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	 Projectile trajectory estimation systems, such as missiles, rockets, intelligent robots, and 
other parabolic trajectory prediction systems, are often used in our daily life.  In this paper, we 
propose a projectile trajectory and position estimation system based on stereo vision.  When 
a human captures a flying projectile, he quickly looks at it attentively to estimate its flight 
path and then catches it.  To simulate the human eyes sensing dynamic images, two parallel 
network cameras capture the dynamic images of projectiles.  The projectile target images are 
found from a complex background using the image process.  The target’s three-dimensional 
positions are calculated using the sum of absolute difference (SAD) algorithm and stereo vision, 
and a Kalman filter (KF) or unscented Kalman filter (UKF) algorithm is used to estimate the 
trajectory and landing position of a projectile.  Experiments were carried out using different 
illumination backgrounds and different weights of projectiles.  Experiment results showed 
that the proposed projectile trajectory and position estimation system based on stereo vision 
can estimate a projectile’s three-dimensional trajectories, which correspond closely to actual 
trajectories, and UKF has higher performance than KF.  Our proposed estimation system can be 
widely applied in daily life and industry.

1.	 Introduction

	 When a human captures a flying projectile, such as a baseball player, first, whose eyes look 
attentively at the ball, his brain analyzes the projected flight direction, speed, and height, and 
then judges the landing position on the ground, finally he runs to capture it.  When a robot 
simulates a human receiving a projectile, the visual system and image processing are important 
technologies for it.
	 In this paper, we use two web cameras as human eyes, and a computer that simulates a 
human brain processes the stereo vision as computer vision.  Computer vision is also popularly 
applied in, for example, gesture identification,(1) image monitoring, a fingerprint identification 
system,(2) a lane offset system,(3) and a stereoscopic vision system.
	 The images caught by cameras are dynamic continuous motion images.  The optical 
flow is applied to the detection of moving objects from dynamic images, which utilizes the 
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instantaneous changes in pixel intensity to obtain moving object information.(4)  Stereo vision 
and the sum of absolute difference (SAD) are applied to calculate target point coordinates in 
three-dimensional space using target points in different visual angle images.(5)  In Ref. 6, the 
authors imitate the baseball outfielder that catches the ball with a single camera setup on a 
mobile robot on the basis of motion control laws.  A monocular robotic ball catching system 
uses the view of an eye-in-hand camera with a visual servoing control to catch a thrown ball.(7)  
The projectile trajectory is assumed to be a 5th-order time polynomial, and the extended 
Kalman filter (KF) algorithm is used to estimate the landing position of the projectile.(8)  
	 In this paper, we propose a projectile flight trajectory and position estimation system 
based on stereo vision.  We use two web cameras that sense the projectile dynamic images as 
human eyes sensing the images, and the target is detected by image processing from complex 
background images.  The target center point coordinates in the three-dimensional space are 
calculated using SAD and stereo vision.  Finally, KF and an unscented Kalman filter (UKF) are 
used to estimate the projectile flight trajectory and landing position.  

2.	 System Architecture

	 The flowchart of our projectile fight trajectory and landing position estimation system is 
shown in Fig. 1.  Two web cameras capture dynamic images; the target is detected by image 
processing involving color recognition, binarization, morphology, and the center of gravity 
calculation.  The target center position is a two-dimensional position with X- and Y-axis 
coordinates, which is determined by image processing.  The Z-axis coordinate of the target 
is calculated using the SAD and stereo vision algorithm, then the target tree-dimensional 
coordinates are calculated.  Finally, KF and UKF are used to estimate the projectile flight 
trajectory and landing position.  

Fig. 1.	 Projectile flight trajectory and landing position estimation system flowchart.
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3.	 Target Detection

	 Two web cameras capture dynamic images; the projectile object is detected from a complex 
environment by image processing involving: color recognition, binarization, morphology, and 
the center of gravity calculation.
	 The color image model of the camera capturing images is the red, green, and blue (RGB) 
color model.  We convert the RGB to YUV color space using Eq. (1), where Y means the 
luminance, and U and V components represent chrominance. 

