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	 We present the concept of an experimental method for the determination of the inertia matrix 
with an added mass effect.  This experimental method can be applied to any size and type of 
object.  In particular, it can be most effectively used for small unmanned aerial vehicles (UAVs).  
The model vehicle is suspended by two thin light weight low-stretch lines vertically attached 
to two hook points on the model and provided with a free rotational oscillation to estimate the 
moment of inertia around the vertical axis through the center of gravity.  This procedure is 
repeated at different attitude angles so that the moments of inertia around different axes can be 
calculated and used in the estimation of all components of the moments and products of inertia 
in the form of an inertia matrix, using a multivariate regression equation.  

1.	 Introduction

	 There are an increasing number of industrial applications of remote sensing technologies 
using robots.  An unmanned aerial vehicle (UAV) is an aircraft without a human pilot on 
board and has been increasingly used for various purposes and missions such as observation, 
measurement, inspection, transport, and maintenance in various industries.  In general, 
equations of motion of the aircraft consist of aerodynamic terms on the right-hand side and 
inertia terms on the left-hand side, both of which are equally important in the design and 
analysis of flight control systems.  There are a great number of studies on aerodynamic models; 
however, there are only a few studies on how to estimate the moments and products of inertia.  
As for small UAVs, it is highly likely that the moments and products of inertia predicted from 
the drawings or 3D CAD data are not sufficiently accurate because of the complicated shapes of 
adhesive components and electronic devices.  Furthermore, what is actually needed for the left-
hand side of the equations of motion is not just the inertia of a mass but the sum of the general 
mass and the added mass, which is called a virtual mass.  The added mass is an inertia added to 
an object originating from some volume of surrounding fluid moving together with the object 
and is normally represented by a second-order tensor to relate the acceleration vector to the 
external force vector.  Namely, it can be considered that what is needed for the design of a flight 
control system is a virtual inertia matrix.  
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	 The measurement methods of the moment of inertia can be classified into two groups:(1) 
a) the free oscillation technique is an experimental method of measuring the moment of 
inertia,(2–8) where the model is mounted on a suspension device and then provided with a free 
oscillation; b) the forced oscillation technique is another method to measure the moment of 
inertia,(9–11) where the model is provided with an oscillation through an external mechanical 
device and then the moment of inertia around the rotational axis of the device is estimated using 
the equations of motion of the whole system using the input to the model and its response to the 
input.  
	 The method proposed in this paper is based on the free oscillation technique.  Its differences 
from methods previously proposed are as follows: 1) The model aircraft is suspended by two 
vertical lines directly without any suspension device; hence, there is neither aerodynamic nor 
mechanical interference from the device.  Therefore, the moment of inertia can be measured 
without needing to eliminate the effects of general mass, added mass, and the dynamics of the 
device.  2) Furthermore, there is no need to reinforce and/or adapt the model itself to fit the 
external device geometrically and structurally.  3) In addition, we proposed a regression model 
that can be used to estimate all components of the virtual inertia matrix based on the body axes, 
using the multiple free oscillation test results.  

2.	 Experimental Method

	 The model aircraft must be suspended by lines of the same length hanging from the ceiling 
or a certain horizontal rigid structure.  The lighter, thinner, and stiffer the lines are, the smaller 
the influence of the lines on the measurement results is.  Figure 1 shows the case where a 
small fixed-wing UAV is suspended by the two suspension lines attached at its wing tips.  It is 
possible to apply this testing method to any size and type of object.  It is nowadays common for 
unmanned aerial and underwater vehicles to be equipped with six-axis inertial measurement 
units (IMUs) consisting of three-axis gyroscopes and three-axis accelerometers; therefore, the 
IMUs are not considered additional devices in this experimental method, that is, there is no 
extra device nor equipment other than the suspension lines.  

