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	 In recent years, owing to an increase in electrical energy consumption, the quality and safety 
issues of power systems have drawn considerable attention.  The frequency of a power system is 
an important indicator of its stability.  The system frequency will drop when large generator sets 
are tripped.  Therefore, it is important to measure the fundamental frequency of a power system 
accurately.  The power system frequency can be estimated through various methods in time or 
frequency domains.  Among these methods, curve fitting is a time domain approach that can 
be used to identify the parameters of a model using the input information obtained by utilizing 
a nonlinear regression method to fit the input curve.  The physical phenomenon of a power 
system is described by a mathematical model.  The curve fitting approach is applied to find the 
parameters such that the model is closer to the measured signal.  These parameters are used 
to obtain the fundamental frequency of the power system.  In this paper, the genetic algorithm 
(GA) is compared with the conventional regression analysis (RA) method for identifying the 
parameters of the model.  The performance of curve fitting using different mathematical models 
on various power system events is discussed.

1.	 Introduction

	 In recent years, owing to the rising environmental awareness, many countries around 
the world are now developing green renewable energy using conventional power generation 
technologies to prevent environmental pollution.  Various industries, such as conventional, 
semiconductor, chemical, and software industries, have been developed rapidly over the past 
decades.  As a result, power consumption has increased rapidly.  During a typical operation, 
generators may be tripped owing to an accident.  The power generation and load cannot be 
balanced.  This incident causes a rapid decline in system frequency.  The dropping of the system 
frequency may further cause the tripping of other generation units.  The chain reaction may 
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result in power system black out.  To alleviate the problem, a load shedding scheme is needed 
by installing low-frequency relays in systems.  Accurately measuring the frequency of a power 
system is important for evaluating the stability of the system.(1–6)  At present, many techniques 
have been proposed for measuring the power system frequency.  Common techniques include 
frequency domain interpolation, Prony’s method,(7,8) the zero crossing method,(9,10) discrete 
Fourier transform (DFT) or fast Fourier transform (FFT),(1,3,6) and so on.  In this study, the 
curve fitting approach is utilized.  Curve fitting can be used to calculate the frequency in 
the absence of some sampling points.  The missing sampling points can be obtained by the 
interpolation approach.  On the other hand, the genetic algorithm (GA) is used to estimate a 
parameter directly.  Two different mathematical models are investigated in this study to compare 
their performance characteristics.  The first model considers only the ideal power signal form.  
The frequency variation term is used in addition to the ideal power signal for the second model.  
The performance characteristics of the two models are compared under various scenarios.

2.	 Materials and Methods

	 Traditionally, the ideal power signal is regarded as a sine wave, which is mainly composed 
of three parts, namely, amplitude, frequency, and phase.  In this study, the curve fitting method 
is used to estimate the power system frequency in accordance with IEEE1459-2000.(11)  In 
addition to the stationary frequency model, the frequency variation term is also considered.(12)

2.1	 Basic power signal definition

	 The traditional power system signal is described in IEEE1459-2000.(11)  The voltage signal 
can be expressed as 

	 ( ) 2 sin(2 )vv t V ftπ θ= + .	 (1)

	 If an ideal linear load is connected, the current signal can be expressed as

	 ( ) 2 sin(2 )ii t I ftπ θ= + ,	 (2)

where V is the voltage root mean square (RMS), I is the current RMS, f is the signal frequency, 
θv and θi are the voltage and current phase angles, respectively, and t is the time.
	 When a voltage is applied to a nonlinear load, the linear relationship between voltage and 
current does not apply.  Nonlinearity causes waveform distortion, resulting in the current 
waveform no longer being a pure sinusoidal waveform.  This phenomenon is called harmonic 
distortion.  Therefore, for voltage and current signals containing harmonic components, it can 
be expressed mathematically as(13)
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where Vk is the kth order of the voltage harmonic amplitude, Ik is the kth order of the current 
harmonic amplitude, fk is the kth harmonic frequency of the input signal, k is the kth harmonic 
order, and θk and ψk are the initial phase angles of the voltage and current signals, respectively.

