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	 With the increasing application of human–robot interaction, collision detection between 
robot and unknown environments, along with further distinction from the intentional contact 
between human and robot, have become urgent problems to be solved.  In this paper, a new 
collision detection algorithm is proposed, and a collision distinction method is further designed 
on the basis of this algorithm.  The generalized momentum and the convolution method are used 
to develop the robot convolution filtering dynamic model.  Then, the force-sensing observer 
that uses only proprioceptive sensors is designed to observe the torque deviation of the joint 
online to realize robot collision detection.  At the same time, the performance of the force-
sensing observer is improved by compensating for joint friction.  The proposed algorithm does 
not need any external sensors; it overcomes the disadvantage of calculation errors owing to the 
acquisition of joint acceleration information.  The filter can be flexibly selected in the algorithm 
according to the actual application of the robot.  Moreover, two force-sensing observers are 
adopted in the collision distinction method.  The contact or collision between a human and 
a robot can be further distinguished after setting the appropriate thresholds and filtering 
parameters.  The collision detection algorithm can be easily adapted to different types of robot 
to ensure human safety, and the proposed collision distinction method can be used to improve 
the work efficiency of the robot.  External force sensing experiments show that the low-pass 
and bandpass observers work well and different force signals can be observed.  The collision 
detection and human–robot interaction experiments are performed to verify that the collision 
detection algorithm and collision distinction method are reasonable and effective.  

1.	 Introduction

	 In recent years, robot applications have expanded from traditional industrial production 
to medical care, service and education fields, and so forth.  Human–robot interaction and 
cooperative work based on force sensing have become hot topics in robotics research.  Safety 
is the most important feature for robots that share a limited working space with humans.(1)  At 
the same time, the robot needs to sense the intentional contact force of a human to perform a 
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specified action or task during the process of cooperation.  The manner in which contact or 
collision between a human and a robot should be distinguished has become an urgent problem 
in robotics.(2)  
	 According to existing research, when a robot is working in an open environment, it may 
collide with a human body or objects in the working space.  The safest way for the robot to work 
in an open environment is to avoid direct contact with a human.  When a human works closely 
with moving robot, the robot may accidentally collide with the human owing to the uncertainty 
of the human movement.  Safety is a primary problem in robot research.  Researchers have 
proposed many feasible methods to cope with this problem.  Some measures are taken to prevent 
the collision a robot with a human or an object.(3)  Video detection, noncontact sensing, and path 
planning technology have been used in those methods.(4,5)  Improving the safety of robots in 
the collision phase is also an important direction in robot research.  On the one hand, a much 
safer and more reliable robot body structure can be designed.  For example, some new materials 
are used to reduce the inertia of the robot body, a new flexible joint design improves the 
flexibility of the robot, wrapping with a viscoelastic material buffers the impact force, and new 
robotic skins are designed to sense and buffer collision force.(6–8)  These methods can increase 
the safety of the robot to a certain extent, but they also make the system more complicated 
and increase costs.  The joint torque sensor and six-axis force/torque sensor are typically 
adopted to achieve collision detection between a robot and an unstructured environment.  The 
disadvantages are that the torque sensor is expensive, and the strain characteristics of the force 
sensor generate noise and reduce the bandwidth of the control system.(9)  Sensing a change 
in joint motor current is an effective method of achieving collision detection.  For instance, 
Li et al. studied the method of sensing a current change to achieve robot collision detection.(10)  
Indri et al. also designed a virtual impact sensor by sensing changes in joint currents.(11)  The 
disadvantage of the current sensing method is that the collision detection threshold setting 
process is complicated.  The dynamic model-based control method can be used for robot 
collision detection.  Huang et al. proposed the adaptive impedance control algorithm for robot 
collision detection.(12)  Lim and Tanie designed an observer-based collision detection and safety 
control method.(13)  Its inverse dynamic calculation increased the amount of calculation of the 
algorithm.  The dynamic model should obtain joint acceleration information which is, however, 
complicated to calculate or measure.  To solve it, Luca et al. proposed a robot collision detection 
algorithm according to the generalized momentum, which reduced the amount of computation 
and improved the collision detection efficiency.(3)  
	 The main challenge about physical human–robot interaction is to simultaneously ensure 
the safety of humans and the friendly interaction of humans with robots.(14)  These above-
mentioned collision detection methods can only sense the magnitude of the external force.  The 
process of setting the threshold in the collision detection method cannot effectively distinguish 
the contact and collision during human and robot interaction.  As far as we know, there is little 
research on distinguishing contact and collision during human–robot interaction.  In most cases, 
the contact is controlled intentionally by the human interacting with a robot.  The contact force 
signal changes slowly.  However, the collision duration is very short, and the collision force will 
generate a larger jump than contact force.  It can be seen that the signals of contact force and 
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collision force have different distribution characteristics in the frequency domain.  Geravand 
et al. attempted to distinguish the contact from collision during the interaction between a human 
and a robot by filtering the current of the joint motor.(15) A collision discrimination method 
based on machine learning was presented in Ref. 16.  This method requires the offline training 
of contact models and the use of multiple contact features.  Recently, Kouris et al. have proposed 
a novel collision distinction algorithm based on Fourier transform for analyzing the frequency 
change of a force signal to improve the collision distinction speed.(17)  Moreover, Dixon et al. 
developed a fault detection algorithm for robot manipulators based on the convolution method.(18)  
Damme et al. also used this method for force sensing and estimation in the end effector of a 
robot manipulator.(19)  However, these methods are not focused on distinguishing collision or 
contact to improve the performance of human–robot interaction.
	 From the perspective of force sensing and using existing information on conventional 
industrial robots, a new collision detection algorithm is proposed in this work.  The robot 
generalized momentum and convolution method are used to design the robot convolution 
filtering dynamic model to remove the acceleration information.  Then, a force-sensing observer 
is designed to realize robot collision detection by observing the robot joint torque deviation.  At 
the same time, the performance of the collision detection algorithm is improved by identifying 
and compensating for joint friction.  The proposed force-sensing observer only uses robot 
proprioceptive sensors and does not need any external sensors.  Moreover, by filtering the 
joint torque signals through low-pass and bandpass filters in the convolution filter dynamic 
model simultaneously, a collision distinction method is designed to distinguish the contact and 
collision during human–robot interaction.  It is significant for ensuring the safety of humans 
and improving the robot efficiency.
	 This paper is organized as follows.  In Sect. 2, we outline the dynamics and useful properties 
of robots.  In Sect. 3, we present the robot convolution filtering dynamic modelling.  In Sect. 4, 
we describe the collision detection and distinction for human–robot interaction in detail.  The 
experimental results and analysis are presented in Sect. 5.  The conclusions are given in Sect. 6.  

