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	 An electrocardiogram (ECG) documents the voltage changes during heartbeats.  It captures 
electrocardiographic signals in a noninvasive way.  ECGs are complicated and vary from person 
to person, making them ideal for use in biometric recognition systems.  A number of studies 
have shown that ECG signals are nonlinear curves and dynamically chaotic.  The ECG signals 
were measured on the basis of the Einthoven’s triangle principle in this study.  Combining 
captured ECG signals using ECG biosensors and a data acquisition (DAQ) card, LabVIEW was 
used to design a human–machine interface (HMI) to display the processed ECG signals for test 
subjects.  The saved ECG data were plotted in a dynamical map of the chaotic dynamic error 
using a master–slave chaotic system.  The chaotic eye was selected as a feature and an identity 
database was built using an element model.  Personal identity was identified by categorizing 
with an extension method.  Thirty-six subjects were tested and the identification accuracy was 
94.4%.  The MIT-BIH Normal Sinus Rhythm Database (NSRDB) and an arrhythmia database 
were used in this study.  Using the extension method, the classification accuracy between 
normal and cardiac arrhythmia was 91.67%, and the accuracy was increased to 100% when 
matter element extensibility was employed.  Results suggested that the biometric recognition 
method developed in this study performs identification rapidly with high positive recognition 
rate and reliability.

1.	 Introduction

	 Advanced modern technology and the availability of information have triggered the 
increasing use of network activities such as e-business curfew control, data access, and online 
transactions.  With this technology, the application and development of identity recognition and 
security verification have become key issues.(1)  Traditionally, biometric recognition technology 
relies on body and behavioral features.  The former requires meticulous identification because 
unique body features are captured for identification.  The latter requires convenience of 
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identification because differences in human behaviors are used for identification.(2)  The 
traditional biometric recognition techniques available are identification by facial recognition, 
fingerprint, voice, eyeball, and DNA.(3–5)  However, these techniques come with certain 
limitations.  A novel biometric recognition method is expected to resolve and improve the 
limitations and drawbacks of the traditional ways.  
	 Electrocardiogram (ECG) signals are complicated and differ from person to person, and 
are therefore difficult to duplicate or steal, making them applicable to biometric recognition.  
ECG signals have been studied extensively and used in clinical applications for many years.(6) 
In recent years, studies have shown that ECG signals captured through ECG biosensors can be 
used for the biometric recognition and assessment of heart health to further monitor or prevent 
the occurrence of heart diseases.(7–11) 

	 The time domain, frequency domain, wavelet analysis, and hybrid algorithms are common 
feature selection methods used in ECG identification in related studies.  For example, the 
PQRST waves were measured on ECG detection via the time domain.  The QRS complex wave 
and intervals were featured for ECG recognition, and the major classification methods included 
neural networks,(12,13) linear discriminant analysis,(14,15) support vector machine,(16) the two-
pass classification method,(17) and fuzzy theory.(18)  Although hybrid classification methods 
combining the above-mentioned multiple classification methods enhance the recognition 
accuracy, because of the computational complexity, more execution time is required in the 
training phase.  
	 A number of studies have found that ECG signals are nonlinear curves and dynamically 
chaotic.(19–21)  On this basis, in this study, a master–slave chaotic ECG dynamic error system 
was proposed to capture the chaotic eye as a feature, and the extension method was used for 
classification to identify personal identity and cardiac arrhythmia.

2.	 Materials and Methods

	 The proposed ECG biometric recognition system consists of three functions: ECG signal 
capturing and preprocessing, feature extraction, and identity recognition.  First, the ECG 
signals are captured by a hardware circuit, a data acquisition (DAQ) card, and LabVIEW, and 
then converted to a dynamical map of the  chaotic dynamic error using a master–slave chaotic 
system to find the coordinates of the chaotic eye, which serves as the feature for an element 
model to be found in an identity recognition database.  Next, the extension method is used for 
classification.  Finally, there is a human–machine interface (HMI) whose design was based on 
LabVIEW.  Figure 1 shows a flowchart of this study.