2.2	 Noise

	 In the process of signal transmission, the signal will be interfered by some external energy, e.g., 
noise.  Noise will cause signal distortion.  The noise source may be generated by the receiving 
system in addition to the power system.
	 There are many types of noise.  The analog noise used in this study is white noise, also 
known as Gaussian noise.  White noise is a random signal with a constant power spectral 
density, that is, the power of this signal is the same in each frequency band, and its expected 
value is zero.  The mathematical expression is shown as

	 E{W} = 0,	 (5)

where E is the expected value and W is the random vector.

2.3	 Data fitting and regression analysis (RA)

	 Curve fitting is a method that derives the parameters of a mathematical model for 
approximating the input and output of the data.  To utilize the curve fitting method for 
identifying the power system fundamental frequency, a power system signal model is required.  
Conventionally, RA is applied to identify the parameters of a given model.

2.4	 Power system signal model of curve fitting

	 For AC signals, when the frequency of the power system changes, the stationary power 
signal model cannot be used to describe the characteristics of the power system signal since 
the signal is not periodic.  In this study, the sinusoidal function is used to represent the power 
system signal, i.e., voltage.  The parameters are the amplitude Am, frequency ω, phase φ, and 
rate of change of frequency (ROCOF).  The general sinusoidal signal that represents an AC 
power system analysis is defined on the basis of IEEE Standard C37.118.2 as(13)

	 x(t) = Am cos(ωt + φ).	 (6)
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	 The sinusoidal signal can be expressed as

	 x(t) = Am cosΦ,	 (7)

where Am is the amplitude and Φ is the angle vector.  The frequency function can be defined as

	
1 ( )( )

2
d tf t

dt
Φ

π
= .	 (8)

	 ROCOF is defined as 

	
( )( ) = df

dt
tROCOF t .	 (9)

	 From Eqs. (6) and (9), if the frequency is changed at a fixed rate, the phasor equation can be 
rewritten as(12,14,15)

	 ( ) cos
2

c
m

fx t A t tω ϕ
  = + +    

,	 (10)

where fc is the ROCOF.

2.5	 RA

	 In the conventional curve fitting approach, RA is applied to identify the parameters.  The 
signal frequency of the power system model is considered nonlinear; therefore, a nonlinear 
regression approach is applied.
	 According to Eqs. (6) and (10), the power system frequency signal model can be described as

	 Y ≈ f(X),	 (11)

where Y is the power system signal vector and f(X) is the mathematic model.  X is the parameter 
vector of the power system signal model.  In general, Y is not equal to f(X).  Thus, an iterative 
approach is required to find the optimal parameters by minimizing the sum of squared error (SSE) 
defined as

	 [ ]2

1

( , )
m

i i
i

SSE y f x X
=

= −∑ ,	 (12)

where yi is the element of the power system signal, xi is the fitting output, X is the parameter 
vector of the power system signal model, i is the ith sampled point of the power system signal, 
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and m is the total number of sampled data.  The gradient descent approach can be used to find 
the minimum SSE.  The gradient descent equation can be written as

	 ( 1) ( ) ( )( )t t tSSE SSE f SSEγ+ = − ∇ ,	 (13)

where t is the number of iterations, γ is the learning rate, and ∇ is the gradient operator.  An 
iteration is terminated when the SSE is converged.  Otherwise, another iteration of the fitting 
procedure is performed.

2.6	 GA

	 Although the parameters used in models described in Eqs. (6) and (10) can be obtained by 
RA, they can also be identified by applying GA.  GA is a metaheuristic method developed based 
on the Darwin’s theory of natural selection.(16–18)  By removing weak creatures and retaining 
more adaptive organisms, the most powerful creatures can be obtained eventually.

2.6.1	 Chromosome representation

	 The variables used in the power system frequency model are encoded in GA as genes in 
chromosomes.  In this paper, amplitude, frequency, frequency variation, harmonic amplitude, 
and noise are the variables that must be determined.  Two approaches in GA, namely, real 
number encoding and binary encoding, can be applied to encode these variables.  In binary 
encoding, variables are encoded in binary string forms.  The longer the binary string, the 
higher the accuracy.  However, a longer execution time is required for longer binary strings.  
Since the time to obtain these parameters is critical, the binary string encoding approach is not 
used.  For the real number encoding approach, each parameter is represented by a real number.  
Since the real number is both a solution and a gene representation, no decoding procedure is 
required.  Compared with those of binary coding, the calculation time of real number encoding 
can be greatly shortened and its calculation accuracy can be increased if a double precision 
representation is used.