	 ( ) ( ) ( )0.299 0.587 0.114Y R G B= × + × + ×

	 ( ) ( ) ( )0.1687 0.3313 0.5U R G B= − × − × + × 	 (1)

	 ( ) ( ) ( )0.5 0.4187 0.0813V R G B= × − × − ×

	 After color space conversion, the source image color space is converted to the grayscale 
components src(x, y), followed by binarization using Eq. (2).  dst(x, y) is the binarization result 
of src(x, y).  If dst(x, y) is equal to 255, we define it as logic 1, otherwise, as logic 0.  

	 ( ) ( )255, if  , 
, 

0, otherwise
src x y threshold

dst x y
 >

= 


	 (2)

	 After binarization, the target binarization image still has some noise and voids.  The erosion 
and dilation of the morphology are carried out to delete the noise and voids.  The erosion step 
eliminates noise and small protruding points of the target image, and the expansion step fills the 
voids in the target image.  To obtain a clear image, we first adopt the erosion step and then the 
expansion step to remove the image noise.
	 After morphology, the gravity center coordinates ( ),x y  of the target object are defined using 
Eq. (3).  (x, y) are the logic 1 point coordinates of the target binarization image, and m and n are 
the total numbers of logic 1 points of the X- and Y-coordinates, respectively.

	 ( ) 1 1 , ,x y x y
m n

 = ∑ ∑ 
 

	 (3)

4.	 Stereo Vision

4.1	 Stereoscopic algorithm

	 The stereoscopic vision uses different cameras to obtain different visual angle images of a 
three-dimensional object.(5)  In Fig. 2, we use two cameras with different visual angles to catch 
a target P, as the characters of human eyes.  Ol and Or are the center points of the left and right 
camera lenses, respectively, and P(xi, yi, zi) are the target coordinates.  Moreover, Pl(xl, yl, zl) 
and Pr(xr, yr, zr) are the target image coordinates of the left and right cameras on the dotted line 
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xlxr, respectively, xl is the distance between Pl and Ol, xr is the distance between Pr and Or in 
the X-axis direction, f is the camera’s focal length, and B is the distance of the base line between 
Ol and Or.  The two cameras center points Ol and Or have the same Y-axis coordinate.  
	 The stereoscopic geometric relationship diagram of stereo vision is shown in Fig. 2.  Equation (4) 
can be deduced from the relationship of the two similar triangles of ΔxlPxr and ΔOlPOr using 
the X- and Z-axis coordinates in Fig. 2, where Z is the distance between the target P and the 
base line Ol Or.  The distance between xl and xr is defined as the parallax d.  Equation (4) can be 
rewritten as Eq. (5).  

	
( )l rB x x B
Z f Z
− −

=
−

	 (4)

	
fBZ
d

= 	 (5)

4.2	 Regional alignment algorithm

	 As the characteristics of stereo vision shown in Fig. 2, a target P has a visual angle image Pl 
with the visual angle of Ol and a visual angle image Pr with the visual angle of Or.  Equation (6) 
shows the SAD in the region alignment, where m and n are the row and column pixel values of 
an image, respectively.  We select a reference point (i, j) in the left visual angle image and use a 
5 × 5 block to calculate the gray value WL(i, j).  We find the target point (i, j) in the right visual 
angle image and calculate the gray value WR(i, j) using a 5 × 5 block.  We move the target point 
to find the minimum VSAD point using Eq. (6).  The distance between the target point and the 
minimum VSAD point is d, and d is the parallax between the left and right visual angle images.