Fig. 1.	 Schematic of the free oscillation test for a fixed-wing UAV.
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	 The model is subject to a free rotational oscillation triggered by hand around the vertical 
axis, so that the moment of inertia around the vertical axis through the center of gravity Iv can 
be estimated using  

	 1 2
2 ,v
n

a a mgI
Lω

= 	 (1)

where a1 and a2 are the distances from the center of gravity to each of the two hook points, 
m is the general mass of the model, g is the acceleration due to gravity, L is the length of the 
two suspending lines, and ωn is the undamped natural circular frequency of the free rotational 
oscillation calculated from 

	 ( )2 22n f nω π= + .	 (2)

Here, f is the frequency of the oscillation and n is the damping coefficient.  The frequency f is 
analyzed using the waveforms of the signals from the gyroscopes.  The damping coefficient n is 
calculated as 

	 n f δ= − ⋅ ,	 (3)

where δ is the logarithmic decrement of the signal waveforms and can be calculated as a natural 
logarithm of the ratio of successive peaks.  Then, Eq. (2) can be represented as

	
2

2 1 2n f δω π π
 = ⋅ +  
 

.	 (4)

	 In the case of fixed-wing vehicles, any rotational motion containing a rolling component 
(rotation around the fuselage axis, hereinafter defined as the x-axis of the body axes with its 
origin at the center of gravity) is typically heavily damped by the aerodynamic effect of the 
main wing; therefore, the logarithmic decrement cannot be neglected in Eq. (4).  All three 
signals of angular velocities around the x-axis, y-axis (pointing toward the right wing), and 
z-axis (pointing downward) can be used to obtain the frequency f and logarithmic decrement 
δ for calculating the undamped natural circular frequency ωn.  It is advisable to choose the 
largest amplitude signal waveform or to take the average of the three results.  For the purpose of 
estimating the natural frequency, there is no need to calibrate the gyroscopes and the raw data 
can be used in the post processing.  A translational motion, which may happen unexpectedly, is 
regarded to be independent of rotational motions, and hence, will not affect the accuracy of the 
natural circular frequency.  
	 Equation (1) gives the moment of inertia around the vertical axis at a certain attitude angle; 
however, the final goal is to obtain all components of the moments and products of inertia in 
the body axes with the added mass effect.  The entire procedure of the free oscillation tests at 
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different attitude angles is repeated by changing the combination of the two hook points so that 
the moments of inertia around different axes can be estimated using the multivariate regression 
model introduced in the following paragraph.  
	 The moments and products of inertia in the body axes are defined as

	 ( ) ( ) ( )2 2 2 2 2 2, , ,xx yy zzI y z dm I z x dm I x y dm= + = + = +∫ ∫ ∫ 	 (5)

	 , ,xy yx xz zx yz zyI I xydm I I xzdm I I yzdm= = = = = =∫ ∫ ∫ ,	 (6)

where x, y, and z are the body-axis coordinates of the differential mass element dm of the model 
and all of the above parameters can be represented in the form of the inertia matrix as 

	
xx xy zx

B xy yy yz

zx yz zz

I I I

I I I

I I I

 − −
 

= − − 
 
− −  

I .	 (7)

	 Here, the subscript B is used to denote the body axes, while the moment of inertia around 
the vertical axis Iv estimated using Eq. (1) is one of the components of the inertia matrix in the 
earth-fixed frame represented by

	 E

VI

 
 =  
  

  

  

 

I ,	 (8)

where the subscript E is used to denote the earth-fixed frame and the last element IV is the only 
parameter required for the estimation of IB through regression analysis.  It is measured in each 
free oscillation test to yield a set of data points from repeated measurements.  The following 
equation holds between IB and IE.(12)  

	 E EB B BE= ⋅ ⋅I L I L 	 (9)

	 Here, LEB and LBE are the transformation matrices consisting of direction cosines of attitude 
angles (yaw angle ψ, pitch angle θ, and roll angle ϕ), which are represented as

	
cos cos sin sin cos cos sin cos sin cos sin sin
cos sin sin sin sin cos cos cos sin sin sin cos

sin sin cos cos cos
EB

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ
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	 The substitution of Eqs. (7), (8), (10), and (11) into Eq. (9) yields 

	
( ) ( ) ( ) ( )
( ) ( )

2 2 2sin sin cos cos cos 2sin sin cos

2sin cos cos 2sin cos cos cos .
V xx yy zz xy

zx yz

I I I I I

I I

θ φ θ φ θ θ φ θ

θ φ θ φ θ φ θ

= + + − −

− − −
	 (12)

	 The yaw angle ψ has vanished in Eq. (12).  Under the stationary condition before and after 
the free oscillation test run, the accelerometers are regarded as the inclinometer so that the 
accelerometer outputs (ax, ay, az) can be expressed as functions of the pitch angle θ and roll 
angle ϕ as 

	
s in

sin cos .
cos cos

x

y

z

a
a

a

θ
φ θ
φ θ

   
   = −   
   −  

	 (13)