2.	 Robot Dynamics Modelling

	 By considering a robot with n degrees of freedom as open kinematic chains of rigid bodies 
and using the Euler–Lagrange method in the joint space coordinates, we express the robot 
dynamic equation as

	 ( ) ( ) ( ) ( )+ + + =,   M q q C q q q G q F q τ ,	 (1)

where q, q, and q are the angles, angular velocities, and angular acceleration vectors of the 
joint, respectively; ( )M q  is a symmetric and positive definite inertial matrix; ( , ) C q q q contains 
Coriolis and centrifugal terms; ( )G q  is the gravity matrix; ( )F q  is the friction of the joint; and 
τ is the control torque of the joint.  Since conventional industrial robots generally do not have a 
joint torque sensor installed, the joints are usually composed of a servo motor, a transmission 
mechanism, and an output link.  To obtain the joint control torque in the dynamic Eq. (1), the 
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method of measuring the joint motor current is used in this study.  The driving current of the 
motor is converted accordingly, and the equation for calculating the joint driving torque is τ = 
nharKdriim, where im is the current of the motor, Kdri is the correlation coefficient of the current 
into the torque, and nhar is the transmission ratio of the joint motor to the output link.  
	 From the skew symmetry of the matrix ( ) 2 ( , )−

M q C q q ,(15) it follows that 

	 ( ) ( , ) ( , )M q C q q C q q= +

 

T .	 (2)

	 Generally, the dynamic parameters of the robot can be obtained through the computer-aided 
design (CAD) model.  Thus, the robot dynamic equation can be reexpressed as

	 + ˆˆ ( ) ( , )  M q q C q q q + + =ˆ ˆ( ) ( ) τG q F q ,	 (3) 

where ˆ ( )M q , ˆ ( , ) C q q q, ˆ ( )G q , and τ̂  are the CAD model parameters corresponding to Eq. (1).  
( )F q  generally needs to be obtained through experiments.  According to Ref. 18, the dynamic 

equation for the robots can be linearly parameterized as  

	 = ( , , ) Y q q qτ θ ,	 (4)

where ( , , ) Y q q q  is an n × l dimensional function, which is called the regression factor, and θ is 
an l dimensional parameter vector.  