2.1	 ECG signal capture and preprocessing

	 The ECG capturing circuit comprised electrode patches, a preamplifier, a filter, and an 
amplifier.  Figure 2 shows the process followed to capture ECG signals.
	 The electrode patches were attached in Einthoven’s triangle.  The principle behind this is to 
divide the standard bipolar limb lead into three leads: Leads I, II, and III.  Lead I measures the 
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difference in potential between the left hand (LA) (positive) and the right hand (RA) (negative) 
with 0° orientation; Lead II measures the difference in potential between the left leg (LL) (positive) 
and the right hand (RA) (negative) (II = LL – RA) with 60° orientation; and Lead III measures 
the difference in potential between the left leg (LL) (positive) and the left hand (LA) (positive) (III 
= LL – LA) with 120° orientation.  Because II = I + III, the Einthoven triangle is complete.
	 An AD620 amplifier was used as the preamplifier, which is a high-gain and DC coupling 
amplifier, and features a differential input, a single-end output, a high input impedance, and a 
high common mode rejection ratio.  The filters were a second-order Butterworth low-pass filter 
and a second-order Butterworth high-pass filter, as shown in Figs. 3 and 4, respectively.  These 
were designed to keep the ECG signals within 0.05 and 100 Hz, respectively.(22) 
	 The signals were captured by the circuit and DAQ card through the electrode patches and 
converted them into ECGs using LabVIEW.  The ECG data were saved for a minute after they 
were measured from the test subject.  Figure 5 shows the ECG HMI of a test subject generated 
by LabVIEW.

2.2	 Feature extraction

	 The features of the test subject’s ECG were extracted using a chaotic system.  In the chaotic 
system, the minute changes in ECG signals lead to huge variations as time evolves.  The chaotic 
dynamic error system extracts the dynamic errors between two chaotic systems by adding and 
subtracting them.(23)  The original measured ECG signals are transformed to chaotic dynamic 
error scatter plots through chaotic theory.  Each chaotic scatter plot has two chaotic eyes, and 
the coordinates of the two eyes are used as features for further processing in the extension 
method.  

Fig. 1.	 (Color online) System flowchart. Fig. 2.	 (Color online) ECG signal capturing process.
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	 The master (Smaster) and slave (Sslave) of a master–slave system are expressed by Eqs. (1) and (2), 
respectively.

	

1 1 1 2

2 2 1 2

1 2

( , ,..., )
( , ,..., )

( , ,..., )

n

n
master

n n n

x f x x x
x f x x x

S

x f x x x

=
 == 

 =

�
�

�
�

	 (1)

	

1 1 1 2

2 2 1 2

1 2

( , ,..., )
( , ,..., )

( , ,..., )

n

n
slave

n n n

y f y y y
y f y y y

S

y f y y y

=
 == 

 =

�
�

�
�

	 (2)

Here, fi (=1, 2, ..., n) is a nonlinear function.  By subtracting Eq. (2) from Eq. (1), the master 
and slave dynamic error is generated, as expressed in Eq. (3).  A calculation yields the chaotic 
dynamic function as Eq. (4).  

Fig. 3.	 Second-order Butterworth low-pass filter. Fig. 4.	 Second-order Butterworth high-pass filter.

Fig. 5.	 (Color online) ECG HMI of test subject generated by LabVIEW.
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	 The Lorenz chaotic system is employed in this study.  The master (Lmaster) and slave (Lslave) 
Lorenz systems are expressed by Eqs. (5) and (6), respectively.
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	 By subtracting Eq. (6) from Eq. (5), the chaotic dynamic function of the Lorenz master–
slave system is obtained in the matrix form as(24)
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where x is the master system with an initial value of zero, y is the slave system containing 
ECG signal values, α, β, and γ are the adjusted error coefficients that are based on Lorenz’s 
experience values, which are set as 10, 28, and −3/8, respectively, and e1 and e2 are used to 
generate the dynamical map of the chaotic dynamic error.  The coordinates of the two centers 
of gravity in the map are defined as the chaotic eyes and used as features in the biometric 
recognition system.(25)

2.3	 Recognition method

	 The ECG signals are processed by the chaotic system to yield the features of the chaotic 
eyes before the extension method is used for classification.  The mathematical methods of 
the extension set and correlation function are practical tools for extension evaluation.  For 
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extension evaluation, multiple databases are established through experiments.  A single object 
is decomposed into one or more level sets and an expert system defines the range for these level 
sets.  The data of the object to be evaluated are substituted into the data range of these level sets 
for extension correlation and normalization.  The results of the calculation are compared with 
the extension correlation of each of these sets.  The closer the extension correlation is to 1, the 
better the data of the object to be evaluated fit the specific set.  The following are the steps of 
the biometric recognition.(26) 

