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 In this study, we developed a telepresence smoke detection system, with which personnel in 
a control center can learn about the relative positions of firefighters and fire sources at a fire 
scene.  Using an omnidirectional projecting system, such personnel can communicate with 
firefighters and assist them in shortening the time required for fire suppression.  Conventional 
smoke detection systems rely heavily on multiple surveillance cameras and smoke detectors.  
However, conventional cameras in such systems are unable to take 360° images unless multiple 
cameras are installed to monitor the entire fire scene.  In addition, detectors are easily damaged 
at high temperatures.  In this study, we employed an omnidirectional camera to take images 
of a fire scene elsewhere and sent these images back to the control center through WiFi 
transmission.  An omnidirectional projecting system was then used to present the obtained real-
time fire scene images on a 360° cylindrical projection screen.  Finally, the Lucas–Kanade 
optical flow algorithm was used to accurately mark the fire source location.  The proposed 
telepresence smoke detection system can present a complete fire scene and determine the 
accurate location of a fire source, allowing the emergency response center to provide precise 
information for on-site firefighters to shorten the time needed for fire suppression and increase 
the escape time.

1. Introduction 

 In this study, we applied a telepresence smoke detection system using image sensing and 
processing techniques as a distant sensor to present real-time fire scenes.  This system can 
display fire scenes on a 360° cylindrical projection screen, a head-mounted display, and even 
on a smartphone app.  Image processing technologies for fire alarm systems equipped with 
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devices such as stereoscopic cameras and thermal cameras have been applied in an increasing 
number of studies.  This type of fire alarm system is not subject to distance constraints because 
stereoscopic or thermal cameras can take photographs from afar.  This enables the direct capture 
of images of a local environment to determine whether a fire exists and thereby apply image 
processing to set off timely fire alarms.  Thermal cameras can accurately determine fire sources 
and fire temperatures at a fire scene.  However, these cameras are expensive and have numerous 
limitations such as their small angle of coverage.  Therefore, in this study we used image 
processing technologies with an omnidirectional camera to reduce the cost of the proposed 
system and increase user convenience by employing only a single camera.  Surveillance 
cameras can be used to examine the status of a regular fire scene, but they are incapable of 
accurately showing the relative positions of the flames and personnel on site.  We employed an 
omnidirectional projecting system and a distance estimation algorithm to localize fire sources 
and firefighters as well as find their relative distance.  The omnidirectional projector can project 
remote fire scenes to a 360° cylindrical projection screen in the control center.  In this manner, 
control center personnel can determine the real-time relative position of the flames and on-
site firefighters and provide relevant information to the firefighters, helping them reduce the 
time required to identify flame locations.  In addition, this system can send users relevant 
information through an app and present real-time fire scenes on the smartphones of firefighters 
rushing to the scene.  With such information, firefighters can receive instantaneous notifications 
to plan their response before they arrive, thereby managing the crisis immediately upon arrival.  
Compared with other commercially available products, the proposed system features enhanced 
functions that enable real-time communication.(1–4) 
 The colors and characteristics of flames or smoke have been analyzed in numerous studies.  
For example, Ojo and Oladosu(5) used RGB color information and the hue, saturation, and 
intensity (HSI) color model to analyze flame characteristics at high and low temperatures.  
Yuan et al.(6) marked the location of smoke in an image on the basis of the characteristics of 
smoke such as brightness consistency, motion accumulation, and spread features.  In recent 
years, researchers have applied wavelet transforms to convert images to a spatial domain for 
analysis.  For example, Deldjoo et al.(7) applied a wavelet transform to divide the edge of smoke 
into horizontal and vertical parts to further analyze and capture the location of smoke.  To 
effectively differentiate whether a moving object in an image was smoke or another object, 
Zhu et al.(8) used a one-dimensional discrete wavelet transform (1-D DWT) to compare the 
energy gradients of smoke and nonsmoke data.  The results revealed that the energy gradient of 
a nonsmoke moving object was greater than that of smoke.  This method was used to identify 
whether a given moving object was smoke.  Allison et al.(9) used a level 3 DWT to differentiate 
smoke from other objects using the following six characteristics: arithmetic mean, geometric 
mean, standard deviation, skewness, kurtosis, and entropy.  Additionally, to increase the 
image processing speed, Yuan et al.(10) employed accumulative motion orientation to reduce 
the time required to estimate the direction of smoke movement.  Although this method did not 
enable the precise identification of smoke, the image processing speed was increased.  They 
also modified the eigenvalue detection method and used the hue, saturation, and value (HSV) 
color model to differentiate flames and smoke.  Then, the optical flow method was adopted 
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to rapidly and accurately identify flame and smoke flow.  The aforementioned studies were 
conducted under sufficient and stable light sources.  However, the performance of regular 
smoke detection systems can be affected by changes in background light sources.  In particular, 
under insufficient light at night, the brightness of background light often generates noise during 
the process of image subtraction.  Verstockt et al.(11) used the long-wavelength video detection 
method with night vision goggles to reduce the luminance noise of the background at night.  
They enhanced this function by employing an 868 nm invisible near-infrared light source to 
rapidly establish a three-dimensional environment image in the absence of ambient light.  This 
enabled fire source locations to be identified by observing positions where near-infrared light is 
absorbed.  Their proposed method helps mitigate various environmental limitations.
 Conventional methods for training and establishing smoke detection databases include 
back-propagation neural networks, which were adopted by Prema et al.(12) to train a smoke 
characteristic database.  Unconventional training approaches have been employed in other 
studies.  Matlani and Shrivastava(13) and Han et al.(14) used wavelet transforms to convert 
images and calculate energy.  Specifically, they captured colors and vector features of the 
images to perform classification using Bayesian classifiers.  This approach can identify 
whether a moving object is smoke or flame but it is time-consuming.  In addition, Ye et al.(15) 
captured three characteristics of smoke in open areas, namely, contrast, inverse difference 
moment, and difference entropy.  Subsequently, the Mahalanobis distance of these three 
feature vectors was calculated to determine whether each moving object was smoke or another 
object.  Recently, support vector machines (SVMs) have also been employed.(8,16,17)  An SVM 
classifier transforms image data into high-frequency space, which is then used to calculate the 
optimal solution of the classifier and discriminate linear and nonlinear data.  This approach 
can be adopted to distinguish smoke from other objects.  Because of the translucent nature 
of smoke and its tendency to be influenced by the wind or environmental interferences, the 
shape of smoke can fluctuate greatly.  After capturing moving objects from an image, Ho(18) 
applied fuzzy logic and level crossing rate (LCR) principles to scan through pixels that might be 
adjacent to smoke or flames, thereby marking the locations of smoke or flames in the image.  In 
this study, we employed an SVM classifier and a clustering algorithm to train the identification 
capability of the system, in addition to enhancing its identification speed.

