirectly monitor desalting performance.  To develop a 
salt sensor, we employ this concept of solution conductivity measurement.  Details are given as 
follows.  

2.4.1	 Hardware

	 Because we use deionized (DI) water in our system, the sample is noncorrosive and free of 
suspended solids.  Hence, contact-based conductivity measurement with a two-electrode sensor 
is suitable in this case.  Figure 3 shows a prototype of our rapid salt-sensing system.  This sensor 
consists of two electrodes separated by a distance of 15 mm and attached to both sides of a tube, 
a temperature sensor (DS18D20), and an Arduino microcontroller.  The sensing system has a 
simple structure designed for practical use.  Similarly to the portable impedance-sensing system 
developed by Park et al.,(15) this system may be equipped with a transmitter and a Wi-Fi antenna 
to provide network connectivity by sending data to a smartphone.  Unlike the impedance-
sensing system, this system uses an admittance sensor, namely, a conductance sensor.

2.4.2	 Mapping calibration

	 No mapping algorithm to cope with temperature changes is perfect.  Errors in the 
temperature measurement itself may lead to errors in the corrected conductivity.  The 
conductivity can be increased if the temperature of an electrolyte solution increases.  We use the 

Fig. 3.	 (Color online) Salt-sensing system: (a) initial setup and (b) probe.

(a) (b)
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temperature coefficient correction to correct this effect.  The equation used(16) is

	 1
25 ( )(1 ( 25) )EC EC T T −= + ∝ − ,	 (2)

where EC(T) is the raw electrical conductivity at T °C, EC25 is the calculated conductivity at 
25 °C, and ∝ is the temperature coefficient, which approximately ranges from 1.8 to 3.0% for 
salt.  Because ∝ is likely to be nonlinear with temperature, the accuracy can be improved if 
we limit the range of temperatures.  We can use the following equation to calculate the linear 
temperature coefficient:(16)

	 [ ] ( )( ) ( )( ) 1( 1) 1 25 ( 2) 2 25( 1) ( 2) EC T T EC T TEC T EC T
−

 ∝= − − −−   ,	 (3)

where T1 and T2 are two different solution temperatures.

2.5	 Desalting machine

	 In Sect. 2.1, we have seen that the tissues of live jellyfish contain around 95% water, and in 
Sect. 2.2, we have seen that water reaches the cells via a water channel mechanism.  Adding 
more water to dissolve the alum used to preserve the flavor and texture can help reduce 
the acidity or proton concentration.  Eventually, this effect combined with the spontaneous 
dissolution of NaCl (Sect. 2.3) helps increase the osmotic pressure applied to the cells.  In 
addition, the higher the temperature, the greater the solubility.  We now state the design 
principle for our desalting machine, whose components are illustrated in Fig. 4.
1.	 The machine has a water tank for submerging dried salted jellyfish.
2.	 The machine has a temperature controller to control the water temperature.
3.	 The machine has a rotating mechanism to remove water from the jellyfish cells by 

centrifugation.  
4.	 The machine is equipped with the salt-sensing unit in Sect. 2.4 to monitor the conductivity.

Fig. 4.	 (Color online) Conceptual drawing of the designed desalting machine.
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3.	 Results and Discussion

	 Three experiments were carried out and the results are presented in Sects. 3.1 and 3.2.  In 
Sect. 3.1, we show the calibration of the values used to convert raw electrical signals into 
conductivity with temperature compensation.  In Sect. 3.2, we demonstrate that such calibration 
is functionally effective.  

3.1	 Evaluation of sensor accuracy   
 
	 In this subsection, we discuss the calibration of the values used to convert raw impedance-
like signals into the calculated values of electrical conductivity (μS/cm) with temperature 
compensation referring to the electrical conductivity at 25 °C.  The standard references 
measured at 25 °C were DI water, distilled water, 5% NaCl, and 20% NaCl prepared by weight.  
See Sect. 2.4 for calibration formulas and the mapping model.  Figure 5 shows the experimental 
setup for the measurement and the results are shown in Table 1.  
	 Table 1, Column 1 shows examples of raw values.  The raw values of the samples are 
collected every 5 s and up to 2000 data points are collected.  The values decrease from the top 
row to the bottom row, whereas the corresponding conductivities increase.  This means that 
the input values are associated with impedance-like behaviors in the conversion process to 
the reciprocal admittance.  Specifically, the procedure converts resistance into conductance.  
Columns 2 and 3 show the minimum and maximum values of the calculated electrical 
conductivity, respectively.  Column 4 provides %salt by weight in the test materials.  Column 5 
provides actual references based on measurement in the technical literature.(17,18) 

Fig. 5.	 (Color online) Calibration of electrical conductivity measurement versus references.