2.6.2	 Population

	 When generating chromosomes, restriction on the parameters must be considered.  For 
example, when the nominal frequency of a power system is 60 Hz, a reasonable range of 
55–65 Hz is used.  The gene that represents the frequency parameter in chromosomes will have 
a value between 55 and 65 Hz.  The remaining variables, such as amplitude, phase, frequency 
variation, harmonic amplitude, and noise, are randomly generated in the given range as well.  
It is critical to determine the variable range.  On one hand, it is desired that the searching 
space can be as large as possible.  On the other hand, the calculation time of the algorithm is 
greatly increased when the search space is increased.  A larger search space may also lead to an 
incorrect solution.
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2.6.3	 Fitness

	 Adaptability is an important indicator for determining the fitness of chromosomes.  The 
fitness function is a method used to describe the performance of a chromosome.  The fitness 
function is usually derived from experience or observation.  When chromosomes are generated, 
the fitness function is used to evaluate them.  Generally, the higher the fitness of a chromosome, 
the higher the quality of the chromosome.  However, if the fitness of a chromosome is much 
higher than those of other chromosomes, it is very likely that the chromosome will dominate the 
evolutionary process and converge to an undesired solution.  According to Eq. (12), the fitness 
function used in this study is expressed as

	
1
E

Fitness
SS

= .	 (14)

2.6.4	 Crossover

	 Crossover is a natural biological behavior.  By mating, the gene pool can be exchanged 
between individuals in a population.  Different crossover strategies will result in different 
performance characteristics during the evolutionary process.  Note that crossover does not 
guarantee that a higher quality chromosome is produced.

2.6.5	 Mutation

	 Mutation is another natural biological behavior.  During the evolutionary process, the allele 
of a gene may change owing to some external stimulation.  The mutation process during GA is 
designed to prevent convergence to a local region, which is not a good solution for the problem.

2.6.6	 Selection

	 In reality, individuals with a lower survivability will be eliminated.  GA also embeds 
such a behavior.  The algorithm relies on the fitness to evaluate each chromosome.  Fitness is 
similar to the ability of organisms in nature to adapt to the environment.  During the selection 
procedure, a chromosome with a higher fitness has a higher probability to be selected for the 
next generation.

2.7	 Simulation process

	 The mathematical models to be used are Eqs. (6) and (10).  The variable range is selected as 
follows: amplitude = [0.8, 1.2], frequency = [58, 61], phase = [−π, π], and ROCOF = [−5, 5].  A 
reasonable range of variables can avoid the divergence of RA and GA.  The measured window 
length will determine the characteristics of the curve fitting process.  When the window length 
is small, the calculation time will be reduced.  However, a shorter window makes the fitting 
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result difficult to converge and probably cannot find the best solution.  When the window 
length is very large, the probability of successful fitting increases and the residual value can be 
reduced.  However, the frequency tracking ability decreases and the calculation time increases 
greatly when a longer window is used.  Generally, the window length is between 8 and 12 
cycles.  The IEC 61000-4-7 standard has recommended the 5 Hz frequency resolution on the 
basis of the DFT technique.  That is, the analysis information with a time length of 0.2 s is 
applied to harmonic and interharmonic analyses.  Therefore, 12 cycles are used in this study.  
After the parameter ranges and window length are determined, RA and GA are applied to find 
the model parameters such that the model is closest to the input signal.  The system frequency 
can be calculated using the parameters obtained.  For each window, a set of model parameters is 
averaged by executing RA and GA several times.

3.	 Simulation Results

	 Four different power events are considered.  Equations (6) and (10) are used to represent 
the power system frequency models.  RA and GA are applied to identify the parameters of the 
curve fitting method.  The results are represented graphically.  The flow charts are shown in 
Figs. 1 and 2.

Fig. 1.	 Flowchart of RA. Fig. 2.	 Flowchart of GA.
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Fig. 3.	 (Color online) Results obtained using (a) Eq. (6) and RA, and (b) Eq. (10) and RA.

Fig. 4.	 (Color online) Results obtained using (a) Eq. (6) and GA, and (b) Eq. (10) and GA.

(a) (b)

(a) (b)

3.1	 Standard power signal measurement

	 In this case, the sampling frequency is 960 Hz, the window length is 12 cycles, and the 
simulation time is 0.2094 s.  Equation (15) is used to represent the input signal.