2. Research Method

2.1 Omnidirectional image

 We used a hyperbolic mirror and an infrared camera to fabricate an omnidirectional camera, 
which was then combined with another hyperbolic mirror and a projector to fabricate an 
omnidirectional projector.  Determining the parameters of the hyperbolic mirrors was one of 
the aims of this study.  The relevant parameters are shown in Figs. 1 and 2.  Analyses of such 
parameters are presented as follows: (19–22)

(1) According to the general equation of a hyperbolic mirror,
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(2) c and k were substituted into h = c/k to determine h.
(3) Let r = 0.  We use z = (h2 − r2)/2h to determine the actual distance between the camera lens 

and hyperbolic mirror.  Furthermore, this distance reveals the position in which the camera 
is placed.  

 Here, r denotes the radius of the hyperbolic mirror.  When z = 0, r = h.  When r = 0, 
the distance between any point on the hyperbolic mirror and the viewpoint is h/2 (Fig. 3).  
Moreover, r = h and h/2 can be used to determine the parameters of the hyperbolic mirror.  
Figure 4 displays the resulting omnidirectional image.

2.2 Smoke clustering algorithm

 We employed a smoke clustering algorithm to classify smoke clusters.  In addition, an 
SVM was used for identification and training to isolate the most vigorous fire sources so 
that firefighters may rapidly locate the key spots and impede the spread of fire.  The smoke 
clustering algorithm sorts all data through machine learning techniques.  Similar data are 
classified into the same group, and each datum can only belong to a single group or cluster.  The 

Fig. 2. Increasing k increases the hyperbolic 
mirror’s curvature; p and v denote the two foci of the 
hyperbolic mirror.