3.	 Robot Convolution Filtering Dynamic Modelling 

3.1	 Convolution filtering dynamic model

	 The acceleration information of the joint is required in Eq. (1).  However, it is difficult to 
obtain robot joint acceleration in practical applications.  To eliminate the need to estimate 
joint accelerations and to use only proprioceptive robot sensors, the convolution method is 
adopted to eliminate the acceleration measurement or calculation in this paper.  The generalized 
momentum of a robot is defined as

	 ( )= P M q q .	 (5) 

	 The time derivation of generalized momentum (5) can be expressed as

	 ( ( ) ) ( ) ( )d
dt

= = + 

  P M q q M q q M q q .	 (6) 

	 Thus, the robot dynamic Eq. (1) can be rewritten as 

	 P Hτ = + ,	 (7) 
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where

	 ( ) ( , ) ( ) ( )= − + + +

   H M q q C q q q G q F q .	 (8) 

	 From Eq. (7), it can be seen that q has been separated in a way that allows it to be filtered 
out.  A suitable and stable filter is used to perform the convolution operation on both sides of Eq. (7),

	 P H= ∗ = ∗ + ∗

f f f fτ τ ,	 (9) 

where f is the impulse response of the filter and “*” is the convolution operator symbol.  The 
properties of the convolution operation are as described in Ref. 18,

	 (0) (0)f f f f∗ = ∗ + ∗ − ∗
P P P P .	 (10) 

	 By combining Eqs. (9) and (10), we can obtain the convolution filtering dynamic equation as 

	 (0) (0)P P P H= ∗ + ∗ − ∗ + ∗

f f f f fτ .	 (11) 

	 Substituting Eqs. (5) and (8) into Eq. (11) yields

	 [ ( ) ] (0) ( ) ( (0)) (0) [ ( ) ( , ) ( ) ( )].f f f f fτ = ∗ + − + ∗ − + + +


      M q q M q q M q q M q q C q q q G q F q 	 (12) 

	 The initial generalized momentum of the robot is zero, i.e., P(0) = 0.  Then, substituting Eq. (2) 
into Eq. (12) yields

	 T[ ( ) ] (0) ( ) [ ( , ) ( ) ( )].f f f fτ = ∗ + + ∗ + +

    M q q M q q C q q q G q F q 	 (13) 

	 Thus, Eq. (13) can be further expressed as

	 T
0 0

( ) ( ) (0) ( ) ( )[ ( , ) ( ) ( )] ,
t t

f f t r dr f f t r drτ = − + + − + +∫ ∫

    M q q M q q C q q q G q F q 	 (14) 

where t is the time and r is the integral variable.  Therefore, from Eq. (13), one can get its 
equivalent linear expression as

	 = ( , )f fY q qτ θ .	 (15) 

	 By comparing Eqs. (15) and (4), we know that the generalized momentum of the robot can be 
used to separate the acceleration parameters in the dynamic equations.  Then, the convolution 
operation removes the joint acceleration, which avoids complicated acceleration calculations and 
facilitates the implementation of advanced robot control algorithms.
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3.2	 Filter selection and analysis

	 The filter in the convolution calculation of Eq. (13) is the key to realizing the robot collision 
detection.  Presently, there are many types of filters.  An advanced filter can obtain better 
filtering results, but its complex response will increase the number of calculations and affect the 
performance of the algorithm.  Considering the real-time performance of the algorithm and the 
research purposes, the first-order low-pass and second-order bandpass filters were selected for 
the robot collision detection and distinction in this paper.  The first-order low-pass filter transfer 
function is

	 1( ) =
+

f s
s
α
β

,	 (16) 

where α and β denote positive filter constants.  The inverse Laplace transform of Eq. (16) is

	 1( ) −= tf t e βα .	 (17) 

	 To filter the interference of high-frequency signals, assume α = β = K.  Using the Laplace 
transform and then substituting Eq. (17) into Eq. (14) yield

	 1 1ˆ( ) ( )
ˆ( ) ( )

f fs s K
s s s K

τ τ
τ τ

= =
+

.	 (18) 

	 After deriving Eq. (17) with respect to time and performing the Laplace transform operation, 
one obtains

	 2
2 1( ) ( ) Ktf t f t K e−= = − ,	 (19) 

	
2

2 ( ) Kf s
s K

= −
+

.	 (20) 

	 Considering the human–robot cooperation situation, the robot must have the ability to 
distinguish the contact and collision between itself and a human.  The bandpass filter can be 
further used to filter out low-frequency signals to achieve the distinction between contact and 
collision.(15,17)  For simplification, a low-pass filter and a high-pass filter are taken in series to 
form a bandpass filter.  The transfer function of the bandpass filter is given by 