	 ( ) cos 2
6

x t ft ππ = + 
 

.	 (15)

	 In Eq. (15), f is the fundamental frequency and t is the time.  The frequency range is set to 
58.5–60.5 Hz.  The results are shown in Figs. 3 and 4 for the fundamental frequency of 59.8 
Hz.  The root-mean-square errors (RMSEs)(19,20) for both models are shown in Tables 1–4 with 
different frequencies.
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3.2	 Power system signal with harmonics

	 In this case, the sampling frequency is 960 Hz, the window length is 12 cycles, and the 
simulation time is 0.2094 s.  The following equation is used to represent the input signal:

	 ( ) cos 2 0.02cos 2 ,  3 9
6 6

x t ft fNt N Nπ ππ π   = + + + = −   
   

,	 (16)

where x(t) is the input signal, f is the fundamental, t is the time, and N is the harmonic order.  
The frequency range is set to 58.5–60.5 Hz, and the frequency calculation results are shown in 
Figs. 5 and 6.  The RMSEs for both models are shown in Tables 5–8.

Table 1
RMSEs of standard power signal [Eq. (6) and RA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 2.17E−08 59.2 6.09E−06 59.9 7.75E−09
58.6 1.32E−05 59.3 1.44E−09 60 2.63E−08
58.7 1.75E−07 59.4 1.93E−07 60.1 1.7E−06
58.8 3.21E−10 59.5 7.98E−09 60.2 3.85E−07
58.9 1.41E−07 59.6 6.59E−08 60.3 3.5E−07
59 1.37E−07 59.7 4.54E−07 60.4 1.5E−06
59.1 5.54E−08 59.8 3.22E−08 60.5 1.11E−06

Table 2
RMSEs of standard power signal [Eq. (10) and RA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 1.81E−05 59.2 7.66E−06 59.9 1.86E−07
58.6 3.66E−05 59.3 2.75E−08 60 7.28E−07
58.7 9.13E−09 59.4 8.3E−09 60.1 1.13E−06
58.8 1.24E−06 59.5 8.28E−08 60.2 2.51E−06
58.9 9.69E−07 59.6 9.78E−07 60.3 9.23E−09
59 8.47E−08 59.7 5.88E−10 60.4 5.43E−08
58.5 2.17E−06 59.2 8.06E−07 60.5 7.93E−07

Table 3
RMSEs of standard power signal [Eq. (6) and GA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.000339 59.2 0.001499 59.9 0.000137
58.6 0.000917 59.3 0.000107 60 4.06E−15
58.7 0.001024 59.4 0.0003 60.1 0.000313
58.8 0.00068 59.5 0.000137 60.2 0.000192
58.9 0.000557 59.6 0.000821 60.3 0.000426
59 0.001845 59.7 0.00074 60.4 3.35E−15
59.1 0.000327 59.8 7.54E−06 60.5 1.23E−05

Table 4
RMSEs of standard power signal [Eq. (10) and GA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.001626 59.2 0.00109 59.9 0.000272
58.6 0.001609 59.3 0.001102 60 0.000791
58.7 0.001282 59.4 0.000414 60.1 0.000186
58.8 0.001176 59.5 0.000996 60.2 0.000551
58.9 0.001673 59.6 0.000713 60.3 0.000677
59 0.000954 59.7 0.000714 60.4 0.000451
58.5 0.000922 59.2 0.001153 60.5 0.000617

(a) (b)

Fig. 5.	 (Color online) Frequency 59.8 Hz measurements with 9th harmonic: (a) Eq. (6) and RA, and (b) Eq. (10) 
and RA.
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Table 7
RMSEs of harmonic power signal [Eq. (6) and GA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.003995 59.2 0.003411 59.9 0.006426
58.6 0.004247 59.3 0.006142 60 0.001077
58.7 0.005403 59.4 0.004237 60.1 0.000992
58.8 0.004815 59.5 0.004012 60.2 0.003863
58.9 0.005078 59.6 0.005879 60.3 0.003837
59 0.005349 59.7 0.003722 60.4 0.004494
59.1 0.00286 59.8 0.003304 60.5 0.004229

