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	 As a method of estimating the risk of heatstroke with a wearable device, we have developed 
a method of calculating the wet bulb globe temperature (WBGT) by estimating the black globe 
temperature (Tg) only from sensors that can be mounted on a wristwatch-type device.  In WBGT 
measurement, the conventional method requires a large sensor for measuring Tg, and it has 
been difficult to grasp an individual’s heatstroke risk.  In this research, we proposed a method 
of estimating Tg using a neural network and compared the estimation accuracy for different 
numbers of layers and nodes.  In the Tg range of 31 to 41 ℃, it was confirmed that when Tg was 
estimated by the fully connected neural network of three layers and 20 nodes, the regression 
coefficient between the measured Tg and the estimated Tg was 0.90, indicating a high accuracy.

1.	 Introduction

	 In recent years, the number of onsets of heatstroke due to intense summer heat has increased.  
When an individual has heatstroke, the balance of fluid and salt in the body, as well as the 
thermoregulatory function, is upset.  As a result, the core body temperature rises and causes 
various symptoms such as dizziness, cramps, and headache.(1,2)  The wet bulb globe temperature 
(WBGT) is an indicator of the external environment related to heatstroke.(3)  It is known that the 
risk of heatstroke increases when WBGT increases and the risk is classified in four categories 
by the Japanese government.  WBGT is calculated from the ambient temperature (Ta), the wet 
bulb temperature (Tw), and the black globe temperature (Tg).  The WBGT outdoors is expressed 
by

	 WBGT ＝ 0.1 × Ta + 0.7 × Tw + 0.2 × Tg.	 (1)

	 Among these, Ta is the ambient temperature, and Tw can be calculated from Ta and relative 
humidity (RH) by using a psychrometric chart.(4)  On the other hand, a method of calculating 
Tg has not been established, and a special sensor is used for its measurement.(5)  Therefore, a 
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specially designed sensor has been required for conventional WBGT measurement.  Under 
the present circumstances, WBGT measurement is conducted only at representative points in 
various locations, and it has been difficult to grasp the heatstroke risk to individuals.
	 On the other hand, wearable devices have been developed in recent years, and various 
measurements can be conducted by using wearable devices such as wristwatch-type and 
glasses-type devices.(6–9)  Wearable devices are suitable for monitoring an individual and his/
her local surroundings, because a wearable device is used continuously by the same person.  
Temperature and humidity sensors are conventionally mounted on wristwatch-type devices.(10,11)  
Therefore, if it is possible to estimate Tg using other sensors applicable to a wearable device, 
it will be possible to obtain WBGT around that person, which can greatly contribute to the 
awareness of the individual’s heatstroke risk.  In the method of obtaining WBGT to assess 
whether an environment may cause heatstroke, it is possible to take measures to avoid the risk 
of heatstroke before symptoms occur.
	 As another way to estimate heatstroke risk, wearable core body temperature sensors have 
been developed.(12)  In this method, a sensor is placed in the ear to measure the eardrum 
temperature.  The method to measure the core body temperature directly is useful for grasping 
the heatstroke risk.  However, since the core body temperature has a small fluctuation range, 
there may be no time to take appropriate action before the onset of heatstroke symptoms.  In 
addition, it is necessary to insert a sensor into the ear for measurement and cut off it thermally 
from the outside.  In this case, there is a possibility that the ear may be injured in the case 
of falling or external sounds may not be heard.  Although it has been proposed that external 
sounds can be transmitted by bone conduction, it is necessary to strongly press the device 
against the body for transmission, which is unsuitable for long-time wearing.  However, it is 
possible to wear a wristwatch-type device for a long time safely without these disadvantages.
	 Regarding the estimation of Tg, neural networks have attracted attention as a method 
of estimating a certain state from multiple sensor data.(13,14)  A neural network has several 
intermediate layers between the input layer and the output layer, and each intermediate layer is 
composed of multiple nodes.  As these nodes and layers increase in number, the variety of states 
that can be estimated becomes richer.(15)  However, as the network becomes more complex, 
computational costs increase and device power consumption increases.(16)  In wearable devices, 
since the power supply is limited, it is necessary to ensure estimation accuracy with a network, 
that is as simple as possible.
	 In this research, we compared the estimation accuracy for different numbers of layers and 
nodes of a neural network to estimate Tg from the data of sensors that can be mounted on a 
wristwatch-type device.