	 1
3

1 2
( ) = ⋅

+ +
K sf s

s K s K ,	 (21) 

where K1 and K2 are the low-pass and high-pass cut-off frequencies, respectively.  By using 
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the inverse Laplace transform, we can express the equivalent function of Eq. (21) in the time 
domain as

	 1 2
2
1 1 2

3
2 1 2 1

( ) K t K tK K Kf t e e
K K K K

− −= − +
− −

.	 (22) 

	 Its transfer function can be obtained through the Laplace transform by using Eqs. (22) and (14):

	 3 3 1
2

1 2 1 2

ˆ( ) ( )
ˆ( ) ( ) ( )

f fs s K s
s s s K K s K K

τ τ

τ τ
= =

+ + + ⋅
.	 (23) 

	 Similarly, the time derivation of the filter transfer equation [Eq. (22)] and its corresponding 
transfer function in the Laplace domain are as follows:

	 1 2
3 2
1 1 2

4 3
1 2 1 2

( ) ( ) K t K tK K Kf t f t e e
K K K K

− −= = − +
− −

 ,	 (24) 

	
2 2
1 1 2 1 2

4 2
1 2 1 2

( )( )
( )

K K K s K Kf s
s K K s K K
− + −

=
+ + +

.	 (25) 

4.	 Robot Collision Detection and Distinction

4.1	 Robot collision detection

	 From Sect. 3.1, it can be seen that less parameter information is required for the robot 
dynamic equation after the convolution operation.  In this section, we extend the robot 
convolution filtering dynamics model to robot collision detection.  When the robot collides with 
the external environment, the output torque of the robot joint is 

	 d cτ τ τ= + ,	 (26)
 
where τd is the ideal control torque without collision and τc is the equivalent torque generated by 
the collision force.  

	 ( )J q F= T
c cτ ,	 (27) 

where ( )J q  is the Jacobian matrix and cF  is the external collision force.  The convolution 
operation for joint output torque can be obtained as

	 ( )= ∗ + = +f d c df cffτ τ τ τ τ .	 (28) 
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	 The estimated generalized momentum can be obtained from the CAD model of the robot 
using Eq. (5).  

	 ˆ ˆ ( )= P M q q	 (29) 

	 Similarly, the convolution calculation equation for the estimated torque can be obtained from 
Eqs. (3) and (13).

	 ˆˆ [ ( ) ]f fτ = ∗ M q q Tˆˆ(0) ( ) [ ( , )f f+ + ∗  M q q C q q q ˆ ˆ( ) ( )]q+ + G F q .	 (30) 

	 When there is no external impact force (τc = 0), and ˆ= ≈f df fτ τ τ , Eq. (30) can be called the 
torque estimator.  Thus, the calculation formula of the external impact torque after convolution 
operation is 

	 ˆcf f fτ τ τ= − .	 (31) 

	 Because the real dynamic parameters of the robots are generally not available in practice, 
it is necessary to set a reasonable threshold to avoid false collision detection.  When the robot 
collides with an unknown environment, it will generate an equivalent torque τc ≠ 0, which can 
be obtained from Eq. (31).  In this case, Eq. (31) can be expressed as 

	
T

1 ( 1),cf cf cfi cf i cfnτ τ τ τ τ+ =   

,	 (32) 

	
,

0,

cfi
cfi i

cfi

cfi i

if N
Sign

else N

τ
τ

τ

τ


>= 

 ≤  
,	 (33) 

where i = 1, ..., n, and Ni is the torque threshold of joint i, which can be obtained from the 
experiment.  Therefore, it can be determined by using Eqs. (32) and (33), and comparing the 
elements in τcf from cfnτ  to 1cfτ  individually that the link i has collided when cfi iNτ >  and 

( 1) +1cf i iNτ + ≤ .  The direction of the collision can be determined using Eq. (33).
	 After the robot control torque is changed from stationary to motion, the position and velocity 
of the joint will lag and may cause false collision detection due to inertia.  The correction of τcf 
is in the following equation:

	 a W bGτ∆ = ⋅ + ,	 (34) 

where τ∆  is the corrected value for τcfi, a and b are the adjustment factors, W is the parameter 
related to the joint motor and servo driver, and G is the robot inertia parameter.  When the robot 
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is changing from a static state to a moving state, a > 0 and b > 0, and other motion states, a = 0 
and b = 0.
	 From the above analysis, it can be seen that the joint torque deviation determined using the 
convolution filtering dynamic model can realize the detection of the robot collision position and 
direction.  The principle of the collision detection algorithm is shown in Fig. 1.  As can be seen 
from Fig. 1, τcf corresponds to the external force that the robot is subjected to, so the external 
force calculation method can be called a force-sensing observer.  