Table 8
RMSEs of harmonic power signal [Eq. (10) and GA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.00366 59.2 0.004317 59.9 0.001617
58.6 0.002995 59.3 0.003069 60 0.001357
58.7 0.003209 59.4 0.002861 60.1 0.00155
58.8 0.003264 59.5 0.002335 60.2 0.001926
58.9 0.003136 59.6 0.002316 60.3 0.002282
59 0.002786 59.7 0.00244 60.4 0.001957
59.1 0.003174 59.8 0.001992 60.5 0.002203

Table 5
RMSEs of harmonic power signal [Eq. (6) and RA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.000446 59.2 0.000316 59.9 0.002017
58.6 0.00028 59.3 0.000484 60 0.000512
58.7 0.000358 59.4 0.000849 60.1 0.001375
58.8 0.00042 59.5 0.000872 60.2 0.002078
58.9 0.00035 59.6 0.000606 60.3 0.001436
59 0.000483 59.7 0.001495 60.4 0.000927
59.1 0.000612 59.8 0.004291 60.5 0.000613

Table 6
RMSEs of harmonic power signal [Eq. (10) and RA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.001842 59.2 0.002061 59.9 0.003161
58.6 0.001833 59.3 0.006031 60 0.000535
58.7 0.002867 59.4 0.001592 60.1 0.001613
58.8 0.002008 59.5 0.001037 60.2 0.010047
58.9 0.001584 59.6 0.011553 60.3 0.015428
59 0.003304 59.7 0.012033 60.4 0.002479
58.5 0.001789 59.2 0.004901 60.5 0.005144

Fig. 6.	 (Color online) Frequency 59.8 Hz measurements with 9th harmonic: (a) Eq. (6) and GA, and (b) Eq. (10) 
and GA.

(a) (b)

3.3	 Power system signal with harmonics and noises

	 In this case, the sampling frequency is 960 Hz, the window length is 12 cycles, and the 
simulation time is 0.2094 s.  Equation (17) is used to represent the input signal.  White noise 
of different intensity, i.e., 60–20 dB, is added.  The calculation results are shown in Figs. 7–12.  
The RMSEs are shown in Tables 9–20.

	 ( )( ) cos 2 0.02cos 2 ,  3 –
6 6

x t ft fNt N noise t Nπ ππ π   = + + + + = 9   
   

.	 (17)
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Fig. 7.	 (Color online) Frequency 59.8 Hz calculations with 9th harmonic with 60 dB noise: (a) Eq. (6) and RA, and (b) 
Eq. (10) and RA.

(a) (b)

(a) (b)

Fig. 8.	 (Color online) Frequency 59.8 Hz calculations with 9th harmonic with 60 dB noise: (a)Eq. (6) and GA, and (b) 
Eq. (10) and GA.

Fig. 9.	 (Color online) Frequency 59.8 Hz calculations with 9th harmonic with 40 dB noise: (a) Eq. (6) and RA, and (b) 
Eq. (10) and RA.

(a) (b)
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Fig. 10.	 (Color online) Frequency 59.8 Hz calculations with 9th harmonic with 40 dB noise: (a) Eq. (6) and GA, and (b) 
Eq. (10) and GA.

Fig. 11.	 (Color online) Frequency 59.8 Hz calculations with 9th harmonic with 20 dB noise: (a) Eq. (6) and RA, and (b) 
Eq. (10) and RA.

Fig. 12.	 (Color online) Frequency 59.8 Hz calculations with 9th harmonic with 20 dB noise: (a) Eq. (6) and GA, and (b) 
Eq. (10) and GA.

(a) (b)

(a) (b)

(a) (b)
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Table 9
RMSEs of harmonic and 60 dB noise power signal [Eq. (6) 
and RA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.000537 59.2 0.000335 59.9 0.002047
58.6 0.000343 59.3 0.000505 60 0.00051
58.7 0.000412 59.4 0.000918 60.1 0.001349
58.8 0.000465 59.5 0.000836 60.2 0.002061
58.9 0.000413 59.6 0.000597 60.3 0.00148
59 0.000495 59.7 0.001459 60.4 0.000891
59.1 0.000659 59.8 0.0043 60.5 0.000623