Step 1: Build an element model and define the classic domain as in Eq. (8).  The theory is that 
an object R is divided into k levels of numeric sets.  This is the classic domain of each of the 
sets.  Therefore, a database has to be built before identity recognition.
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Here, Nk is the name of the element in each of the k levels of sets, Ci is the feature of the element 
name  expressed as Ci (i = 1 – n), Xki means that this feature range falls in the distribution 
range of the ith feature of the kth level, aki is the magnitude of this feature, aki  (i = 1 – n) is the 
maximum of the element level set feature, bki is the magnitude of this feature, and bki  (i = 1 – n) 
is the minimum of the element level set feature.
Step 2: Determine the test element.  An unknown element is divided into the features of each 
level of sets.  The number of levels of sets equals that of classic and joint domains combined.  
This is called the element to be tested, which is expressed as 
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where q is the name of the ECG test subject and xi is the chaotic eye feature data of ci (i = 1, 2, 3, 4).
Step 3: Provide weights for the features.  The object R consists of features ci.  Each of the 
features has an effect on the object.  The correlation of the weight coefficient is used in this step 
to determine the weight percentage of each feature contributing to the object, as shown by 
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Step 4: The correlation between the data to be measured and each category is determined.  This 
refers to the distance between a feature of an element to be tested, xi, and the center of that 
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element in all of the classic or joint domains.  This distance is defined as the range, as shown in 
Eq. (11), and it is the same for the feature range in the joint domain.  
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Step 5: Calculate the correlation function.  If the classic and joint domain ranges are 
determined, the correlation function is solved by using Eq. (12), i.e., to determine the degree of 
correlation.  Then, the summation in Eq. (13) is carried out to obtain the correlation of the object 
to be tested.  The category which the object falls into is clearly identified.  
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Step 6: Normalize the correlation.  By determining the relative values of the correlation to each 
of the sets, the normalization is performed using Eq. (14) to allow the correlation to fall between 
−1 and 1.
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Step 7: Evaluate the identity of the element.  When kk(q) is equal to 1, the correlation is category 
k.  The possibility of other set patterns depends on the correlation.  In general, the greater the 
correlation for a specific set, the more likely the element being evaluated is close to that specific 
set.  The diagnosis ends when all the elements are evaluated.  Otherwise, evaluate new elements 
by going back to Step 2.

3.	 Experimental Results

	 The ECG capturing circuit and the DAQ card proposed in this study are shown in Fig. 6.  
The ECG signals were processed by LabVIEW and the processed ECG data were saved.
	 The master–slave system is used to generate the dynamical tracks and a map of the 
chaotic dynamic error.  The values of the chaotic eyes are captured as the features for identity 
recognition.  The chaotic eye is the center of gravity of the dynamical map of the chaotic 
dynamic error.  Therefore, each test subject should have four features (c1–c4), as shown in Fig. 7, 
where c1 is the value of the left chaotic eye on the X-axis (e1), c2 is the value of the left chaotic 
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eye on the Y-axis (e2), c3 is the value of the right chaotic eye on the X-axis, and c4 is the value of 
the right chaotic eye on the Y-axis.  

3.1	 Personal identity recognition

	 To demonstrate the performance of the proposed method, 36 subjects with a healthy heart 
rate (23 males and 13 females), aged between 20 and 50, were tested.  Half of the test samples 
were selected from the MIT-BIH Normal Sinus Rhythm Database (NSRDB).(27)  Each subject 
underwent five tests (the total number of tests was 180).  The recognition database contains 
five heart rates and chaotic eyes for each subject.  The loci of the chaotic dynamic error for two 
subjects are shown in Figs. 8(a) and 9(a), and the corresponding dynamic maps of the chaotic 
dynamic error and chaotic eyes are plotted in Figs. 8(b) and 9(b), respectively.  The data used 
in Fig. 8 were from a test subject, and those used in Fig. 9 were from the MIT-BIH NSRDB.  
Comparing the plots in Figs. 8 and 9, it is clear that the loci, dynamic maps, and chaotic eyes 
from different subjects have different natures.  The results show that 170 out of the 180 tests 
produced positive recognition with an average recognition rate of 94.4% at an average time of 2.07.  
The proposed method was compared with other methods in terms of accuracy, as shown in Table 1.  