4.2	 Joint friction identification method

	 To reduce the interference of friction, in this work, we improve the sensitivity of the 
collision detection algorithm by identifying and compensating the joint friction.(20)  Bittencourt 
and Gunnarsson pointed out that the industrial robot joint friction force usually contains the 
Stribeck effect.(21) Therefore, the Stribeck friction model is used to describe the conventional 
industrial robot joint friction, and it can be expressed as

	 ( / )( ) sgn( ) sgn( )sq q
c v sF q F q F q F e qσ−= + +  

   
,	 (35) 

where Fs is the Stribeck parameter, sq  is the Stribeck velocity, Fc is the Coulomb friction 
coefficient, sgn( )cF q  is the Coulomb friction, Fv is the viscous friction coefficient, vF q is the 
viscous friction, and σ is the constant associated with the contact surface geometry.
	 To facilitate data processing with MATLAB software, Eq. (35) is simplified as

	 1 2 3 4( ) exp( )F q q qλ λ λ λ= + + −   ,	 (36) 

Fig. 1.	 (Color online) Collision detection schematic.
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where λ1, λ2, λ3, and λ4 are the required parameters.  Then, the parameters in Eq. (36) are 
estimated offline by the least-squares method.  
	 In this study, independent experiments are performed on each joint to obtain the friction 
force of the joint and the parameters of the designed model.  A joint of the robot is controlled to 
move at a constant speed 0q = , other joints are fixed, and when no external force is applied to 
the robot, from Eqs. (1) and (4), we have

	 ( ) f har dri mg q n K iτ+ = ,	 (37) 

	 In Eq. (37), the joint control torque only contains gravity and friction torque.  The joint of the 
robot is controlled to move in positive and negative directions within a given interval.  At this 
point, Eq. (37) becomes

	
1 1

( ( ) ) ( )f har dri mg q n K i
ϕ ϕ

τ+ + ++ =∑ ∑ ,	 (38)

	
1 1

( ( ) ) ( )f har dri mg q n K i
ϕ ϕ

τ− − −+ =∑ ∑ ,	 (39)

where the superscript symbols “+” and “−” are indicated as positive and negative directions, 
respectively, and φ is the amount of discrete data collected under single-velocity-value 
experimental conditions.  When the joint is in the same position during the positive and negative 
motions, the gravity has ( ) ( )g q g q+ −=  and the friction has f fτ τ+ −= − .  Subtracting Eq. (38) from 
Eq. (39) gives 

	 1 1
( ) ( )

2

har dri m har dri m

f

n K i n K i
ϕ ϕ

τ
ϕ

+ −−
=
∑ ∑

,	 (40) 

	 Therefore, the unknown optimized friction parameters can be obtained using the following 
formula:

	
2

1 2 3 4
1

min ( exp( ))f q qτ λ λ λ λ
Φ
 ∆ − + + − ∑   ,	 (41) 

where Φ is the amount of friction data obtained at different discrete velocities.   The above 
experimental method can reduce the effect of the robot model errors on the joint friction 
measurement.
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4.3	 Robot collision distinction

	 In this paper, the collision detection algorithms with low-pass or bandpass filters can be 
called low-pass observers (LPOBs) and bandpass observers (BPOBs), respectively.  According 
to the degree of danger when the robot is subjected to external forces, three different task 
priority levels in the control algorithm are developed to ensure the safety of a human and a robot 
in this work.  

1) High priority: collision
2) Medium priority: contact
3) Low priority: normal work

	 The LPOB and BPOB working together can be used for contact and collision detection and 
distinction between the human and the robot.  It is assumed that τ1cf and N1 are the observer 
torque and threshold of the LPOB, and τ2cf and N2 are the observer torque and threshold of 
the BPOB, respectively.  The specific control process for collision detection and distinction is 
shown in Fig. 2.  