	 Substituting Eq. (13) back into Eq. (12), we obtain

	 2 2 2 2 2 2 .V xx x yy y zz z zx z x xy x y yz y zI I a I a I a I a a I a a I a a= ⋅ + ⋅ + ⋅ − ⋅ − ⋅ − ⋅ 	 (14)

	 Now we regard the above equation as the one in which the moment of inertia around the 
vertical axis Iv is calculated from three-axis accelerometer outputs and the moments and 
products of inertia in the body axes.  Let Eq. (14) be simplified as

	 1 2 3 4 5 6xx yy zz zx xy yzy I x I x I x I x I x I x= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ ,	 (15)

where

	 y = IV,	 (16)

	 ( ) ( )2 2 2
1 2 3 4 5 6 2 2 2x y z z x x y y zx x x x x x a a a a a a a a a= − − − ,	 (17)

are defined as the objective variable y and the explanatory variables x1 to x6, respectively, in the 
interest of simplicity in order to derive the following regression equation.  We assume here that 
the free oscillation tests are repeated N times at different attitude angles by changing either or 
both of the two hook points on the model and then the objective variables yj and the explanatory 
variables xij (i = 1 to 6, j = 1 to N) are obtained.  Now we rewrite Eq. (15) as

	 y = X ∙ b,	 (18)

where the vectors y and b and the matrix X are 

	 ( )T1 2 Ny y y=y  ,	 (19)
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	 ( )xx yy zz zx xy yzI I I I I I=b ,	 (21)
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.	 (22)

	 Here, the number of oscillation tests, N, should be greater than 6 or greater than 4 when Ixy 
and Iyz are assumed to be zero.  The vector b consisting of the moments and products of inertia 
can be estimated as

	 b = (XT ∙ X)−1 ∙ (XT ∙ y).	 (23)

	 This matrix equation can be expanded to give
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∑ ∑ .	(24)

	 Since most aerial vehicles are very nearly symmetrical, it is common to assume them to be 
totally symmetrical in the design and analysis of the flight control system.  It then becomes 
possible to reduce the dimension of the matrix in Eq. (24), as shown in 

	

1
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	 Equation (25) gives the best fit for a set of Ixx, Iyy, Izz, and Izx using the sample data sets 
yi and xij (i = 1 to 6, j = 1 to N) based on the measured attitude angles (pitching angle θ and 
rolling angle ϕ) under stationary conditions and the frequency f and logarithmic decrement δ 
under oscillatory conditions.  In general, the greater the number of oscillation tests, the more 
accurate the regression analysis.  However, it is even more important to plan the sequential 
runs of oscillation tests in an efficient manner, that is, to change x1, x2, x3, x4, x5, and x6 as 
independently as possible.  



Sensors and Materials, Vol. 31, No. 12 (2019)	 4253

	 We propose to carry out two sets of oscillation test runs, rolling and pitching test runs, as 
an efficient way of changing the explanatory variables x1, x2, x3, x4, x5, and x6.  The positional 
relationships of the hook points against the center of gravity of the model determine the attitude 
angles, which are the roll angle ϕ and pitch angle θ.  In the rolling test run, the fore and aft 
locations of the lower part of the fuselage of the model are used as the hook points, where it is 
likely that the model is suspended under the reversed condition (upside down) and the rolling 
angles can be varied by repositioning either of or both the two hook points from side to side as 
illustrated in Fig. 2.  The supporting points on the ceiling, the hook points, and the center of 
gravity of the model should align into a straight line.  Here, x2, x3, x5, and x6 are mainly varied 
so that Iyy, Izz, Ixy, and Iyz can be estimated.  On the other hand, in the pitching test run, the 
wing tips are used as the hook points, where the pitch angles can be varied by repositioning the 
longitudinal (chordwise) locations of the two hook points at the wing tips.  Here, x1, x3, and x4 
are mainly varied so that Ixx, Izz, and Izx can be estimated, as illustrated in Fig. 3.  The rolling 
and pitching test runs can be combined by properly choosing an asymmetric layout of the two 
hook points, yielding more robust regression analysis results because of the less correlated 
distribution of explanatory variables.  Slight changes in the positions of the hook points are 
effective for inducing sufficient changes in both roll and pitch angles.  

Fig. 2.	 Schematics of front views of the UAV model for the rolling test run.  Rolling angles: 0 deg (left), 
+135 deg (center), and −135 deg (right).