Fig. 2.	 (Color online) Stereoscopic geometric relationship diagram of stereo vision.
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	 ( ) ( )
0 0

, ,
j ni m

SAD L R
i j

V W i j W i d j
==

= =

= − +∑∑ 	 (6)

5.	 Projection Trajectory Estimation Algorithms

5.1	 KF algorithm

	 KF is a highly efficient recursive filter that estimates the state equation and measurement 
equation of a dynamic system from incomplete and noise-containing states.(9)  The major 
KF applications are filtering and estimation, which have been widely applied in radar, 
aviation, computer vision, satellite navigation, and other aspects.  The KF state equation and 
measurement equation are Eqs. (7) and (8), respectively.

	 ( )1 1 ,   ~ 0,k k k k k kN− −= + +x Ax Bu Qε ε 	 (7)

	 ( ),   ~ 0,k k k k kN= +y Cx Rω ω 	 (8)

Here, xk and xk−1 are the state matrices at times k and k − 1, respectively.  A is the state transition 
matrix, uk−1 is the input at time k − 1, B is the input matrix, εk is the state noise at time k, yk is 
the observation matrix at time k, C is the output matrix, ωk is the observation noise, εk and ωk 

are Gaussian white noises with the mean value 0, and Qk and Rk are covariance matrices.  There 
are two major steps of KF estimation, namely, state estimation and measurement update.  

5.1.1	 State estimation 

	 The KF state estimation equation and estimation covariance matrix are shown in Eqs. (9) 
and (10), respectively.

	 | 1 1 1ˆ̂k k k k− − −= +x Ax Bu 	 (9)

	 T
| 1 1k k k k− −= +P AP A Q 	 (10)

Here, 1ˆk−x  is the state estimation vector at time k − 1, | 1ˆk k−x  is the state estimation vector at time 
k using the previous time k − 1 state 1ˆk−x , | 1k k−P  is the estimated covariance matrix, and Qk is the 
process noise covariance matrix.  

5.1.2	 Measurement update 

	 The Kalman gain Kk and the system optimal estimation state vector ˆkx  are shown in Eqs. (11) 
and (12), respectively.  
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	 ( ) 1T T
| 1 | 1k k k k k k

−
− −= +K P C CP C R 	 (11)

	 ( )| 1 | 1ˆ̂̂k k k k k k k− −= + −x x K y Cx 	 (12)

	 ( ) | 1k k k k−= −P I K C P 	 (13)

Here, Rk is the measured noise covariance matrix and | 1 ˆk k k−−y Cx  is the residual of 
measurement.  Finally, the current time estimated covariance matrix is updated using Eq. 
13.  The flow of KF recursive calculation is shown in Fig. 3.  The system initial state vector 
is 0 x̂ , the initial covariance matrix is P0, the state estimation uses Eqs. (9) and (10), and the 
measurement update uses Eqs. (11)–(13).  

5.2	 UKF algorithm

	 The basic KF algorithm is developed on the basis of the linear system state equation and 
linear measurement equation.  However, the state equations or observation equations of most 
practical systems are nonlinear in daily life.  To solve the nonlinear conditions of the estimation 
problem, Julier et al. proposed the UKF algorithm(10) to solve the nonlinear estimation problem.  
The discrete system of the UKF algorithm is as follows:  

	 ( )1 kk kf+ = +X X w ,	 (14)

Fig. 3.	 Flow of KF recursive calculation.
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	 ( )k kkh= +z X υ .	 (15)

Here, Xk is the state vector of the system, f(·) is the nonlinear system state function, and wk 
is the system process noise, which is assumed as zero mean Gaussian white noise.  zk is the 
measurement vector, h(·) is a nonlinear observation function, and kυ  is the system measurement 
noise.  Similarly, UKF has KF with the state estimation and measurement update steps.  The 
nonlinear system using the UKF process is as follows:

1.	 State estimation

	 ( ) ( )( | 1) 1  , 0, 1, 2, , 2i k k i kf i n− −
 = = … X X ,	 (16)