5.	 Experimental Results

5.1	 Robot experimental platform 

	 The experiments were conducted with a six-DOF industrial robot in the laboratory.  The 
robot system is mainly composed of a computer, control software, a control cabinet, and a robot 
body.  Its overall structure is shown in Fig. 3.  The control cabinet mainly includes GALIL 
DMC motion control cards and servo drives.  The computer is used for motion planning.  It 
uses Ethernet to communicate with the DMC motion control card.  The motion control card 
controls the servo driver, which controls the motion of the robot.  The motor servo driver and 

Fig. 2.	 (Color online) Flow chart of robot collision detection and distinction.
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the computer communicate through the serial port.  The computer can directly set the status 
of the servo driver through the serial port and read the relevant parameters of the servo driver.  
The control software is implemented in Microsoft VC++ 6.0 using C++ and runs in a Windows 
environment.  The algorithm proposed in this paper is directly embedded in the control 
software.  The specific implementation process of the proposed algorithm in the robot system is 
described in Ref. 22.  To simplify the calculation, links 2 and 3 were used for the experiments 
without loss of generality.  

5.2	 Joint friction identification and compensation experiment

	 In this section, the method described in Sect. 4.2 is used to identify and compensate for the 
joint friction.  In the experiment, the second and third joints of the robot are used.  The robot 
joint is controlled to move at different speeds in the range [−60°, 30°].  At the same time, the 
output torque of the joint is collected during the joint motion, and then the friction torque of the 
joint is calculated using Eq. (40).  After filtering the singular points of the collected data, 40 
sets of effective data in the speed range of 0–20° ∙ s−1 are obtained.  The fitting results obtained 
using Eq. (41) are shown in Fig. 4.  The fitting parameters are listed in Table 1.  It can be seen 
from Fig. 4 that the Stribeck model can effectively describe and compensate the joint friction.  
Similarly, the friction parameters of other joints can be obtained through experiments.  
	 After its identification, the joint friction is further compensated to improve the performance 
of the collision detection algorithm.  According to Refs. 15–17, the cut-off frequency of the 
low-pass filter is set to 19.5 Hz, which can filter out high-frequency signals in the robot system.  
The second and third joints of the robot are controlled to move and run the algorithm described 
in Sect. 4 in real time without collision.  The observation results of the LPOB are shown in 
Fig. 5.  We can see that the observation bias is significantly reduced by friction compensation.  
Simultaneously, the observation value has a larger mutation in the movement of the robot from 
stationary to motion.  To eliminate the interference in robot collision detection, observation 

Fig. 3.	 (Color online) Robot experimental platform.
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Fig. 4.	 (Color online) Friction data and curve fitting results: (a) robot joint 2 and (b) robot joint 3.

(a) (b)

Table 1
Friction model curve fitting coefficient.
Parameters λ1 λ2 λ3 λ4 Resnorm
Joint 2
Joint 3

7.0461
3.0848

0.1078
0.0715

3.0224
0.8797

2.2674
0.6312

1.4155
0.2783

compensation can be calculated using Eq. (34).  At the same time, other errors are unavoidable.  
To reduce the effects of the above interference factors on the observer and to prevent false 
detections, the thresholds of joints 2 and 3 in the LPOB are 8 and 5 Nm, respectively.  
	 After determining the collision detection threshold of the algorithm of this paper, the 
observation effect of the external force is further compared through experiments.  When the 
external force acts on link 3 of the robot, the observation results of the LPOB are as shown in 
Fig. 6.  It can be seen from Fig. 6 that the sensitivity of the collision detection can be improved 
by friction compensation, and the purpose of friction compensation is achieved.  

Fig. 5.	 (Color online) Observation results of LPOB without external forces: (a) robot joint 2 and (b) robot joint 3.

(b)(a)
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5.3	 Observer performance comparison experiment

	 According to Refs. 15–17, the human contact force signal mainly distributes in the range 
of 0–4.6 Hz.  Therefore, the cut-off frequencies of the bandpass filters can be chosen to be 4.6 
and 19.5 Hz.  Another experiment was conducted to verify the performance of the LPOB and 
BPOB.  Controlling joints 2 and 3 of the robot moves from the start position [60°, −60°] to the 
end position [120°, 0°], and during the robot movement, the contact forces are applied by the 
human to the positive and negative directions of robot link 2 randomly.  The collision force is 
applied by hitting robot link 2 with the rubber hammer to prevent harming the human body 
caused by direct collision.  Similarly, the robot is controlled to move in the opposite direction, 
and the contact force and collision are also applied to link 3.  When robot link 2 or 3 is subjected 
to external forces, the observation results of the LPOB and BPOB are as shown in Figs. 7 and 8, 
respectively.
	 It can be seen from Figs. 7(a) and 8(a) that the LPOB can observe different external forces, 
including contact force and collision force.  However, it cannot distinguish the two by a 
single threshold.  As shown in Figs. 7(b) and 8(b), the BPOB can filter out force signals with 
frequencies below 4.6 Hz and observe the force of high-frequency signals.  It is suitable for 
observing external collisions of robots.  In practical applications, the intentional contact force 
applied to the robot should be relatively low.  Therefore, two force-sensing observers can be 
used to detect and distinguish contact and collision after setting the appropriate thresholds and 
filtering parameters.  Furthermore, the LPOB and BPOB can select a more advanced filter to 
improve the filtering performance according to the actual application of the robot.  From the 
observations in Figs. 7 and 8, when link 2 is subjected to an external force, joint 2 is subjected 
to a corresponding force and joint 3 is not affected by the external force.  At this point, it can 
be seen from the observer results of the LPOB and BPOB that the observations of joint 2 will 
considerably change, while the observations of joint 3 will maintain a stationary value close to 
zero.  However, when link 3 is subjected to an external force, both joints 2 and 3 are subjected to 
an external force, and both the observations of joints 2 and 3 will change.  Therefore, according 