Fig. 3.	 Schematics of left-side views of the UAV model for the pitching test run.  Pitch angles: 0 deg (left), 
+135 deg (center), and −135 deg (right).
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3.	 Experimental Results

	 To investigate the effectiveness of the experimental method proposed in the previous section, 
a small fixed-wing UAV with a total mass of 1.391 kg, a wing span of 1.360 m, and a chord 
length of 0.228 m was tested.  The top view of the UAV model is shown in Fig. 4.  The hook 
points are located at the forward and backward locations at the bottom of the fuselage (F1, F2, 
F3, B1, B2, and B3) and both tip ends (L1, L2, L3, L4, R1, R2, R3, and R4).  The theoretical 
estimation of the added inertia moment about the x-axis is approximately 30% of the general 
inertia moment; therefore, it is important to measure the virtual inertia matrix experimentally.  
	 The experimental procedure is as follows: 
[1]	Measure the length of the suspension lines, L, the mass m, and the center of gravity of the 

model to calculate the distances between the center of gravity and the hook points a1 and a2.
[2]	Choose two hook points and hang the model from the ceiling or a rigid structure using the 

suspension lines through the hook points.
[3]	Measure the three-axis accelerometer outputs ax, ay, and az under the stationary condition 

and convert them into xij using Eq. (17).
[4]	Apply rotational oscillation by hand around the vertical axis and measure the three-axis 

gyroscope outputs ωx, ωy, and ωz under the oscillatory condition.
[5]	Analyze the signal of the gyroscope outputs to obtain the dominant frequency f and 

logarithmic decrement δ.
[6]	Calculate the undamped natural circular frequency ωn using Eq. (4).
[7]	Calculate the virtual moment of inertia around the vertical axis through the center of gravity, 

yj = Iv, using Eqs. (1) and (16).
[8]	Repeat the above steps from [1] to [6] N times at different attitude angles ( j = 1 to N).
[9]	Analyze all components of the virtual inertia matrix, Ixx, Iyy, Izz, Izx, Ixy, and Iyz, using Eqs. 

(24) and/or (25).  Equation (25) ignores Ixy and Iyz to obtain the best fit for Ixx, Iyy, Izz, and 
Izx in the case of the model having the x–z plane of symmetry, while Eq. (24) can still be 

Fig. 4.	 Main dimensions and hook points of the UAV model tested.
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effectively used to see how precisely the measurement is carried out by checking the two 
results from Eqs. (24) and (25).  

	 Table 1 shows the results of the measurements using accelerometers and gyroscopes in 
both rolling and pitching test runs.  It is observed that the roll angles are mainly varied for the 
rolling test runs, while the pitch angles are mainly varied for the pitching test runs, and that 
the frequencies are more varied for the pitching test runs than for the rolling test runs.  Table 2 

Table 1  
Results of measurements using three-axis accelerometers and gyroscopes in both rolling and pitching test runs.
Exp. No. ABX ABY ABZ ϕB θB f n ωn

(G) (G) (G) (deg) (deg) (Hz) (rad/sec) (rad/sec)
Roll-1 F1 B1 −0.006 0.055 0.977 −176.8 −0.4 0.307 −0.023 1.930 
Roll-2 F2 B2 −0.030 0.898 0.477 −118.0 −1.7 0.349 −0.037 2.193 
Roll-3 F3 B3 −0.074 −0.824 0.532 122.9 −4.2 0.351 −0.032 2.207 
Roll-4 F2 B1 0.019 0.525 0.869 −148.8 1.1 0.322 −0.016 2.020 
Roll-5 F1 B2 −0.057 0.387 0.916 −157.1 −3.3 0.315 −0.019 1.980 
Roll-6 F3 B1 0.010 −0.407 0.900 155.7 0.6 0.321 −0.020 2.016 
Roll-7 F1 B3 −0.118 −0.280 0.949 163.6 −6.8 0.314 −0.019 1.976 
Pitch-1 R1 L1 0.927 −0.028 −0.424 3.8 67.9 0.999 −0.060 6.279 
Pitch-2 R2 L2 0.864 −0.028 −0.531 3.1 59.8 0.933 −0.066 5.861 
Pitch-3 R3 L3 0.691 −0.029 −0.721 2.3 43.7 0.827 −0.041 5.196 
Pitch-4 R4 L4 −0.114 −0.029 −0.999 1.7 −6.6 0.707 −0.022 4.442 
Pitch-5 R1 L2 0.715 −0.146 −0.694 11.9 45.7 0.857 −0.042 5.384 
Pitch-6 R1 L3 0.640 −0.093 −0.768 6.9 39.8 0.803 −0.039 5.043 
Pitch-7 R1 L4 0.408 −0.057 −0.930 3.5 24.1 0.738 −0.030 4.640 
Pitch-8 R2 L1 0.751 0.066 −0.672 −5.6 48.7 0.863 −0.041 5.420 
Pitch-9 R3 L2 0.627 0.022 −0.786 −1.6 38.8 0.801 −0.043 5.034 
Pitch-10 R4 L3 0.399 −0.020 −0.922 1.2 23.5 0.741 −0.031 4.657 