2.	 Experimental Methods

2.1	 Sensor setup and measurement

	 In this study, temperature, humidity, illuminance, and skin temperature were selected, 
because they were considered to be related to Tg and sensors that measure them can be mounted 
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on a wristwatch-type device.  Temperature and humidity are used as information on the state 
of the outside air, and illuminance is used to reflect information on solar radiation.  Tg mainly 
indicates the effect of radiant heat.  Correlated outdoors, radiant heat is dominated by solar 
radiation, so the measured illuminance is highly associated with solar radiation.  In addition, 
since the skin temperature affects the device as a heat source, the temperature where the human 
body is in contact with the device is measured.  An MR6662 sensor (CHINO Corporation) was 
used as a temperature and humidity sensor, an HD2102.21 sensor (Delta OHM Corporation) 
was used as an illuminance sensor, and a TC101A sensor (MadgeTech, Inc.) was used as a skin 
temperature sensor.  As teacher data for performing machine learning, an HI-2000SD WBGT 
index meter (CUSTOM Corporation) equipped with a Tg sensor was used.  The specifications 
of each sensor are shown in Table 1.  In the measurement, each sensor was fixed around the 
arm and the WBGT index meter was held in the hand as shown in Fig. 1.  The measurement 
was performed outdoors on the premises of the University of Tokyo Kashiwa Campus.  The 
measurement was made once per minute for all sensors.  Data was collected several times 
between 2nd July and 19th September 2018, and a total of 845 min of data was acquired.

Table 1
Specifications of each sensor.
Sensor name Target Range Accuracy

MR6662

Ambient temperature −30–60 ℃ ±0.5 ℃ (−5–50 ℃) 
±1 ℃ (−30–−5 ℃, 50–60 ℃)

RH 0–100%RH
±3%RH (25 ± 2 ℃, 0–90%RH) 

Temperature coefficient 
±0.1%RH/℃ (5–60 ℃)

HD2102.21 Illuminance 0.01–200 × 103 (lux)

0.01 lux (0.01–199.99 lux)
0.1 lux (–1999.9 lux)
1 lux (–19999 lux)

10 lux (–199.99 × 103 lux)
TC101A Skin temperature −40–80 ℃ 0.1 ℃
HI-2000SD Black globe temperature 0–80 ℃ ±0.6 (15–40 ℃)

Fig. 1.	 (Color online) Photograph of sensors placed around an arm.
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2.2	 Machine learning setup

	 The measured data were divided into three groups, namely, one for learning and the other 
two for testing.  The first group had 705 min of data.  The second group for test 1 and the 
third group for test 2 had 70 min of data.  Learning was performed using 705 sets of data 
and evaluation was performed using 70 sets of test data, indicating that each set had 1 min of 
measurement data.  To eliminate the bias of the data in each group, all the 845 min of measured 
data was organized in order of increasing Tg, and the data for the test was created by extracting 
the data at equal intervals.  Tg in all the measured data was distributed in the range shown in Fig. 2.
	 In this study, the numbers of layers and nodes of the constructed neural network were varied 
as shown in Table 2, and the estimation accuracy under each condition was evaluated.  The 
activation function between the layers was a rectified linear unit (ReLU) represented by φ(x) 
= max(0, x).  Two evaluation indexes were employed: the regression coefficient between the 
measured Tg and the estimated Tg, and the standard deviation of the error between the measured 
Tg and the estimated Tg.