Table 1
Calculated electrical conductivities versus references in μS/cm at 25 °C.
Examples of raw values Min Max % Salt by weight Actual reference Type of test sample
1048550 0.01 0.1 0 0.01–0.5(17) DI water

7150 1.4 4 0 1–5(17) Distilled water
702.25 36.99k 38.43k 5 75k(18) 5% NaCl
391.76 226k 247.1k 20 23k(18) 20% NaCl 
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	 Comparing the interval (Min, Max) in Columns 2 and 3 with that in Column 5, the calculated 
intervals between the minimum and maximum values contain the actual reference values in the 
literature.(17,18)  This means that the calculated values are valid because they fit both the order of 
magnitudes and the interval of the actual test sample.  In addition, this suggests that the sensors 
can be employed for the measurement of salinity within an acceptable accuracy.  Note that the 
maximum values of the conductivities of the DI water (deionized) and distilled water used in the 
test obtained from the conversion are 0.1 and 4 μS/cm, respectively, and the 20% NaCl solution 
yields a maximum conductivity of 2471000 μS/cm.  
	 When desalting jellyfish, the amount of NaCl by weight must be less than 1% of the product.  
Because dried salted jellyfish in the industry contains around 21% NaCl, we need to remove 
a salt content of at least 20%.  This means that the value of 2471000 μS/cm or 2.471 S/cm 
measured from the solution in the desalting process can be set as a stopping criterion for each 
operation batch provided that the salt-sensing system can measure conductivity up to this value.

3.2	 Performance tests of the desalting machine

	 The designed desalting machine built by the authors is shown in Fig. 6.  The designed input 
target for the salted dried jellyfish is 50 kg for each batch.  There are three 6 kW heaters with a 
temperature control unit installed in the system.  A 2 hp AC motor is used to rotate the tank.  In 
this performance test, the procedure begins with adding 150 L of water to half fill the container.  
We then load the jellyfish into the container and wash them for 1–2 min to remove the dirt.  
After draining the dirty water, we again fill the container with 150 L of water and set the 
control for the water temperature at 30–50 °C for 30 min to 3 h in an attempt to find the optimal 
temperature and time.  We again drain the water from the container to complete the preparation 
process.
	 We now fill the container with 250–300 L of water to remove the NaCl from the jellyfish 
cells by spinning the container to apply osmotic pressure to the cells to let them absorb water.  
The spinning is stopped when the reading on the salt sensor is the value of the stopping criterion 
obtained from Sect. 3.1.  We then take a sample of washed jellyfish and evaluate its moisture 
content and hardness.  The results are shown in Figs. 7 and 8, respectively, where the horizontal 

Fig. 6.	 (Color online) (a) Desalting machine. (b) Running in the centrifugal mode.

(a) (b)
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axis represents time (in min), except for the case of room temperature (in h), for which a longer 
time is required.  As we can see from Fig. 7, temperatures of 40 °C (diamonds) and 45 °C (squares) 
during the submerging period yielded similar results, but that of 50 °C (triangles) produced 
unstable results.  This indicates that at 50 °C, the structure of the protein was changing.  
Hence, 40 °C is the optimal temperature for both satisfying the required moisture content and 
minimizing power consumption, while giving the closest results to those obtained at room 
temperature (circles).  The results in Fig. 8 were obtained using a texture analyzer with a 3 mm 
pistol, where a puncture test was performed three times with six random samples at a speed of 
2 mm/s.  The force eventually settled at around 80–90 g.  Again, the sample at 50 °C did not 
have the required quality owing to protein deformation at this temperature.  The temperature of 
40 °C during submerging again appears to be optimal.  Note that the data marks used in Fig. 8 
are the same as those in Fig. 7.

Fig. 8.	 (Color online) Results of maximum hardness test using the same conditions as in Fig. 7.

Fig. 7.	 (Color online) Moisture content of jellyfish over time for different processing temperatures.
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4.	 Conclusion

	 This study yielded two contributions: a method of desalting salted jellyfish and the 
development of a sensor system to detect salt dissolved in fresh water.  The anatomy 
and physiology of jellyfish were discussed and analyzed to clarify the salt deposition 
mechanisms in the processed animals.  The water channel mechanism gave us a concept for 
designing a centrifugal machine to remove NaCl molecules.  According to the principles of 
thermodynamics, the change in Gibbs free energy for NaCl dissolved in water is negative, 
resulting in spontaneous dissolution.  This means that NaCl is easily dissolved, even in room-
temperature water, and is easily removed from cells via the water channels.
	 Using this fact, we designed a simple yet very effective machine with a rotating water 
tank and temperature control.  Finally, a simple smart portable device for salt measurement 
was developed and implemented.  Mapping the conductance of the saline solution during the 
washing of jellyfish to the actual salt measurement in jellyfish provides an excellent stopping 
criterion for the desalting machine.  Applying the findings would benefit the seafood processing 
industry by reducing the water consumption and time required for the desalting processes.  This 
paper can also serve as a guideline for the development of salt-sensing systems and the desalting 
of other seafood products.  
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