Table 2  
Explanatory variables xij and objective variables yj calculated from the measurement results. 
Exp. No. 　 　 x1 x2 x3 x4 x5 x6 y
　 　 　 (G2) (G2) (G2) (G2) (G2) (G2) (kgm2)
Roll-1 F1 B1 0.000 0.003 0.954 0.012 0.001 −0.108 0.167 
Roll-2 F2 B2 0.001 0.806 0.227 0.029 0.054 −0.856 0.130 
Roll-3 F3 B3 0.005 0.679 0.283 0.079 −0.122 0.877 0.128 
Roll-4 F2 B1 0.000 0.276 0.755 −0.032 −0.020 −0.912 0.153 
Roll-5 F1 B2 0.003 0.150 0.839 0.105 0.044 −0.708 0.159 
Roll-6 F3 B1 0.000 0.166 0.811 −0.019 0.009 0.734 0.154 
Roll-7 F1 B3 0.014 0.078 0.901 0.224 −0.066 0.532 0.160 
Pitch-1 R1 L1 0.859 0.001 0.180 0.785 0.052 −0.024 0.084 
Pitch-2 R2 L2 0.747 0.001 0.282 0.918 0.049 −0.030 0.096 
Pitch-3 R3 L3 0.478 0.001 0.519 0.996 0.040 −0.042 0.122 
Pitch-4 R4 L4 0.013 0.001 0.998 −0.228 −0.007 −0.058 0.168 
Pitch-5 R1 L2 0.512 0.021 0.482 0.993 0.209 −0.203 0.114 
Pitch-6 R1 L3 0.410 0.009 0.590 0.983 0.119 −0.142 0.130 
Pitch-7 R1 L4 0.166 0.003 0.865 0.759 0.047 −0.106 0.154 
Pitch-8 R2 L1 0.564 0.004 0.451 1.009 −0.099 0.088 0.113 
Pitch-9 R3 L2 0.393 0.000 0.618 0.985 −0.028 0.035 0.130 
Pitch-10 R4 L3 0.159 0.000 0.850 0.736 0.016 −0.037 0.152 
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shows the variations of the explanatory variables xij and objective variables yi calculated from 
the measurement results, to be used for the multivariate regression analysis using Eqs. (24) and (25).
	 Figure 5 shows the estimates and 95% confidence intervals of the virtual inertia moments 
and products both obtained considering all components of the virtual inertia matrix and 
ignoring Ixy and Iyz.  There are good agreements in Ixx, Iyy, Izz, and Izx between the results from 
Eqs. (24) and (25), and furthermore, the results of Ixy and Iyz estimated from Eq. (24) are almost 
zero, which means that the measurements and regression analysis proposed in this paper can 
provide highly accurate results.

5.	 Conclusions

	 In this paper, a new method of estimating the virtual inertia matrix, which can be most 
effectively applied to small UAVs, was presented.  Here, the model was directly suspended 
vertically using two thin light weight low-stretch lines and subject to free rotational oscillations 
around the vertical axis at different attitude angles so that all components of the virtual 
inertia matrix can be estimated using multivariate regression models.  This method, including 
postprocessing using regression analysis, is characterized by 1) experimental simplicity – there 
is no need to adapt the model to any external devices, and therefore, there is no mechanical 
interference from experimental devices to the measurement results, and 2) accuracy – the 
measurement results include all components of the inertia matrix based on the body axes 
with the added mass effect without aerodynamic interference from any external devices.  The 
method proposed in this paper can provide all the inertia characteristics required for the design 
and simulation of flight control systems.  

Fig. 5.	 Estimates and 95% confidence intervals of the virtual inertia moments and products: the results obtained 
considering all components of the virtual inertia matrix (top) and those obtained ignoring Ixy and Iyz (bottom).
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