Fig. 1. Viewpoint analysis of the hyperbolic mirror 
in the form of a cross-sectional diagram.
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fundamental principles of the smoke clustering algorithm can be divided into two types: the 
first principle entails repeatedly sorting similar items into the same cluster; the other involves 
constantly splitting each cluster (Fig. 5).  The smoke clustering algorithm involves the following 
steps.
(1) Define the number of smoke clusters as K and randomly distribute K points, each of which 

serves as the center of a cluster (existing points are often employed).
(2) Determine the distance from each point to the nearest cluster center (linear distance is often 

employed).
(3) Recalculate the mean value of each cluster center (mean value is often employed).  
 Repeat steps (2) and (3) until all clusters and cluster centers remain fixed.  This yields the 

Voronoi diagram of the clusters.
 Erosion and dilation were adopted in the analysis of the image data obtained using the HSV 
color model and thresholding.  By adjusting the thresholding value, we can then eliminate the 
unnecessary features (Fig. 6).

 ( )
1

,
n

i
M f x y

=

=∑  (3)

Here, M is a thresholding value, f is an input image, n is the number of all pixel items, and f(x, y) 
is gray-scale value of pixel coordinates.
 Smoke clustering algorithm: K-means clustering (Fig. 7) was applied to the target object 
extracted using depth images.  The sample number was assumed to be {x1, x2, x3, ..., xm}, i nx R∈ .  
K cluster centers were then randomly selected as {μ1, μ2, μ3, ..., μk}, n

j Rµ ∈ .  Each cluster center 
was calculated using each sample i, Ci = 1 − K.

Fig. 3. The distance between p and v should be 
sufficiently large, and that between the focus v and the 
vertex is equal to half the radius.

Fig. 4. (Color online) Resulting omnidirectional 
image.
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Here, Ci is classification of sample i closest to cluster K, K is the number of clusters, μj is 
estimated cluster center, and j is centroid of each cluster center.
 In this study, we distinguished flames from smoke to assist firefighters in rapidly putting out 
the fire.  Additionally, the classification of smoke clusters enabled the locations to be identified, 
which helps improve the safety of firefighters during rescue missions.  This technique can be 
adopted to inform trapped personnel regarding which directions to avoid and thereby effectively 
reducing casualties at a fire scene.

2.3	 Lucas–Kanade	optical	flow

 Lucas–Kanade optical flow algorithm: To determine the direction of flow of smoke and 
flames, we employed the image differencing method and applied Taylor’s formula to the image 
constraint equation.  The following equation is obtained.

Fig. 5. (Color online) Flame clustering using the 
smoke clustering algorithm.

Fig. 6. (Color online) Eliminating unnecessary 
features by thresholding value adjustment.

Fig. 7. K-means clustering classification.
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 H.O.T. refers to higher-order terms, which can be overlooked when the movement is 
sufficiently small.  
 Accordingly, the following equation is obtained:
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 Rearranging the equation yields the following:
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 Vx, Vy, and Vz are respectively the components of x, y, and z in the optical flow vector of I(x, y, z, t).  
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can be rewritten as
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 Equation (11) comprises three unknowns that cannot be solved and is associated with the 
so-called aperture problem in optical flow.  Another set of solutions is required to determine 
the optical flow vector.  The Lucas–Kanade optical flow algorithm is a nonrepetitive operation 
algorithm.
 Assuming the optical flow vector (Vx, Vy, Vz) is a constant in a window size of m × m × m (m > 1), 
the pixels 1, ..., n, n = m³ can be used to generate the following system of equations.
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 This system of equations has three unknowns but more than three equations; hence, it is an 
overdetermined system of equations, meaning that it contains redundant equations.  This system 
of equations can be expressed as follows:
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which is rewritten as U b= −A