3.	 Experimental Results

	 A learning model of a neural network with each parameter was constructed by using 
learning data, and test data 1 was evaluated.  Figure 3 shows the relationship between the 
measured Tg and the estimated Tg in the cases of 20 nodes and two layers, three layers, and four 
layers, which are part of the analysis results.  The thick black line in each figure represents 

Table 2 
Values of neural network parameters.
Parameter Values
No. of layers 2, 3, 4
No. of nodes 10, 20, 50, 100, 200

Fig. 2.	 (Color online) Distribution of measured black globe temperatures.
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equal measured and estimated values, that is, a line with a regression coefficient of 1.  It was 
confirmed that the regression coefficient differs in each case.  This regression coefficient and 
the standard deviation of the error between the measured Tg and the estimated Tg are plotted 
against the number of nodes for each number of layers in Figs. 4(a) and 4(b), respectively.  The 
most desirable result was obtained, with a regression coefficient of 0.78 and a standard deviation 
of 1.71 ℃, in the case above the three layers and 20 nodes.  In the case of two layers, a decrease 
in accuracy was observed above 100 nodes.  There was no trend with increasing number of 
nodes in the case of four layers.  From Fig. 4(b), it was confirmed that the deterioration was 
significant when the number of nodes was more than 100 in the case of two layers.  

(a) (b) (c)

Fig. 3.	 (Color online) Relationship between measured Tg and estimated Tg in the cases of 20 nodes: (a) two layers, 
(b) three layers, and (c) four layers.

(a) (b)

Fig. 4.	 (Color online) Evaluation results for each pair of neural network parameters: (a) regression coefficient and (b) 
standard deviation of error.
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Fig. 5.	 (Color online) Evaluation results for each pair of neural network parameters in test data 2: (a) regression 
coefficient and (b) standard deviation of error.

(a) (b)

Fig. 6.	 (Color online)  Relationship between the measured Tg and the estimated Tg when Tg is in the range of 31 to 
41 ℃.

4.	 Discussion

	 From the results, it was confirmed that Tg can be estimated accurately by employing three 
layers and 20 nodes.  In particular, since the accuracy is not improved even if the numbers of 
layers and nodes are increased, it is considered that three layers and 20 nodes are appropriate 
for estimating Tg in this system.  To confirm the reproducibility of the results, a similar analysis 
was performed using test data 2.  The results are shown in Fig. 5.  Despite some errors, the 
same trend as in test data 1 was obtained, and the highest regression coefficient was obtained 
for three layers and 20 nodes, thus confirming the reproducibility of the learning model.
	 Referring to Fig. 3(b), the deviation from the line corresponding to a regression coefficient 
of 1 is large in the range of Tg of 31.0 ℃ or lower and 41.0 ℃ or higher.  In the range of 31 to 41 ℃, 
it was found that the regression coefficient was improved to 0.90 as shown in Fig. 6.  In the 
ranges of Tg of 31 ℃ or lower and 41 ℃ or higher, the number of acquired data was observed to 
be as small as about 14% of all the data, as shown in Fig. 2, and it is considered that sufficient 
learning was not performed.
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	 To confirm the effect of the estimation accuracy of Tg on the heatstroke risk evaluation, 
WBGT was calculated using Eq. (1) with the measured and estimated Tg values from test data 
1.  Figure 7 shows the relationship between WBGT calculated from the measured and estimated 
Tg values.  The maximum error was 1.00 ℃.  The multiple areas shown in different patterns are 
the risk categories defined in Japan.(17)  Near the boundary of each risk category, if the WBGT 
calculated from the estimated Tg is lower than that calculated from the measured Tg, there is a 
possibility of underestimating the risk when adopting the lower risk category.  Therefore, it is 
possible to prevent the underestimation of the risk by adding 1.00 ℃ to the estimated WBGT, 
because 1.00 ℃ is the maximum error as described above.

5.	 Conclusions

	 In this research, we proposed a method of estimating Tg using a neural network from the data 
of sensors that can be mounted on a wristwatch-type device, and we compared the estimation 
accuracy for different numbers of layers and these nodes of the neural network.  When Tg was 
estimated by the three-layer 20-node fully connected neural network, the regression coefficient 
between the measured Tg and the estimated Tg was 0.78 and the standard deviation of the error 
was 1.71 ℃, which was the highest accuracy.  Similar accuracy was obtained with other test 
data.  In addition, a regression coefficient of 0.90 was obtained when Tg was in the range of 31 
to 41 ℃.  In the calculation of WBGT using the estimated Tg, the maximum error was 1.00 ℃.  
It was also found that it is possible to prevent the underestimation of risk by adding 1.00 ℃ to 
the estimated WBGT.
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Fig. 7.	 (Color online) Relationship between WBGT calculated from the measured and estimated Tg values.
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