3.2	 Diagnosis of cardiac arrhythmia

	 In this section, normal sinus rhythm samples from the MIT-BIH normal database (NSRDB 
16265, 16272, 16273, 16420, 16483) and arrhythmia samples from the MIT-BIH arrhythmia 
database (MITDB 109, 111, 214, 118, 124, 220, 223) were used.  The left and right chaotic eyes 
C2 and C4 were identified as the features, and the weights were set as 0.5 for both features.  
The arrhythmia database used in this study includes types of normal sinus rhythm, left bundle 
branch block (LBBB), right bundle branch block (RBBB), and atrial premature contraction (APC).  
	 The signals were sampled every 10 over a duration of 1 min for each subject.  There were 
six samples for each subject.  The first three samples were used as training sets and the last 

Fig. 6.	 (Color online) ECG signal capturing circuit. Fig. 7.	 (Color online) Definition of chaotic eyes.
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Fig. 8.	 (Color online) (a) Locus of chaotic dynamic error from one test subject and (b) dynamic map of chaotic 
dynamic error and chaotic eye from the same test subject.

Fig. 9.	 (Color online) (a) Locus of chaotic dynamic error from one MIT-BIH subject and (b) dynamic map of 
chaotic dynamic error and chaotic eye from the same MIT-BIH subject.

(a) (b)

(a) (b)

Table 1
Comparison with different methods.
Authors Data source Methods Accuracy (%)
Wang et al.(28) PTB database PCA + LDA ≥90
Plataniotis et al.(29) PTB database AC + DCT 92.8
Chen et al.(30) MIT-BIH Neural network 75–90
Chan et al.(31) Collected from lab Wavelet distance 89
Loong et al.(32) Collected from lab LPC + WPD ≥90
Chen et al.(33) Collected from lab Chaotic theory + BPNN 91
Proposed method MIT-BIH and collected from lab Chaotic eye features + extension method 94.4

three samples were treated as testing sets.  There were 36 training and 36 testing records in 
total.  The values of the left chaotic eye on the Y-axis (e2) and the right chaotic eye on the 
Y-axis (e4) represent the classification features in Fig. 10(a).  The four types of ECG beats are 
marked according to the classical domains for each type.  As presented in Fig. 10(a), some 
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overlap occurring between the normal and LBBB types caused misclassification.  Thirty-three 
out of the 36 subjects were classified correctly.  The proposed method thus achieved an overall 
accuracy of 91.67%.
	 To enhance the accuracy, matter element extensibility was applied to separate the 
overlapping between the normal and LBBB types.  The normal type was split into N1 and 
N2 and the LBBB type was split into L1 and L2 in Fig. 10(b).  There was no overlap between 
the normal and LBBB types and an accuracy of 100% was achieved.  To demonstrate the 
performance of the proposed method, a comparison with other related methods is given in Table 
2.  The 100% accuracy of the proposed extension method with matter element extensibility 
exceeded the performance of all other methods.

4.	 Conclusions

	 Using ECG signals captured through ECG biosensors and a DAQ card, we designed a HMI 
to display and save processed ECG signals for test subjects via LabVIEW.  Using the proposed 
feature selection method proposed in this study, the dynamical map of chaotic dynamic error 
was plotted and the chaotic eye was selected as the feature.  An element model was used to 
build an identity database and an extension method was applied to recognize personal identity 
and cardiac arrhythmia.  Thirty-six subjects were tested and the identification accuracy was 

(a) (b)

Fig. 10.	 (Color online) (a) Plot of four types of beats based on extension method and (b) plot of four types of beats 
based on extension method and matter element extensibility.

Table 2
Comparison with different methods.
Authors Data source Methods Accuracy (%)
Acharya et al.(34) MIT-BIH FFNN + fuzzy ≥90
Nasiri et al.(35) MIT-BIH SVM 92.8
Tang and Shu(36) MIT-BIH Gradient descent method 75–90
Jadhav et al.(37) UCI  Multilayer Perceptron Neural Network 89

Proposed method MIT-BIH Chaotic eye features + extension method(38) 91.67
Matter element extensibility 100
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94.4%.  The MIT-BIH NSRDB and an arrhythmia database were used in this study.  Using 
the extension method, the classification accuracy between normal and cardiac arrhythmia 
was 91.67%, and the accuracy was increased to 100% when matter element extensibility was 
employed.  Compared with the other methods, the proposed method has fewer selected features 
of the ECG dataset in the time and frequency domains and markedly decreases the computing 
time and system complexity.  Our results suggest that the identity recognition method developed 
in this study achieves rapid identification and has a high positive recognition rate.  
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