	
2

| 1 ( | 1)
0

ˆ
n

m
k k i i k k

i
− −

=

=∑x W X ,	 (17)

	 ( ) ( )
2 T

( | 1) ( | 1) ( | 1)| 1 | 1
0

ˆ̂
n

c
x k k i k k k k ki k k i k k

i
− − −− −

=

   = − − +   ∑P W X x X x Q .	 (18)

2.	 Measurement update

	 ( )| 1 | 1ˆ̂ ˆ kk kk k k k− −= + −x x K z z ,	 (19)

	 ( ) ( )
T

( | 1)x k kx k zk kk−= −P P K P K ,	 (20)

	 ( ) ( )
1

k xz k z k
−=K P P ,	 (21)

	 ( )
2

| 1 | 1
0

ˆ
n

m
k k i i k k

i
h− −

=

=   ∑z W X ,	 (22)

	 ( ) ( ){ } ( ){ }2 T

| 1 | 1| 1 | 1
0

ˆ̂
n

c
i k k k k kz k i k k i k k

i
h h− −− −

=

   = − − +   ∑P W X z X z R ,	 (23)

	 ( ) ( ){ } ( ){ }2 T

| 1 | 1| 1 | 1
0

ˆ ˆ
n

c
i k k k kxz k i k k i k k

i
h− −− −

=

 = − − ∑P W X x X z .	 (24)

	 The UKF gain matrix is Kk.  The flow of UKF recursive calculation is similar to that of KF 
recursive calculation as shown in Fig. 3.
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6.	 Experimental Results

	 In our experiment, two web cameras catch the projectile dynamic images.  The image 
process step detects the target from a complex background and calculates the target center point 
of the X- and Y-axis coordinates.  The Z-axis coordinate of the target center point is calculated 
using the SAD and stereo vision algorithm.  Finally, the KF and UKF steps estimate the 
projectile trajectory and landing position, respectively.  The state equation vector x of the KF 
and UKF state equations indicates the target center point position coordinates (px, py, pz) and 
speed (vx, vy, vz).  The gravity acceleration g is the input u.  The current time k state is estimated 
using the previous time k − 1 state shown in Sects. 5.2 and 5.3.
	 In our experiments, the projectile dynamic images are captured using two web cameras, 
and we select 21 image frames of the projectile dynamic images to observe the actual projectile 
trajectory.  The flight duration of each experiment trajectory is about 0.8 to 1 s.  The weight 
of the green ball is 32.5 g and that of the blue ball is 157 g.  Our experiments are carried out 
under different daylight illuminations.  The actual trajectory of each ball is observed using the 
dynamic images from the two cameras.  Under different daylight illuminations, the trajectories 
are estimated using KF and UKF.  Figure 4(a) shows the three-dimensional coordinates and 
Fig. 4(b) shows the time function of the blue ball trajectory under 515 lux illumination.  The 
height of the projectile trajectory is about 1 m.  The “KF trajectory estimation” is the projectile 
trajectory estimation using KF.  The “UKF trajectory estimation” is the projectile trajectory 
estimation using UKF.  The “actual trajectory” is the actual projectile trajectory, which is 
observed using the dynamic images from the two cameras.  
	 The projectile trajectories of UKF and KF, and the actual trajectory are very similar in 
our experiment results.  The estimation errors of the blue and green balls under different 
illuminations are shown in Tables 1 and 2, respectively.  The maximum error is less than 0.05 m.  
The average error is controlled at 0.03 m.  The blue ball UKF errors are less than the KF errors 
under different illuminations.  The green ball has the same result.  The projectile trajectory 

Fig. 4.	 (Color online) (a) Three-dimensional coordinates and (b) time function of blue ball trajectory under 515 
lux illumination.

(a) (b)
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Table 1
Blue ball trajectory error.