Table 10
RMSEs of harmonic and 60 dB noise power signal [Eq. (10) 
and RA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.001696 59.2 0.00228 59.9 0.003274
58.6 0.002077 59.3 0.006181 60 0.000828
58.7 0.003179 59.4 0.001736 60.1 0.001703
58.8 0.001979 59.5 0.001335 60.2 0.009941
58.9 0.001818 59.6 0.011379 60.3 0.015242
59 0.00288 59.7 0.0123 60.4 0.002682
59.1 0.001944 59.8 0.004681 60.5 0.004716

Table 11
RMSEs of harmonic and 60 dB noise power signal [Eq. (6) 
and GA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.004305 59.2 0.007171 59.9 0.005738
58.6 0.006607 59.3 0.006405 60 0.00117
58.7 0.005177 59.4 0.006114 60.1 0.000971
58.8 0.005588 59.5 0.003486 60.2 0.003982
58.9 0.005072 59.6 0.003355 60.3 0.00469
59 0.002402 59.7 0.003762 60.4 0.002805
59.1 0.002751 59.8 0.006048 60.5 0.004211

Table 12
RMSEs of harmonic and 60 dB noise power signal [Eq. (10) 
and GA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.003677 59.2 0.003584 59.9 0.001576
58.6 0.002814 59.3 0.003171 60 0.001223
58.7 0.003426 59.4 0.00244 60.1 0.001248
58.8 0.002595 59.5 0.002436 60.2 0.002484
58.9 0.003067 59.6 0.002377 60.3 0.002209
59 0.002927 59.7 0.00271 60.4 0.002369
59.1 0.002952 59.8 0.002035 60.5 0.002184

Table 13
RMSEs of harmonic and 40 dB noise power signal [Eq. (6) 
and RA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.001362 59.2 0.001659 59.9 0.002894
58.6 0.001152 59.3 0.002058 60 0.00183
58.7 0.001302 59.4 0.001659 60.1 0.002075
58.8 0.002025 59.5 0.001691 60.2 0.002508
58.9 0.001619 59.6 0.002333 60.3 0.001709
59 0.001497 59.7 0.001699 60.4 0.001742
59.1 0.001385 59.8 0.003089 60.5 0.002415

Table 14
RMSEs of harmonic and 40 dB noise power signal [Eq. (10) 
and RA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.006214 59.2 0.007832 59.9 0.007874
58.6 0.007982 59.3 0.010755 60 0.006007
58.7 0.008841 59.4 0.005165 60.1 0.009361
58.8 0.007319 59.5 0.008891 60.2 0.008205
58.9 0.008148 59.6 0.011191 60.3 0.013502
59 0.006512 59.7 0.014707 60.4 0.006042
59.1 0.007491 59.8 0.00774 60.5 0.006374

Table 15
RMSEs of harmonic and 40 dB noise power signal [Eq. (6) 
and GA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.009427 59.2 0.006123 59.9 0.007803
58.6 0.007683 59.3 0.005632 60 0.001728
58.7 0.0071 59.4 0.007734 60.1 0.001093
58.8 0.010812 59.5 0.007417 60.2 0.006873
58.9 0.005827 59.6 0.007574 60.3 0.004832
59 0.008152 59.7 0.007223 60.4 0.006008
59.1 0.006839 59.8 0.007883 60.5 0.006602

Table 16
RMSEs of harmonic and 40 dB noise power signal [Eq. (10) 
and GA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.003 59.2 0.003554 59.9 0.004313
58.6 0.005708 59.3 0.005499 60 0.00408
58.7 0.004696 59.4 0.00304 60.1 0.002849
58.8 0.004174 59.5 0.003721 60.2 0.004086
58.9 0.002893 59.6 0.004372 60.3 0.003147
59 0.00319 59.7 0.004248 60.4 0.003022
59.1 0.002885 59.8 0.00356 60.5 0.003724

Table 17
RMSEs of harmonic and 20 dB noise power signal [Eq. (6) and 
RA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.016344 59.2 0.014299 59.9 0.016177
58.6 0.010531 59.3 0.022039 60 0.024712
58.7 0.013036 59.4 0.020986 60.1 0.016582
58.8 0.014342 59.5 0.018493 60.2 0.013603
58.9 0.011518 59.6 0.01435 60.3 0.021486
59 0.016743 59.7 0.019673 60.4 0.017439
59.1 0.015951 59.8 0.022623 60.5 0.019932