Fig. 6.	 (Color online) Observation results of LPOB with external forces: (a) robot joint 2 and (b) robot joint 3.

(b)(a)
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to Eqs. (32) and (33), the force-sensing observer designed in this study can detect external forces 
and identify the collided link.  

5.4	 Robot collision detection experiment

	 To verify the effectiveness of the collision detection algorithm proposed in this paper, 
the collision detection experiment based on the LPOB is designed.  A screenshot of the 
experimental process is shown in Fig. 9.  The robot works in an open environment as shown 
in Fig. 9(a).  Figure 9(b) shows that the robot works according to the planned path without 
collision.  Once the robot collides with the external environment, as shown in Figs. 9(c) and 
9(d), the control system immediately takes safety measures to control the movement of the 
collided joint in the opposite direction of the collision to ensure the safety of the robot.  
	 The real-time movement parameters of the robot during the experiment are shown in Fig. 10.  
The LPOB real-time observation results are shown in Fig. 11.  When the robot works without 
collision, the observed value of the LPOB in Fig. 11 is less than the threshold.  The observed 
value of the LPOB will increase rapidly after a collision.  It can be seen from Fig. 11 that the 
observed values of joints 2 and 3 exceed the threshold.  The observed results are consistent with 

Fig. 7.	 (Color online) Observations when link 2 is subjected to external forces: (a) LPOB and (b) BPOB.

(b)(a)

Fig. 8.	 (Color online) Observations when link 3 is subjected to external forces: (a) LPOB and (b) BPOB.

(b)(a)
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the output torque of the joint, as shown in Fig. 10.  According to Eq. (33), it can be determined 
that the collision occurred on the third link of the robot.  The above experimental results show 
that the proposed algorithm can effectively detect the robot collision and enhance the safety of 
the robot.

Fig. 9.	 (Color online) Robot collision detection experiment.

Fig. 10.	 (Color online) Robot motion parameters with 
collision.

Fig. 11.	 (Color online) Observation results of LPOB.
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5.5	 Robot collision distinction experiment

	 During human–robot interaction, the force that the human body intentionally exerts on the 
robot may also be larger, and the threshold of the BPOB directly affects the efficiency of the 
algorithm.  A low threshold can improve the sensitivity of the collision detection, which may 
also lead to a low working efficiency of the robot.  A high threshold may make the robot less 
sensitive to collisions, causing pain, bruise body tissues, and so forth in the human body.  To set 
a suitable threshold, five members of the laboratory intentionally push the robot 10 times.  At 
the same time, the human contact force is observed through the BPOB.  Considering the safety 
of the human body and the working efficiency of the robot, the threshold of 8.5 Nm is selected 
for the BPOB in this study.  The threshold can be adjusted according to needs in practical 
applications.  
	 Figure 12 shows a screenshot of the experimental results of the human–robot interaction.  
The initial position of the robot in the experiment is described in Fig. 12(a).  Figure 12(b) shows 
the normal working state of the robot.  At this time, the robot runs according to the planned 