.
 To solve this overdetermined problem, we adopted the generalized least-squares technique,
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 We adopted the Lucas–Kanade optical flow algorithm and the aforementioned techniques to 
quickly identify the locations of flames and smoke.  This technique can also be used to rapidly 
determine the direction of flame spread as well as the direction, distance, and rate of smoke 
spread.  In the meantime, real-time information can be sent to the emergency response center 
for decision support.  Accordingly, instructions can be immediately sent to on-site firefighters 
and help them reduce the flame spread and break up the smoke in advance to achieve efficient 
rescue and firefighting.
 Images from the two-dimensional image-warping omnidirectional projector are projected 
onto a screen using a geometrical projection method.  Figure 8 illustrates this process.
 A warped image is converted into an omnidirectional image and transformed into a 
cylindrical shape.  This allows the image to be projected onto a cylindrical omnidirectional 
projection screen.  In Fig. 8, the two foci of the hyperbolic mirror are located at c = (0, c) and 
c′ = (0, −c).  Equation (16) is used to determine these locations:
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 Next, steps 1–15 in Table 1 are used to determine the geometric relationship between the 
hyperbolic mirror and the projector.  These steps are described as follows:
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Step 1: ϕ is the angle between the incident light and the normal line; α is the angle between the 
reflective light and the horizontal axis, and β is the angle between the incident light and 
the horizontal axis.  Accordingly, the angle between the incident light and the tangent is 
determined as γ.

Fig. 8. Geometrical relationship between projector and hyperbolic mirror.

Table 1
Steps used to derive the geometrical equations describing the relationship between the hyperbolic mirror and the 
projector.
Step Equation Step Equation
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Fig. 9. Subtracting a background image obstructed by smoke from a clear background image yields a complete 
smoke image.

Fig. 10. Subtracting a background image obstructed by smoke from a clear background image yields a complete 
smoke image.

Fig. 11. Subtracting a background image obstructed by a solid object from a clear background image yields a 
complete image of the object.

Step 2: δ = π/2 − β is determined as its relationship with the projector’s optical axis.
Step 3: Determine cp  and c p′  for each point p. 
Step 4: When δ is relatively small, cc′  is then determined. 
Step 5: Find the relationship between α and β (α and δ). 
Step 6: An equation is determined using Δcpc′ and the law of sines.
Step 7: An equation is determined using Δcpc′ and the law of cosines.
Steps 8–14: The relationship between α and β is determined.
Step 15: Let (u, v) represent pixels on the projected image and f the focal length.  Accordingly, 

the relationship between β and the projected image’s pixels is determined.
 Smoke detection: If a background is obstructed by smoke and becomes unclear, the unclear 
image of the background is subtracted from the clear background image to obtain a complete 
smoke image, as demonstrated in Figs. 9 and 10.  When a background is obstructed by a 
solid object (that is, not smoke), observing the background with the naked eye is impossible.  
Nevertheless, subtracting the obstructed image of the background from a clear image yields a 
complete image of the solid object, as shown in Fig. 11.  Summarizing these figures indicates 
that the size of the area of smoke ranges between those of the background and the solid object 
and is noncontinuous (Fig. 12).
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Fig. 12. Comparison of the size of the white area among smoke candidate blocks.

3. Result and Discussion

3.1	 Smoke	and	flame	identification

 We not only developed a telepresence smoke detection system using image sensing and 
processing techniques as a distant sensor but also applied smoke and flame detection system 
algorithms to omnidirectional images.  Cluster classification was carried out to determine 
flame and smoke locations as well as the types and spread direction of smoke.  In addition, the 
locations of core fire sources were identified.  Following SVM training, and the system required 
a reaction time of only approximately 0.285 s (Fig. 13) to determine environmental conditions 
and detect smoke.  The Lucas–Kanade optical flow and flame algorithms were also applied 
to accurately identify the location, distance, and moving direction of flames and smoke.  The 
omnidirectional projecting system was used to mark the flame in red and the moving direction 
of smoke in yellow and with an arrow of the same color (Fig. 14).  Figure 15 presents the results 
of comparing variations in 12 smoke diffusion measurements with and without classification.  
The results indicated that the smoke detection error of nonclustered data was higher than that of 
clustered data (blue line).  In practice, clustered data can be immediately sent to the emergency 
response center, which instantly responds with strategies for firefighters to mitigate damage and 
casualties.
 We applied the optical flow and target clustering methods (i.e., K-means clustering) to 
identify the distance and location of a fire source and the direction and distance of smoke 
spread.  Such information enables the emergency response center and firefighters to make 
highly accurate estimates.  Figure 16 presents the experimental data.  Without target clustering, 
the distance identification error resulting from optical flow smoke detection was approximately 
12%.  This fluctuation in accuracy might cause judgment errors by users.
 Figure 17 presents the experimental data for optical flow smoke detection applied indoors.  
Without target clustering, the distance identification error was approximately 10% and the 
accuracy fluctuated, which may cause judgment errors by users.