Error (m)
515 lux 215 lux

Average Maximum Minimum Average Maximum Minimum
KF (X-axis) 0.033572 0.043973 0.017853 0.035574 0.047793 0.016091
UKF (X-axis) 0.031893 0.038589 0.011714 0.034896 0.047189 0.015854
KF (Y-axis) 0.030896 0.037731 0.013458 0.032576 0.051904 0.013726
UKF (Y-axis) 0.029383 0.036542 0.012973 0.031232 0.050083 0.011293
KF (Z-axis) 0.031232 0.041289 0.011586 0.033389 0.046896 0.014282
UKF (Z-axis) 0.029892 0.039583 0.009731 0.031974 0.045138 0.012531

Table 2
Green ball trajectory error.

Error (m)
515 lux 215 lux

Average Maximum Minimum Average Maximum Minimum
KF (X-axis) 0.031381 0.051393 0.008793 0.033581 0.042134 0.008796
UKF (X-axis) 0.030796 0.047986 0.004531 0.032976 0.041558 0.008326
KF (Y-axis) 0.027538 0.045045 0.010913 0.030598 0.038575 0.009732
UKF (Y-axis) 0.026986 0.041913 0.009316 0.030112 0.037853 0.008873
KF (Z-axis) 0.033198 0.047574 0.009385 0.029381 0.040972 0.010589
UKF (Z-axis) 0.031574 0.044913 0.005164 0.029002 0.039851 0.009585

Table 3
Blue ball position error. 

Error (m)
515 lux 215 lux

Average Maximum Minimum Average Maximum Minimum
KF (X-axis) 0.027255 0.040937 0.011573 0.027243 0.042387 0.012093
UKF (X-axis) 0.023513 0.037859 0.009167 0.024928 0.037986 0.009871
KF (Z-axis) 0.030518 0.045245 0.015579 0.030759 0.045443 0.016076
UKF (Z-axis) 0.024142 0.039513 0.008372 0.023984 0.036588 0.009788

Table 4
Green ball position error.

Error (m)
515 lux 215 lux

Average Maximum Minimum Average Maximum Minimum
KF (X-axis) 0.025792 0.039897 0.009647 0.025691 0.041134 0.010089
UKF (X-axis) 0.021293 0.035921 0.004661 0.021495 0.037589 0.007392
KF (Z-axis) 0.028397 0.043192 0.013588 0.029958 0.044198 0.014481
UKF (Z-axis) 0.022386 0.038976 0.005796 0.022088 0.037983 0.006193

estimations using UKF correspond more closely to the actual trajectory than those using KF.  
The color of the test ball does not affect the projectile trajectory estimations.
	 When a projectile lands on the floor, the Y-axis coordinate of the projectile trajectory is zero.  
We estimate the landing position using UKF and KF, and the position estimation errors of the 
blue and green balls under different illuminations are shown in Tables 3 and 4, respectively.  
The maximum error is less 0.05 m and the average error is about 0.03 m for all samples.  The 
results of experiments on projectile landing position estimation using KF and UKF correspond 
closely to the actual landing position.  The projectile landing position estimations using UKF 
correspond more closely to the actual position than those using KF.  
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7.	 Conclusion

	 A projectile three-dimensional trajectory and position estimation system based on stereo 
vision is implemented in our research.  After cameras sense the projectile, target images are 
identified from complex backgrounds, and then the three-dimensional coordinates of the 
projectile target are calculated using the stereoscopic visual algorithm.  After obtaining the 
target image information, we use KF or UKF to estimate the trajectory and landing position 
of the projectile.  It is found that UKF can estimate the projectile and landing position more 
accurately than KF.  Our system can intelligently track the projectile trajectory and landing 
position, and can be widely applied in daily life and industrial intelligent robots.  The robot 
senses a target, actively tracks the target trajectory, estimates the landing position, and judges 
where to capture the target or beat the target.  Our system can be widely applied in intelligent 
robot industries, such as intelligent trash cans, badminton robots, and rehabilitation robots.
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