Table 18
RMSEs of harmonic and 20 dB noise power signal [Eq. (10) 
and RA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.085814 59.2 0.058583 59.9 0.053761
58.6 0.045563 59.3 0.065994 60 0.064538
58.7 0.076024 59.4 0.079514 60.1 0.067611
58.8 0.082828 59.5 0.057355 60.2 0.088279
58.9 0.069745 59.6 0.073257 60.3 0.070944
59 0.043449 59.7 0.059322 60.4 0.066609
59.1 0.059615 59.8 0.054493 60.5 0.052876
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Fig. 13.	 (Color online) Frequency changes from 60 to 59 Hz. Frequency calculations obtained using (a) Eq. (6) and 
RA, and (b) Eq. (10) and RA.

Fig. 14.	 (Color online) Frequency changes from 60 to 59 Hz. Frequency calculations obtained using (a) Eq. (6) and 
GA, and (b) Eq. (10) and GA.

Table 19
RMSEs of harmonic and 20 dB noise power signal [Eq. (6) and 
GA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.035569 59.2 0.033859 59.9 0.050711
58.6 0.036338 59.3 0.043532 60 0.026316
58.7 0.043971 59.4 0.037918 60.1 0.046133
58.8 0.030598 59.5 0.044124 60.2 0.045931
58.9 0.033336 59.6 0.041509 60.3 0.041285
59 0.032437 59.7 0.030183 60.4 0.042214
59.1 0.039857 59.8 0.034195 60.5 0.039433

Table 20
RMSEs of harmonic and 20 dB noise power signal [Eq. (10) 
and GA].
f (Hz) RMSE (Hz) f (Hz) RMSE (Hz) f (Hz) RMSE (Hz)
58.5 0.016311 59.2 0.022527 59.9 0.028695
58.6 0.013756 59.3 0.008388 60 0.012257
58.7 0.013646 59.4 0.022163 60.1 0.014579
58.8 0.014095 59.5 0.013848 60.2 0.006766
58.9 0.0243 59.6 0.009921 60.3 0.010077
59 0.006984 59.7 0.006151 60.4 0.009886
59.1 0.020135 59.8 0.014596 60.5 0.021044

(a) (b)

(a) (b)

3.4	 Frequency variation power signal measurement

	 In this case, the sampling frequency is 960 Hz, the window length is 6 cycles, and the 
simulation time is 0.25 s.  The frequency of the input signal is changed from 60 to 59 Hz at 1 to 1.1 
s.  The calculation results are shown in Figs. 13 and 14.  The RMSEs are shown in Table 21.
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Table 21
RMSEs of RA and GA in frequency modulation.

RA GA
Mode RMSE (Hz) RMSE (Hz)
Equation (6) 0.1159 0.0574
Equation (10) 0.1159 0.0635

4.	 Conclusions

	 In this study, the power system fundamental frequency is calculated using Eqs. (6) and (10).  
The experimental results in Sect. 3.1 show that the frequency estimation variation of Eq. (6) 
indicates a smaller RMSE than that of Eq. (10) when the signal is in the steady state.  According 
to the results in Sects. 3.2 and 3.3, the model using Eq. (6) obtains a more accurate frequency 
estimation than that using Eq. (10) for RA, when signals involve harmonics and noise.  In 
addition, GA is used instead of the conventional RA.  It is found from the experimental results 
that the frequency estimation accuracy using RA decreases when the frequency offset increases.  
Therefore, RA is not suitable for use in situations where the frequency variation is large.  The 
results of using GA show that the measurement accuracy does not change markedly with the 
frequency offset.  It is found from Sect. 3.4 that when the power signals are used, the RMSE of 
GA is only half of that of RA, and that the curve is smoother.  The overall performance obtained 
using Eq. (6) is as good or higher than that obtained using Eq. (10) for RA and GA for a steady 
state.  On the other hand, GA performs better than RA in terms of frequency tracking.  From 
the obtained results, it is found that Eqs. (6) and (10) are not perfect mathematical models to 
represent the frequency variation of power systems.  These equations can be further improved 
to handle more complex signals, e.g., flicker.  In the future, it may be necessary to design a 
model and a more accurate parametric learning algorithm that can better match a waveform 
under frequency variation so that the residual can be lower and the accuracy of the frequency 
estimation can be further improved.
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