Fig. 12.	 (Color online) Detection and distinction of contact and collision between human and robot.
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trajectory and speed.  Figure 12(c) shows the human and the robot sharing a limited working 
space.  In the human–robot interaction, it is necessary for the human to physically contact 
the robot.  This contact force is controlled by the human body without danger, as shown in 
Fig. 12(d).  To avoid false collision detection and ensure the safety of the human and robot, the 
force from the intentional contact exerted by the human body is judged whether it occurs after 
0.5 s and then stops the current task.  When the contact force of the human body disappears, 
the robot continues to wait for 2 s to ensure that the human body has moved to a safe area.  
Then, the robot continues to complete the interrupted task, as shown in Figs. 12(e) and 12(f).  In 
Figs. 12(g) and 12(h), once it detects a collision with a dummy in the workspace, the robot then 
immediately undertakes a safe reaction strategy to ensure its safety and the safety of the human 
body.  As shown in Fig. 12(i), when it reaches a safe area, the robot will stop running and wait 
for the operator to further check and eliminate hidden dangers before restarting it.  
	 The motion parameters of the robot during the experiment are shown in Fig. 13.  The 
observations of the BPOB and LPOB are shown in Figs. 14 and 15, respectively.  When there is 
no external force, the BPOB and LPOB observations in both Figs. 14 and 15 are less than the 
threshold.  When the robot is intentionally pushed, the joint output torque of the robot generates 
a corresponding change, as shown in Fig. 13.  The comparison of Figs. 14 and 15 shows that the 
BPOB is insensitive to the contact force signal, which indicates that it attenuates the force signal 
with a frequency lower than 4.6 Hz, and that the LPOB can observe all external forces.  The 
experimental results are consistent with the simulation results, and the robot can recognize that 
it has been subjected to external forces.  When a collision occurs, the joint output torque of the 
robot abruptly changes as shown in Fig. 13.  The BPOB observations in Fig. 14 quickly change 

Fig. 13.	 (Color online) Robot motion parameters in human–robot interaction experiment.
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and increase beyond the threshold.  It can be determined that the robot had an unexpected 
collision.  Additionally, the algorithm proposed in this paper can filter out slight unexpected 
contact or disturbances from load changes in the process of human–robot interaction and 
prevents the robot from producing an overreaction, frequently abandoning the task or restarting 
the system.
	 From the above experimental results and analysis, it can be seen that the proposed collision 
detection algorithm can effectively achieve collision detection and improve the safety of the 
robot.  At the same time, from the different frequency distributions of force signals, the LPOB 
and BPOB can work together to detect and distinguish the contact and collision between the 
human and the robot.  Moreover, the proposed collision distinction method can be further 
combined with the corresponding control algorithm to realize the switching of the robot 
working mode.  For example, it can be used for robot automatic or manual switching control 
and reduce the robot system hardware costs.  Therefore, this method has an application prospect 
in the field of physical human–robot interaction and coexisting cooperative cognitive robots.  
The proposed algorithm in this paper is a model-based approach.  In practical applications, an 
accuracy dynamic model is required to improve the detection and distinction performance.  As 
an example, the parameter identification can be used to reduce the dynamic parameter deviation 
and improve the detection sensitivity.  In addition, the proposed collision distinction method 
cannot be used in tasks that contain high-frequency disturbance such as grinding and polishing.  

6.	 Conclusions

	 In this paper, we proposed a collision detection algorithm based on the convolution filtering 
dynamic model.  A force-sensing observer was designed in this algorithm to realize robot 
collision detection.  The force-sensing observer does not need to calculate acceleration, which 
eliminates the disadvantage of introducing large calculation errors owing to the acquisition 

Fig. 14.	 (Color online) Observation results of BPOB 
in human–robot interaction experiment.

Fig. 15.	 (Color online) Observation results of LPOB 
in human-robot interaction experiment.
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of joint acceleration.  It only needs to sample the driving torque and position information 
of conventional robot joints, which is beneficial in reducing the cost of the robot system.  
Moreover, a collision distinction method was further designed on the basis of the force-sensing 
observer.  By using the different frequency distributions of the contact force and collision force, 
and combining an LPOB with a BPOB, we can realize the real-time detection and distinction 
of the contact and collision in the field of human–robot interaction.  At the same time, this 
collision distinction method can detect and distinguish the external forces on both the robot 
and the body.  External force sensing experiments show that the force-sensing observer works 
well and can be used as a virtual force sensor.  The experimental results of collision detection 
between a robot and an unknown environment show that the collision detection algorithm has 
stable performance and high reliability.  The human–robot interaction experiment verified the 
effectiveness of the proposed collision distinction method.  Therefore, the collision detection 
algorithm proposed in this paper can be used as a method for robot collision detection in 
practical applications.  The collision distinction method can provide an important reference for 
distinguishing the contact and collision in physical human–robot interaction.  Future work will 
focus on improving the speed of collision detection and distinction, and applying the algorithm 
to human–robot cooperation.
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