3.2 Omnidirectional projection and remote transmission

 We developed an omnidirectional projector by using an omnidirectional camera and a 
hyperbolic mirror with a projector.(19–22)  An image obtained with this device is presented in 
Fig. 18.
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Fig. 16. (Color online) Flame distance error of smoke detection in open areas.

Fig. 14. (Color online) Flame detection and smoke 
diffusion direction.

Fig. 15. (Color online) Smoke diffusion estimation 
error.

Fig. 13. (Color online) Reaction time for smoke identification.

 As shown in Fig. 19, the calibrated dewlap image obtained using the omnidirectional camera 
must be projected onto a 360° cylindrical projection screen.(18)  This approach provides images 
with color and size similar to those of the original objects (Fig. 20).  To fit such images, we 
employed a surface correction technique to modify the images so that they fitted the curve of 
the screen.  Additionally, a holographic mirror and a projector were used to project a fire scene 
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Fig. 17. (Color online) Indoor smoke detection 
distance error.

Fig. 18. (Color online) Omnidirectional image.

Fig. 19. (Color online) Calibrated dewlap image projected onto the cylindrical projection screen.

onto the 360° cylindrical projection screen for personnel in the control center to observe the 
relative positions at the fire scene.
 An actual test was conducted by sending data of images taken by the omnidirectional 
camera to the back-end server host through the Transmission Control Protocol/Internet Protocol 
(TCP/IP) and WiFi.  Then, the images were projected onto the 360° cylindrical projection 
screen or head-mounted display for personnel in the emergency response center for further 
confirmation and determination.  Additionally, firefighters can use a smartphone app to 
monitor the scene remotely and familiarize themselves with the on-site situation (Fig. 21).  Real-

Fig. 21. (Color online) Real-time remote monitoring 
from a mobile device and a computer.

Fig. 20. (Color online) Omnidirectional image 
projected onto the 360° cylindrical projection screen.
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time images captured from a fire scene help the emergency response center to make judgements 
and allocate the most appropriate personnel, thereby optimizing the use of personnel and 
mitigating damage.

4. Conclusions

 We developed a telepresence smoke detection system using image sensing and processing 
techniques as a distant sensor to instantaneously present a fire scene and immediately confirm 
the fire source and smoke flow.  Fire scene images can be displayed using a 360° cylindrical 
projection screen, a head-mounted display, or through a smartphone app.  Surveillance cameras 
can display the situation of a regular fire scene but are incapable of accurately showing the 
relative positions of flames and personnel on site.  Therefore, we employed an omnidirectional 
projecting system and smoke detection technology to determine the relative position, distance, 
and spread direction of flames and smoke, as well as the location of the most vigorous fire 
source.  Images from a fire scene can be sent through the Internet and projected on a 360° 
cylindrical projection screen in the control center using an omnidirectional projector.  The 
proposed smoke and flame clustering techniques, which were verified to exhibit an accuracy of 
96.1%, can be used to identify the fire source and the locations where smoke is thickest.  Finally, 
the optical flow and flame algorithms can be applied to confirm the direction and distance of 
smoke and flame spread.  Personnel in the emergency response center can use such information 
to immediately command firefighters to perform appropriate actions and therefore speed up 
the rescue process.  They can also instantly provide response strategies to on-site firefighters 
and disseminate real-time information on the location of the fire source, the situation of smoke 
spread, and the relative positions of on-site personnel.  This helps shorten the time required to 
locate the fire source.  Accordingly, evacuation can be planned on the basis of smoke spread 
data to minimize the risk of smoke inhalation and improve the safety of firefighters.
 We also developed an app for viewing on smart devices.  The app can send notifications to 
users and display real-time fire scenes on their smartphones.  This allows firefighters to make 
immediate judgments and plan crisis management before arriving at a fire scene, as opposed 
to conventional missions in which relevant decisions are made after arriving at the scene.  This 
improvement may greatly enhance firefighters’ response efficiency and expedite fire rescue 
missions.
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